Machine Learning and Statistical Learning Theory 2
Instructor: He Wang
he.wang@northeastern.edu
All course materials (homework/labs/tests/etc.) are on Canvas.
Lecture Notes:
Part 1: Advanced Machine Learning
0. Syllabus and Introduction Math7339Sec0Introduction
1. Bias-variance trade-off Math7339Sec1Bias-Variance
2. Model Complexity Math7339Sec2Complexity
3. Generalized linear methods. Math7339Sec3GLRegression
4. Splines and generalized additive models Math7339Sec4Spline1 and Math7339Sec4Spline2GAM
5. Smoothing methods Math7339Sec5Smoothing
6. Bayesian methods Math7339Sec6Bayesian
7. Latent variables Math7339Sec7LatentVariables
8. Kernel methods and Reproducing kernel Hilbert space Math7339Sec8Kernel
9. Gaussian Process GaussianProcess
10. Sampling Methods (MCMC) Sampling Methods
Part 2: Time Series:
1.Times Series Introduction Math7339TS1TimesSeries_Intro
2. Station Process Math7339TS2StationaryProcess
3. ARMA Math7339TS3ARMA
4. Forecasting Math7339TS4Forecasting
5. Exploratory Data Analysis Math7339TS5Exploratory Data Analysis
6. ARIMA Math7339TS6ARIMA
7. Spectral Analysis Math7339TS7SpectralAnalysis
8. FFT and Wavelet Math7339TS8 FFT_Wavelet
9. Automatic models and Prophet Math7339TS9Prophet
10. Deep learning on time series data Math7339TS10DeepLearning
Recent Comments