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Ø Set up

Variables:

Input (feature/predictor): �⃗� = 𝑥!, … , 𝑥" =
𝑥!
⋮
𝑥"

∈ 𝒳 = ℝ"

Output (label):  𝑦 ∈ 𝒞 ⊆ ℝ

Note here 𝑦 is an outcome we wish to predict from �⃗�.

Assumption: Whenever we measure a pair �⃗�, 𝑦 , they are an 
example/sample of a pair of Random Variables (R.V.) �⃗�, 𝑌 with 
some fixed underlying distributions.

We want to 'Learn' relation between �⃗� and 𝑦 from the training 
data 𝒟 = �⃗� # , 𝑦 # , 𝑖 = 1, …𝑛 .



• Prediction of response 𝑦 from predictors 𝑥!, 𝑥$, … , 𝑥%.
(Regressions and Classifications)

• Identification of 'important' variables affecting outcome. 
(Feature selection)

• Characterizing associations among variables.

• Statistical learning is less algorithm based than standard 
machine learning, which is more algorithm based. We will do 
both. 

Ø Statistical learning and machine learning:



More formal definitions: 

Assume we have variables �⃗� ∈ 𝒳 and 𝑦 ∈ 𝒞 in some respective 
domains 𝒳 and 𝒞.

• A learning algorithm is a rule that takes a training set 𝒟 = )
*

�⃗� ! , 𝑦 ! ,
𝑖 = 1, …𝑛 as input and produces as its output a predictor function 𝑦 =
0𝑓(�⃗�) that for every �⃗� value predicts a 𝑦 value.

• Given predictors �⃗� ∈ 𝒳 ⊂ ℝ" and outputs 𝑦 ∈ 𝒞 , a (probability) model 
of their relationship is a joint probability distribution 𝑷 on the pair 
𝑋, 𝑌 ∈ ℝ"×𝒞 of a random vector 𝑋 ⊂ ℝ" and random variable 𝑌 ∈ 𝒞 .

• Assume there is an unknown probabilistic relationship between a 
predictor �⃗� ∈ 𝒳 ⊂ ℝ" and an output 𝑦 ∈ 𝒞 . We define a (function) 
model of this relationship to be a single function 𝑓:𝒳 → 𝒞 or a class ℱ
of such functions one of which is assumed to give a 'good’ prediction 
𝑦 ∈ 𝒞 from �⃗� ∈ 𝒳 ⊂ ℝ" .



1. Supervised learning 
2. Unsupervised learning

q Types of statistical learning:

Example: 
• Supervised case: 𝑦, �⃗� → 𝑃 𝑦 �⃗� 𝑃(�⃗�)
• Unsupervised case: �⃗� → 𝑃(�⃗�)

Ø Supervised v.s. Unsupervised



q Two data types for the outcome 𝑦:

1. 𝑦 ∈ ℝ is continuous, quantitative. (regression)

2. 𝑦 ∈ {1, … , 𝐾} is discrete, qualitative. (classification)

Ø Regression v.s. Classification

Regression and classification are often in the same theoretical context.

In both cases, a (probability) model fixed joint probability distribution. 

𝑋, 𝑌 ~𝑃(�⃗�, 𝑦)

Specifically, we will say that for a (measurable) set 𝐴 ⊂ ℝ"×𝒞, the 
probability that 𝑋, 𝑌 ∈ 𝐴 is

𝑃 𝐴 ≔ 𝑃 𝑋, 𝑌 ∈ 𝐴



We typically assume a regression model has the form:

𝑦 = ℎ �⃗� + 𝜖

Here ℎ(�⃗�) best predicts 𝑦, but with some small 𝜖 random error. 

We cannot control the error 𝜖, but want the best choice of ℎ(�⃗�)
to predict 𝑦 from �⃗�.

In regression case 𝑦 ∈ ℝ we often assume that the measure 𝑃 has 
a joint probability density function.

𝑝 �⃗�, 𝑦 = 𝑝(𝑥#, 𝑥$, … , 𝑥" , 𝑦)

𝑃 𝑋, 𝑌 ∈ 𝐴 = E
%
𝑝 �⃗�, 𝑦 𝑑�⃗�𝑑𝑦

For a (measurable) set 𝐴



Ø Parametric vs. non-parametric methods:

Mathematical modeling(Statistical learning) infers (from training data 𝒟 =
�⃗� ! , 𝑦 ! , 𝑖 = 1, …𝑛 ) a predictor function

for the relationship 𝑦(!) = ℎ �⃗� ! . We write the estimate I𝑦 = Jℎ �⃗�

Jℎ �⃗� ≈ ℎ(�⃗�)

Suppose the actual relationship is 𝑦(!) = ℎ �⃗� ! + 𝜖!, where 𝜖! is a random error. 
Usually, 𝑦 can only be approximately predicted from �⃗�, not perfectly predicted. 

Definition: A parametric inference method infers that the approximating 
function 0𝑓 �⃗� is determined by a finite number of parameters

�⃗� =

𝜃(
𝜃#
⋮
𝜃"

Definition: A non-parametric inference method estimates 𝑓 without 
parameters, or with an infinite number of parameters.



Parametric method (Formula, fast, less data ) 
Examples:

Non-Parametric method (Fewer assumptions, Good fit, Accurate) 
Examples:

1. Linear regression ℎ �⃗� = �⃗�)�⃗� = 𝜃( + 𝜃#𝑥# +⋯+ 𝜃"𝑥"
2. Ridge/Lasso
3. Logistic regression
4. Linear Discriminant Analysis (LDA)/ QDA
5. Basic Support vector machine(SVM)
6. Perceptron
7. Naive Bayes
8. Basic Neural Network

1. K-nearest neighbors(kNN)
2. Locally weighted linear regression
3. Decision trees (Random forest.)
4. Support vector machine(SVM) with kernel.

Along the study of statistical learning theory, we will review and use the 
above models as examples. 



Ø Notations

Assume a set of random variables 𝑈! forming a random vector 𝑈
and additional variables �⃗�.

𝑈 =

𝑈#
𝑈$
⋮
𝑈*

�⃗� =

𝑣#
𝑣$
⋮
𝑣+

Consider any function

ℎ 𝑈, �⃗� = ℎ(𝑈#, … , 𝑈*, 𝑣#, … , 𝑣+)

We define 𝐸, ℎ 𝑈, �⃗� to be the expectation of ℎ 𝑈, �⃗� with respect 
to the variables 𝑈 only, not including variables �⃗�. 

Thus, variables �⃗� held constant while expectation is computed.



We assume a regression model:

𝑦(#) = ℎ �⃗� # + 𝜖#

Here ℎ(�⃗�) depends on some (finite or infinite) collection of parameters �⃗�.

Assume errors 𝜖! are random variables of the form

𝜖# ~ Normal 0, 𝜎$

Ø Assumptions/models

𝐸 𝑌 �⃗� = �⃗� = 𝐸 ℎ �⃗� + 𝜖 | �⃗� = �⃗�

Given specific value �⃗� for R.V. �⃗�, the expected value

= 0 + ℎ �⃗�

= 𝐸 ℎ 𝑋 | 𝑋 = �⃗� + 𝐸 𝜖 | 𝑋 = �⃗�

= ℎ �⃗�



We wish to predict the outcome 𝑦(() given input (test point) �⃗�(().

Denote our prediction of 𝑦(() to be F𝑦(()

We can view 𝑦(() itself be a random variable due to the noise component 𝜖#

The training data set 𝒟 itself is made of random variables (before we 
see 𝒟) because of noise 𝜖# in each 𝑦(#) and also randomness in the 
choice of training points 𝑥(#).

𝑦(() = ℎ �⃗� ( + 𝜖



Assume we have an algorithm for estimating ℎ �⃗� ( for some test point �⃗�(()

We denote the resulting estimator

I𝑦(() = Jℎ �⃗� ( ≈ ℎ �⃗� (

Ø Expected Prediction Error

The decision theory also needs a loss function: 

𝐿(𝑌, ℎ(𝑋))

For regression, we often choose Squared error loss or Absolute error 

𝐿 𝑌, ℎ 𝑋 ≔ 𝑌 − ℎ 𝑋
$

𝐿 𝑌, ℎ 𝑋 ≔ |𝑌 − ℎ 𝑋 |

Suppose a (probability) model is the joint probability distribution. 

𝑋, 𝑌 ~𝑃(�⃗�, 𝑦)

or

We assume joint probability density function 𝑝(�⃗�, 𝑦) is fully known for now.



Conditioning on 𝑋, 

𝐸𝑃𝐸 ℎ := 𝐸-,/ 𝐿 𝑌, ℎ(𝑋)

Expected Prediction Error

𝐸𝑃𝐸 ℎ := 𝐸-,/ 𝐿 𝑌, ℎ(𝑋)

Here we use the probability theorem-
law of iterated expectations: 

𝐸 𝐴 = 𝐸0 𝐸%|0 𝐴 𝐵

So our best model is to minimize pointwise 

Jℎ �⃗� = argmin
2

𝐸-|/ 𝐿 𝑌, 𝑐 |𝑋 = �⃗�

= 𝐸/𝐸-|/ 𝐿 𝑌, ℎ 𝑋 |𝑋

Another important theorem is 
law of total variance: 

𝑉𝑎𝑟 𝐴 = 𝐸 𝑉𝑎𝑟 𝐴 𝐵 + 𝑉𝑎𝑟(𝐸(𝐴|𝐵))



• In the case Squared error loss, 𝐿 𝑌, ℎ 𝑋 ≔ 𝑌 − ℎ 𝑋
$

, the solution is 

Jℎ �⃗� = argmin
2

𝐸-|/ 𝑌 − 𝑐 $|𝑋 = �⃗�

Here 𝑐 is the variable.
= argmin

2
𝐸-|/ 𝑌

$ − 2𝑐𝑌 + 𝑐$|𝑋 = �⃗� = 𝐸[𝑌|𝑋 = �⃗�]

• In the case of Absolute error, 𝐿 𝑌, ℎ 𝑋 ≔ |𝑌 − ℎ 𝑋 | , the solution is 

Jℎ �⃗� = argmin
2

𝐸-|/ |𝑌 − 𝑐||𝑋 = �⃗�

= 𝑚𝑒𝑑𝑖𝑎𝑛[𝑌|𝑋 = �⃗�]

This is more robust for outliers. 



Classification Example: 

𝑌 = h
1 if class 1

0 if class 2

Binary case when 𝑌 = 0, 1:

It makes sense to use

Jℎ �⃗� = 𝐸[𝑌|𝑋 = �⃗�]

= 𝑃 𝑐𝑙𝑎𝑠𝑠 1 𝑋 = �⃗� ⋅ 1 + 𝑃 𝑐𝑙𝑎𝑠𝑠 2 𝑋 = �⃗� ⋅ 0

= 𝑃 𝑌 = 1 𝑋 = �⃗� ⋅ 1 + 𝑃 𝑌 = 0 𝑋 = �⃗� ⋅ 0

= 𝑃 𝑌 = 1 𝑋 = �⃗� ∈ ℝ

A class prediction function (classifier) is 

0𝑓 �⃗� = p
1 if Jℎ �⃗� > 0.5

0 if Jℎ �⃗� < 0.5



In the multiclass case when 𝑌 = 1,… , 𝐾

Jℎ �⃗� = argmin
3(/)

𝐸-|/ 𝐿 𝑌, ℎ(𝑋) |𝑋 = �⃗�

= argmin
4

𝐸-|/ 𝐿 𝑌, 𝑘 |𝑋 = �⃗�

Here 𝑘 = 1,… , 𝐾= argmin
4

u
56#

7

𝐿 𝑦, 𝑘 𝑃 𝑌 = 𝑦 𝑋 = �⃗�

For example, use the 0 − 1 loss function 

𝐿(𝑦, 𝑘) = h
0

1

𝑘 = 𝑦

𝑘 ≠ 𝑦
In this case

Jℎ �⃗� = argmin
4

u
584

𝑃 𝑦 𝑋 = �⃗� = argmin
4

1 − 𝑃 𝑌 = 𝑘 𝑋 = �⃗�

= arg𝑚𝑎𝑥
4

𝑃 𝑌 = 𝑘 𝑋 = �⃗�



Decision Boundary

The decision boundary between class 𝑗 and class 𝑘 is 

{�⃗� ∈ ℝ" 𝑃 𝑦 = 𝑗 𝑋 = �⃗� = 𝑃 𝑦 = 𝑘 𝑋 = �⃗�

The optimal Bayes decision boundary for simulation example. Generating 
density is known for each class.



Definition: The Expected Prediction(/test) Error (EPE) in this estimate (at a 
fixed test point 𝒙(𝟎)) is an average over both 𝑦(() (the actual value of 𝑦 at 
�⃗�(()) and also the entire training set𝒟.

We seek full expected prediction error, averaging over all training sets 
𝒟 = �⃗� ! , 𝑦 ! , 𝑖 = 1, …𝑛 ) and over all possible values 𝑌 = 𝑦(() at 
a fixed text point �⃗�(().

Note both 𝒟 and 𝑦(() treated as random variables, from some underlying
distribution.

𝐸𝑃𝐸 �⃗� ( : = 𝐸5("),: 𝐿 𝑦 ( , Jℎ �⃗� (

Ø Bias –Variance Trade-off

We assume a regression model, with iid 𝜖!:

𝑦(#) = ℎ �⃗� # + 𝜖#

Assume there is an estimate Jℎ �⃗� , and denote the resulting estimator at 
a test point �⃗�(() as

I𝑦(() = Jℎ �⃗� ( ≈ ℎ �⃗� (



𝐸𝑃𝐸 �⃗� ( : = 𝐸5("),: 𝑦 ( − I𝑦 ( $

= 𝐸5(") 𝐸: 𝑦 ( − I𝑦 ( $

= 𝐸5(") 𝐸: 𝑦 ( − 𝐸5 " 𝑦 ( + 𝐸5 " 𝑦 ( − 𝐸: I𝑦 ( + 𝐸: I𝑦 ( − I𝑦 (
$

based on test set based on training set

We can show that all cross terms in the squared expression disappear above.

Mathematical Decomposition of Expected prediction(test) error at fixed 𝒙(𝟎)



𝐸5(")𝐸: 𝑦 ( − 𝐸5 " 𝑦 ( 𝐸: I𝑦 ( − I𝑦 (

= 𝐸5(") 𝑦 ( − 𝐸5 " 𝑦 ( 𝐸: 𝐸: I𝑦 ( − I𝑦 ( = 0

Note 𝑦(() and I𝑦 ( are independent since their 𝜖! are independent and only 
I𝑦 ( depends on 𝐷.

𝐸𝑃𝐸 �⃗� ( = 𝐸5(") 𝑦 ( − 𝐸5 " 𝑦 (
$
+ 𝐸5 " 𝑦 ( − 𝐸: I𝑦 (

$

1. variance of 𝑦(()

2. constants

+𝐸: 𝐸: I𝑦 ( − I𝑦 ( $

3. variance of I𝑦 ( (𝐸: I𝑦 ( is constant, and I𝑦 ( depends only on 𝐷)



= 𝑉𝑎𝑟5 " 𝑦 ( + 𝐸5 " 𝑦 ( − 𝐸: I𝑦 (
$
+ 𝑉𝑎𝑟: I𝑦 (

= 𝜎$ + ℎ(𝑥 ( ) − 𝐸: I𝑦 (
$
+ 𝑉𝑎𝑟: I𝑦 (

𝐸5 " 𝑦 ( = 𝐸5 " ℎ(𝑥 ( ) + 𝜖 = ℎ(𝑥 ( )

= 𝜎$ + 𝐵𝑖𝑎𝑠 $( I𝑦 ( ) + 𝑉𝑎𝑟: I𝑦 (

= Unavoidable error + bias$ +variance 

Note:

1. The Unavoidable error/noise 𝜎$ term is always there.
2. The bias term estimates how 'on target' the method is on the 
average.
3. The 𝑉𝑎𝑟: I𝑦 ( term represents sensitivity of the estimator to 
noise 𝜖 in training set 𝐷. Also to the choice of training points �⃗�(!)
4. This is a classic example of bias-variance tradeoff



Definition: We define the bias of an estimator G⃗𝜃 to be the average error

𝐵𝑖𝑎𝑠 G⃗𝜃 : = 𝐸) �⃗� − 𝐸*
G⃗𝜃

between the parameter �⃗� and its estimate G⃗𝜃 based on a training set.

• 𝐸) �⃗� is the average value of parameter �⃗� in a data universe.

• 𝐸*
G⃗𝜃 is the average value of the estimator G⃗𝜃 from a training 

set 𝐷, over the universe of training sets 𝐷.

Note:

We have defined the average error between actual value 𝑦 ( and its 
estimate F𝑦 (

𝐵𝑖𝑎𝑠 F𝑦 ( ≔ 𝐸+ ! 𝑦 ( − 𝐸* F𝑦 (



The bias-variance decomposition may provide some interesting insights 
into the model complexity issue from a frequentist perspective. 

It is of limited practical value, because the bias-variance decomposition 
is based on averages with respect to ensembles of data sets, whereas 
in practice we have only the single observed data set. 

If we had a large number of independent training sets of a given size, 
we would be better off combining them into a single large training set, 
which of course would reduce the level of over-fitting for a given model 
complexity.

Remarks: 

Bayesian treatment of linear basis function models, which not only 
provides powerful insights into the issues of over-fitting but which also 
leads to practical techniques for addressing the question model 
complexity.

In practice, we will use Cross-Validation to estimate the test error.



Example: k-NN method:

For the k-NN method, intuitively, for larger number of neighbors k, 
we average more points in training set 𝐷 , giving more stable results. 
Thus, we have variance decreasing with k gets larger.

On the other hand, for increasing k we estimate ℎ(�⃗�(()) from 
training points �⃗�(#) that may be far from test point �⃗�((). Thus, the 
bias increases with k gets larger.

Thus, we get decreasing variance along with increasing bias as k 
gets larger.

A  k-Nearest Neighbor (k-NN) model, which is local, unstructured, 
and non-parametric:

Jℎ �⃗�(() =
1
𝑘 u
<⃗($)∈𝒩"

𝑦!

where the 𝑘 training observations that are closest to 𝑥(, represented by 𝒩(



I𝑦(() = Jℎ �⃗�(() =
1
𝑘

u
<⃗($) ∈𝒩"

𝑦(!)

= Average of values of 𝑦(!) for 𝑘 points �⃗�(!)nearest to �⃗�(().
So, 

𝑉𝑎𝑟: I𝑦 ( = variance of average of k independent variables 𝑦(!)

=
variance of single 𝑦(!)

𝑘

=
𝜎$

𝑘

Assume 𝑌 = ℎ 𝑋 + 𝜖, where 𝜖 ~ Normal 0, 𝜎$



EPE 𝒙 𝟎 = 𝜎$ + ℎ(𝑥 ( ) − 𝐸: I𝑦 (
$
+ 𝑉𝑎𝑟: I𝑦 (

Expected prediction error at 𝒙(𝟎) is

unavoidable bias2 variance

= 𝜎$ + ℎ(𝑥 ( ) − 𝐸:
#
4
∑<$∈𝒩" 𝑦

(!)
$
+ ?%

4

bias increases with k variance decreases with k

Here the trade-off in bias versus variance is evident!



If this model is correct (i.e., 𝑦 = �⃗�)�⃗� + 𝜖) and we use our regression 
method, can show bias term in previous calculation disappears.

But if model is not quite correct, we pay a bias penalty (bias is non-
zero) for the imposition of our linear structure assumptions. For 
example, Ridge regression, Lasso regression.

In Machine Learning, we will be working on these themes.

Example: linear regressions:

A linear model, which is global, structured, and parametric:

I𝑦 = Jℎ@ �⃗� = �⃗�)�⃗� = 𝜃( + 𝜃#𝑥# +⋯+ 𝜃"𝑥"



Assume that the true relationship between R.V. �⃗� and 𝑌 is exactly 
equation is 

𝑌 = ℎ �⃗� + 𝜖 = �⃗�,�⃗� + 𝜖

where 𝜖 ~ Normal 0, 𝜎$ , which does not depend on �⃗�. 

Using a training set 𝒟 of independent samples R
S

�⃗� # , 𝑦 # , 𝑖 =
1, …𝑛 of the underlying R.V. �⃗�, 𝑌 . For these samples, we have 

𝐸 𝑌 �⃗� = �⃗� = ⋯ = ℎ(�⃗�)

Given specific value �⃗� for R.V. �⃗�, the expected value

Under the assumption, the maximum likelihood estimator of of �⃗� is 
given by the least-squares solution:

G⃗𝜃 = 𝑋,𝑋 -!𝑋,�⃗�

where X, �⃗� is sample data matrix and label vector and suppose 
rank 𝑋 = 𝑑, full column rank. 



Linear Algebra understanding of linear model: 

Assume Cost/Loss Function: 𝐿 �⃗� = ||ℎ@ 𝑿 − �⃗�)||$ by the Euclidean 
distance on ℝ* induced by dot product. 

The optimization 0⃗𝜃 = argmin
@

𝐿(�⃗�) is solved by

𝑿 0⃗𝜃 = ProjAB(𝐗)�⃗�

0⃗𝜃 = 𝑋)𝑋 D#𝑋)�⃗�

Equivalently, if rank 𝑋 = 𝑑, then

𝑉 = im(𝑿) = 𝑿�⃗� | all �⃗�

�⃗�

ProjAB(𝐗)�⃗�

The prediction I𝑦 = 𝑋 0⃗𝜃 = ProjE �⃗� = 𝐻�⃗�, where 𝐻 = 𝑋(𝑋)𝑋)D#𝑋)

The full regression is equivalent to stepwise orthogonal regression on 
each 𝑥!.



Gauss-Markov Theorem. Among all linear, unbiased estimates for �⃗�, the least-
squares estimate 0⃗𝜃 = (𝑋)𝑋)D#𝑋)�⃗� has the smallest variance. 

Least squares estimator is the Best Linear Unbiased Estimator (BLUE).

There may still exists biased estimators with a smaller mean squared error. 
That is, we may be able to trade a small increase in bias for a large reduction in variance. 

Cov( 0⃗𝜃) = 𝜎$ 𝑋)𝑋 D#

The mean and covariance matrix of the least-squares estimate 0⃗𝜃 = (𝑋)𝑋)D#𝑋)�⃗� are

𝐸( 0⃗𝜃) = �⃗�.  (unbiased)

Ø Best Linear Unbiased Estimator (BLUE).



Cov 0⃗𝜃 = 𝜎$ 𝑋)𝑋 D#

Note that one way for the variance above to increase is to have a near-
singular matrix 𝑋)𝑋 (i.e., with some very small positive eigenvalues), 
so that 𝑋)𝑋 D# is large and unstable.

This corresponds to some components 𝑥! and  𝑥F of feature vector �⃗�
being highly correlated with each other (almost identical), so columns 
of X are almost proportional.

Thus such a pair of almost identical variables 𝑥! and  𝑥F can have 
very large coefficients 𝜃! and  𝜃F that simply cancel each other out.

Ridge regression was originally proposed as a remedy to this 
problem, by controlling such excessively large coefficients



Ridge regression minimize cost function: 

𝐽G!"HI(�⃗� ) =u
!6#

*

𝑦(!) − ℎ@(�⃗�(!))
$ + λu

F6#

"

𝜃F$

Ø Ridge Regression

ℎ �⃗� = �⃗�)�⃗� = 𝜃#𝑥# +⋯+ 𝜃"𝑥"

We will assume also that data 𝒟 = (𝑋, �⃗�) here are centered, i.e. 
the mean 𝐸 𝑋 = 0 𝑎𝑛𝑑 𝐸 �⃗� = 0.

= 𝑋�⃗� − �⃗�
)
𝑋�⃗� − �⃗� + 𝜆�⃗�)�⃗�

Calculate ∇@ 𝐽 = 0, we get  

�⃗� = 𝑋�𝑋 + λ𝐼 ��𝑋��⃗�



Expected prediction error for linear regression

EPE 𝒙 𝟎 = 𝐸5("),: 𝑦 ( − I𝑦 ( $

= 𝜎$ + ℎ(𝑥 ( ) − 𝐸: I𝑦 (
$
+ 𝐸: 𝐸: I𝑦 ( − I𝑦 ( $

I𝑦(() = Jℎ �⃗� ( = �⃗� ( ) 0⃗𝜃

= 𝜎$ + 𝐵𝑖𝑎𝑠 $( I𝑦 ( ) + 𝑉𝑎𝑟: I𝑦 (

𝐵𝑖𝑎𝑠 $ I𝑦 ( = 0

0⃗𝜃 = 𝑋)𝑋 D#𝑋)�⃗�and

Assume 𝑦(() = ℎ �⃗� ( + 𝜖 = �⃗� ( )
�⃗� + 𝜖 . Here �⃗� is the true value.

Then,

𝑉𝑎𝑟: I𝑦 ( achieves the minimum variance among all unbiased 
(bias=0) estimators. 



However, note that this does not mean that the EPE above is the 
minimum over all predictors!

To lower the total EPE 𝒙 𝟎 , we must allow and sometimes 
encourage bias!



The other methods will be intermediate between these two 'extremes'.

Examples of intermediate methods would include

(a) Kernel methods (local smoothing)

I𝑦 = Jℎ �⃗� =u
!6#

*

𝑤 �⃗� − �⃗� ! ⋅ 𝑦(!)

with some fixed local kernel function𝑤 𝑧 .

For example, the locally weighted linear regression.

The width and height of 𝑤 𝑧 can be considered a 'smoother' version of the 
question of whether we are in/out of a 'nearest neighborhood'.

More Examples of models:



(b) Basis function methods.

I𝑦 = Jℎ �⃗� = u
+6#

J

𝛽+ ⋅ ℎ+(�⃗�)

where ℎ+ �⃗� are (fixed) basis functions. Note here the 
𝛽+ are pre-determined and do not depend on �⃗�.

Questions: What is the choice of basis ℎ+ �⃗� ? What is the 
selection of the basis elements; how do we estimate the 𝛽+?

Examples: ℎ+ �⃗� is linear, or polynomial, or Gaussian, or sigmoid, or tanh. 

More general basis methods: spline functions (Hastie et al, 2001)



General issues that need to be discussed here include:

1. Dimensionalities of the models, i.e., how many 
parameters we have.

2. Bias-variance tradeoff, i.e. how to balance systematic 
vs. random error.



Relatively easy to do things in low dimension, but in higher dimension 
there is a lot of room for things to happen. Data points become 
sparse in high dimension; more distant from each other.

Ø Curse of Dimensionality

Considering the k nearest neighbors of such a test point �⃗�(().
We are no longer very 'local’ in high dimension ℝ". So as 𝑑 large 
enough, almost the entire space is needed to find the 10-NN.

𝑑 𝑙
2 0.1

10 0.63
100 0.955

1000 0.9954

𝑙 =
𝑘
𝑛

#/"

𝑘 = 10



Note the bias (systematic averaged error) is large if we are 
sampling far-away points from test point �⃗�(().

We cannot simply make very small 𝑙 and only sample a few 
‘neighbors’ of �⃗�((). 

This would reduce the bias.  However, it would raise the variance 
(variability) our estimate based on only a few points from the 
training set. 



It would be better if we would vary the neighborhood 'resources’ in 
lower dimension. 

For example, choosing a subset of axes only along the dimensions 
necessary (i.e. lowering the dimension). Could do this with feature
(dimension) selection. (Subset section or random forests.)

Another way is to find combination of features: For example, SVD/ 
PCA/LDA embedding to a lower dimension with largest variance of 
the data. 

More advanced methods including, spectral embedding, T-
distributed stochastic neighbor embedding, manifold embedding, 
etc. 

Ø Dimension reduction  
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