
MATH 7339 - Machine Learning and Statistical Learning Theory 2 –He Wang

Section Kernel Smoothing methods

1. Kernel Smoothing

2. Locally polynomial regressions
3. Automatic Kernel Carpentry

Introduction - Kernel Smoothing

Warning: Not the same inner product kernel method we’ve learned previously.

Kernel Smoothing is a class of regression techniques that achieve flexibility
in estimating function 𝑓(𝑥⃗) over the domain ℝ! by fitting a different but simple
model separately at each query point 𝑥⃗".

Ø Nearest Neighbor Kernel Smoothing

A way to smooth functions locally is to apply a filter to each point.
The simplest kernel smoothing filter is to simply compute the average value
of 𝑘 nearest training points 𝑁#(𝑥).

)𝑓 𝑥⃗ = Ave 𝑦 $ 𝑥⃗ $ ∈ 𝑁# 𝑥

However, this results in the bumpy discontinuous curve.

True function 𝑦 = sin(4𝑥)
KNN average
Observations contributing to)𝑓(𝑥")

30-NN running-mean smoother

Noise 𝜖~𝑁(0,1/3)

Solid yellow region: the weights assigned to
observations

Nearest neighbor method uses a 'uniform kernel' (constant weight
for 𝑘 closest points to 𝑥⃗(").

So bandwidth is variable, i.e., the 'width of kernel' depends on how
close the 𝑘 nearest neighbors of 𝑥⃗(") are.

Use a kernel function 𝐾(𝑥, 𝑦) directly in the estimator:

Nadaraya-Watson estimator: uses piecewise constant kernel

𝐾' 𝑥⃗, 𝑥⃗($) = =
1

0

if 𝑥⃗ − 𝑥⃗($) ≤ 𝜆

others

then if we plug in the weight formula with 𝑤$
(") = 𝐾' 𝑥⃗($), 𝑥⃗ " , we have

)𝑓 𝑥⃗ =
∑$()* 𝐾' 𝑥⃗, 𝑥⃗ $ 𝑦($)

∑$()* 𝐾' 𝑥⃗, 𝑥⃗ $

which is called Nadaraya-Watson kernel-weighted average.

A more sophisticated smoothing involves weighting the points so that further
points contribute less. For example, we take the average

)𝑓 𝑥⃗ =
∑$()* 𝐾' 𝑥⃗, 𝑥⃗ $ 𝑦($)

∑$()* 𝐾' 𝑥⃗, 𝑥⃗ $

𝐾' 𝑥⃗, 𝑥⃗ $ = 𝐷
𝑥⃗ − 𝑥⃗($)

𝜆

𝐷 𝑡 =
3
4 1 − 𝑡+ 𝕀 𝑡 ≤ 1 is the Epanechnikov kernel.

The Epanechnikov kernel fits a continuous function to the data. The band-
width 𝜆 determines the window size and can be constant, depend on 𝑘-
neighborhood size 𝜆 = ℎ'(𝑥)

or vary according to other considerations.

Ø Epanechnikov Quadratic kernel

Estimated function is ‘smooth’.
Yellow area indicates the weight assigned to observations in that region.

In general, a kernel function is 𝐷:ℝ → ℝ such that for all 𝑢 ∈ ℝ

Ø Kernel Functions

1. non-negative, 𝐷 𝑢 ≥ 0

2. Symmetry, 𝐷 −𝑢 = 𝐷 𝑢

3. ∫ℝ𝐷 𝑢 𝑑𝑢 = 1 (it is ok to omit it.)

Can also calibrate width 𝜆 of the kernel by letting

𝑤$
(") = 𝐾' 𝑥⃗($), 𝑥⃗ " = 𝐷

𝑥⃗($) − 𝑥⃗(")

𝜆

With 𝜆 = kernel bandwidth

Gaussian kernel

𝑤($) = 𝐾' 𝑥⃗($), 𝑥⃗ " =
1
2𝜋

exp −
𝑥⃗ $ − 𝑥⃗

+

2𝜆+

Tri-cube kernel

𝐷 𝑢 = 1 − 𝑡 - - 𝕀 𝑡 ≤ 1 = =
1 − 𝑡 - -

0

𝐷 𝑢 =
1
2𝜋

exp −
1
2u

+

if 𝑡 ≤ 1

otherwise

For Gaussian kernel major weight given only to points within ±3𝜆 of 𝑥⃗ " .

Compare Popular Kernels

• Epanechnikov: Compact (only local observations have non-zero weight)
• Tri-cube: Compact and differentiable at boundary
• Gaussian density: Non-compact (all observations have non-zero weight)

More general with adaptive neighborhood

𝐾' 𝑥⃗($), 𝑥⃗ " = 𝐷
𝑥⃗($) − 𝑥⃗(")

ℎ'(𝑥⃗("))

Here, ℎ'(𝑥⃗ ") is a width function indexed by 𝜆 that determines the width of the
neighborhood at 𝑥⃗(")

For example, ℎ' 𝑥⃗ " = 𝜆 is most constant examples.

For k-NN, the neighborhood size 𝑘 replaces 𝜆, and

ℎ' 𝑥⃗ " = 𝑥⃗[#] − 𝑥⃗(")

𝑥⃗[#] is the kth closed 𝑥⃗($) to 𝑥⃗(").

Boundary problems

The boundary value problem, and indeed some internal variance, can be
solved by replacing the pointwise estimate with a linear estimate called local
linear regression.

Ø Locally weighted regression

𝑥⃗"Goal: Fit 𝑓 locally around certain 𝑥⃗" .

𝑓 𝑥⃗ = 𝛽0𝑥⃗ = 𝛽" + 𝛽)𝑥) +⋯+ 𝛽!𝑥!

Recall Linear Regression: Find

to minimize the RSS cost funcJon:

𝑅𝑆𝑆 𝛽 =X
$()

1

(𝑓 𝑥⃗ $ − 𝑦⃗ $)+

Local linear regression attempts to solve a separate weighted least squared
problem at each target point 𝑥⃗". The local weighted loss at 𝑥⃗" is a function

𝑅𝑆𝑆2 𝜃⃗ = X
$()

1

𝑤($) (𝑓3 𝑥⃗ $ − 𝑦⃗ $)+

𝐽2 𝛽 = 𝑅𝑆𝑆2 𝛽 = 𝑋𝛽 − 𝑦⃗
0
𝑊 𝑋𝛽 − 𝑦⃗ = 𝑋𝛽 − 𝑦⃗ 2

+

Denote diagonal weight matrix 𝑊 =
𝑤())

𝑤(+)

⋱
𝑤(1)

𝑤($) ≔ 𝐾' 𝑥⃗($), 𝑥⃗ " = 𝐷
𝑥⃗($) − 𝑥⃗(")

𝜆

• More general definition of the kernel using Mahalanobis distance:

Matrix notation of the weighted cost:

Given a positive semidefinte matrix 𝐴, we can define structured kernel:

𝐾',5 𝑥⃗($), 𝑥⃗ " = 𝐷
𝑥⃗ $ − 𝑥⃗ "

5
𝜆 = 𝐷

𝑥⃗ $ − 𝑥⃗ " 0
𝐴 𝑥⃗ $ − 𝑥⃗ "

𝜆

q Minimize the new weighted cost function at 𝑥⃗"

Claim: ∇6 𝐽 = 2𝑋0𝑊(𝑋𝛽 − 𝑦⃗)

So, the optimization solution is)⃗𝛽 = 𝑋0𝑊𝑋 7)𝑋0𝑊𝑦⃗

q The predic@on is

𝑓 𝑥⃗(") = 𝑥⃗(")0)⃗𝛽 = 𝑥⃗(")0 𝑋0𝑊𝑋 7)𝑋0𝑊𝑦⃗ =X
$()

*

ℓ$ 𝑥⃗ " 𝑦 $

The predic@on vector

𝑦⃗ =

)𝑓 𝑥⃗())

)𝑓 𝑥⃗(+)
⋮

)𝑓 𝑥⃗(*)
=

𝑙 𝑥⃗) 0

𝑙 𝑥⃗ + 0

⋮
𝑙 𝑥⃗ * 0

= 𝑆2𝑦⃗

Here 𝑆2 = 𝑋 𝑋0𝑊X 7)𝑋0𝑊 is called the the smoothing matrix.

In the figure above, we see the weights ℓ8(x(")) (green dots) for different
x(") as we move through the dataset.

As before we can define the "effective degrees of freedom"

df9 = 𝑇𝑟(𝑆')

We need the training data as well as the parameters to make a prediction.

𝜆 = 1

𝜆 = 50𝜆 = 20

𝜆 = 5

Polynomial regression

We have learned polynomial regression by itself and as a special case of the basis
fuctions, we know that the method is the same as linear least squares method by
introducing new variables.

For example, consider dimension 2 data case. Then we have the new features 𝑧$ (or
a set of basis functions 𝑁$(𝑥⃗))

Training data: 𝐷 = 𝑥⃗ $, 𝑦 $ | 𝑖 = 1, …𝑛

𝑧) = 𝑥), 𝑧+ = 𝑥+,

𝑧: = 𝑥)-, 𝑧; = 𝑥+-, 𝑧<= 𝑥)+𝑥+, 𝑧== 𝑥)𝑥++ , …

𝑧-= 𝑥)+, 𝑧> = 𝑥++, 𝑧? = 𝑥)𝑥+,

New Training data: o𝐷 = 𝑧 $, 𝑦 $ | 𝑖 = 1, …𝑛 and a new data matrix 𝑍

𝑓 𝑥⃗ = 𝛽0𝑧 = 𝑧0𝛽 = 𝛽" + 𝛽)𝑧) +⋯+ 𝛽@𝑧@

Polynomial regression assumption

Find 𝛽 to minimize 𝑅𝑆𝑆 𝜷 =X
$()

1

𝑓 𝑥⃗ $ − 𝑦 $ +
= 𝑍𝛽 − 𝑦⃗

+

r⃗𝛽 = argmin 𝑅𝑆𝑆 𝜷 = 𝑍0𝑍 7)𝑍0𝑦⃗

The predicJon funcJon is

𝑓 𝑥⃗ = 𝑧0)⃗𝛽 = 𝑧0 𝑍0𝑍 7)𝑍0𝑦⃗

Local polynomial regression

For local polynomial regression, consider training set 𝐷 = 𝑥⃗ $, 𝑦 $ | 𝑖 = 1, …𝑛

And the new Training data: o𝐷 = 𝑧 $, 𝑦 $ | 𝑖 = 1, …𝑛 and a new data matrix 𝑍

Fix a test point 𝑥⃗ " and then we have the test point in new features 𝑧 "

𝑅𝑆𝑆2 𝛽 =X
$()

1

𝑤($) (𝑓3 𝑥⃗ $ − 𝑦⃗ $)+ = 𝑍𝛽 − 𝑦⃗ 2

+

Polynomial model: 𝑓3 𝑥⃗ = 𝛽0𝑧 = 𝑧0𝛽 = 𝛽" + 𝛽)𝑧) +⋯+ 𝛽@𝑧@

Local weighted cost

𝑤($) ≔ 𝐾' 𝑥⃗($), 𝑥⃗ " = 𝐷
𝑥⃗($) − 𝑥⃗(")

𝜆

The optimization solution is)⃗𝛽 = 𝑍0𝑊Z 7)𝑍0𝑊𝑦⃗

The prediction is

)𝑓 𝑥⃗(") = 𝑧(")0)⃗𝛽 = 𝑧(")0 𝑍0𝑊Z 7)𝑍0𝑊𝑦⃗ =X
$()

*

ℓ$ 𝑥⃗ " 𝑦 $ = ℓ 𝑥⃗ " 0
𝑦⃗

The prediction vector

𝑦⃗ =

)𝑓 𝑥⃗())

)𝑓 𝑥⃗(+)
⋮

)𝑓 𝑥⃗(*)
=

𝑙 𝑥⃗) 0

𝑙 𝑥⃗ + 0

⋮
𝑙 𝑥⃗ * 0

= 𝑆2𝑦⃗

Here 𝑆2 = 𝑍 𝑍0𝑊Z 7)𝑍0𝑊 is called the the smoothing matrix.

This smoothing matrix plays the same role as in previous examples
(including ridge regression).

The "effective degrees of freedom"

𝑑𝑓' = 𝑇𝑟(𝑆')

Rules of thumb

Local linear approximation fits (or odd order more generally) is best for
fitting near the boundary. (removes bias)

Local quadratic approximation often captures curvature better inside
the interval.

Quadratic regression reduces the bias by allowing for curvature.
Higher order regression also increases variance of the estimated function.

We will show below that for increasing polynomial degree 𝑚, the bias
of)𝑓 𝑥⃗ " decreasing. For simplicity, let us assume the dimension is 1.

Ø Automatic Kernel Carpentry

We also assume that the data is generated from

𝑦 = 𝑓 𝑥 + 𝜖

such that 𝑓 𝑥 is twice differentiable.

It turns out the local linear regression exactly matches the function 𝑓(𝑥)
up to first order. With a bit of work one can show that

X
$()

*

𝑙$ 𝑥 " = 1 X
$()

*

𝑥 $ − 𝑥 " 𝑙$ 𝑥 " = 0

provided 𝐾 is a kernel in the sense defined before.

Using the Taylor series expansion of 𝑓(𝑥) around 𝑥("),

𝑓′ 𝑥 " X
$()

*

𝑙$ 𝑥 " 𝑥 $ − 𝑥 " +
1
2𝑓′′ 𝑥

" X
$()

*

𝑙$ 𝑥 " 𝑥 $ − 𝑥 " +
+ ℎ. 𝑜. 𝑡

𝐸)𝑓 𝑥 " = 𝐸 X
$()

*

ℓ$ 𝑥⃗ " 𝑦 $ =X
$()

*

ℓ$ 𝑥⃗ " 𝑓 𝑥 $ = 𝑓 𝑥 " X
$()

*

𝑙$ 𝑥 " +

𝑓 𝑥 = 𝑓 𝑥 " + 𝑓A B ! 𝑥 − 𝑥 " +)
+
𝑓A B ! 𝑥 − 𝑥 " +

+⋯+
1
𝑚!
𝑓A B ! 𝑥 − 𝑥 " @

+ 𝑂 𝑥 − 𝑥 " @C)

Expand 𝐸)𝑓 𝑥 " , and notice that 𝐸 𝑦 $ = 𝑓 𝑥 $, so

Here, Big 𝑶 nota@on means that: 𝑔 𝑥 = 𝑂 ℎ 𝑥 𝑤ℎ𝑒𝑛 𝑥 → 𝑎 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑎, if
there exists a constant 𝐶 such that |𝑔 𝑥 | ≤ 𝐶 ⋅ ℎ 𝑥 for 𝑥 sufficiently close to 𝑎.

But the conditions (for local linear regression) above mean that

)𝑓 𝑥 " = 𝑓 𝑥 " +
1
2𝑓′′ 𝑥

" X
$()

*

𝑙$ 𝑥 " 𝑥 $ − 𝑥 " +
+ ℎ. 𝑜. 𝑡.

so up to linear order the the local regression exactly matches the true
function.

𝐵𝑖𝑎𝑠)𝑓 𝑥 " =)𝑓 𝑥 " − 𝑓 𝑥 "

=
1
2𝑓′′ 𝑥

" X
$()

*

𝑙$ 𝑥 " 𝑥 $ − 𝑥 " +
+ ℎ. 𝑜. 𝑡.

and we say the local bias is of quadratic order. This is the same as saying
that locally we have fit the function exactly up to linear order. (similarly for
high order local polynomial regressions.)

This result is known as automatic kernel carpentry.
https://www.jstor.org/stable/2246148

X
$()

*

𝑙$ 𝑥 " = 1 X
$()

*

𝑥 $ − 𝑥 " #
𝑙$ 𝑥 " = 0

For m degree local polynomial regressions,

For 𝑘 = 1,2, … , 𝑚

Also can show that the exact variance at 𝑥 " is

𝑉𝑎𝑟)𝑓 𝑥 " = 𝜎+ 𝑙 𝑥 " +

https://www.jstor.org/stable/2246148

Ø Practical concerns

For fixed 𝜆, large bandwith 𝜆 implies low variance since we're averaging
over more data points but higher bias. (Bias-variance trade-off)

For density based 𝜆 , the bias tends to be constant but the variance is
inverse proportional to the local density.

The neighborhood of the boundary tends to contain fewer points, and
so our estimates will be less accurate there.

We have to select a kernel. The Epanechnikov kernel can be replaced
by a Gaussian kernel for example, giving slightly different fitting.

-- Choice of kernel function less important.
-- Choice of kernel bandwidth, i.e., width, quite important.

Generally we can choose 𝜆 adaptively, i.e., by trial and error.

Predicted test error

𝐶D =
∑$()* �𝑦 $ − 𝑦 $

𝑁 + 2𝜎+𝑇𝑟 𝑆'

This is an unbiased estimate of prediction error at the test point 𝑥⃗(")
known as the 𝐶D criterion

Note that here 𝑇𝑟 𝑆' is a generalization of the number 𝑝 of
predictors 𝑥⃗($) that we had in linear regression, i.e. it's the df.

How to find the best 𝜆?

Can try to minimize 𝐶D above after estimating 𝜎 or just use
cross-validation.

Selecting the bandwidth

The bias-variance tradeoff is controlled by the bandwidth 𝜆, where 𝜆 acts as
the cutoff  for the Epanechnikov kernel, the standard deviation for the
Gaussian kernel, or number of neighbors for the k nearest neighbors kernel.

Ø Density Estimation and Classification

Suppose we wish to estimate the density of the RV pair (𝑋, 𝑌) with
𝑋 =predictor and 𝑌 =outcome or label. How can we do it?

Ignore 𝑌 for now since it is treated now exactly like 𝑋$ components of 𝑋

Assuming random vector 𝑋 ∈ ℝ!, and it has a density function 𝑓 𝑥⃗ .

We may want to estimate the density function 𝑓 𝑥⃗ using a training dataset
𝐷 = 𝑥⃗ $

$()
* directly, before trying to do any regression tasks.

We want a 'density estimator' that uses some of the above kernel ideas.

Assume we have a kernel function 𝐾' 𝑥⃗ " , 𝑥⃗ $ (which is large only when
𝑥⃗ $ close to 𝑥⃗ ").
Assume the width of the 'bump' (as a function of 𝑥⃗ $ for fixed 𝑥⃗ ") is about 𝜆.

Based on this and the training set 𝐷, we can form an estimate of the
density function 𝑓 𝑥⃗ of 𝑋. it is a sum over the training points.

)𝑓' 𝑥 " =
1
𝑁𝜆X

$()

*

𝐾' 𝑥⃗ " , 𝑥⃗ $

We prefer the smooth Parzen estimator:

A natural local estimate (bumpy) example is as

)𝑓' 𝑥 " =
1
𝑁𝜆X

$()

*

𝕀 𝑥⃗ $ ∈ 𝒩 𝑥⃗ " =
𝑥⃗ $ ∈ 𝒩 𝑥⃗ "

𝑁𝜆

𝒩 𝑥⃗ " is a small metric neighborhood around 𝑥⃗ " of width 𝜆

Example: Gaussian density es@mate:

)𝑓' 𝑥 " =
1

𝑁 2𝜆+𝜋
!
+
X
$()

*

𝑒7
)
+

B⃗ ! 7B⃗ "

'

#

This suggests a simple way to create classifier (if we also have outcome data
𝑦($) in the training set):

�𝑃 𝑌 = 𝑗 𝑋 = 𝑥⃗ " =
�𝜋F)𝑓F 𝑥⃗ "

∑#()G �𝜋#)𝑓# 𝑥⃗ "

using the usual Bayes' theorem, same as in LDA

Kernel Density Classification

𝑃 𝑌 = 𝑗 𝑋 = 𝑥⃗) =
𝑃 𝑋 = 𝑥⃗ 𝑌 = 𝑗)𝑃(𝑌 = 𝑗)

∑HII # 𝑃 𝑋 = 𝑥⃗ 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

The Naive Bayes Classifier is another example we already learned.

Here, �𝜋F esJmate the j-th class prevalence, i.e., �𝜋F =
J$
J
.

Kernel methods have received much attention in literature and
application.

Advantages:

They are useful for visualizations or for finding a parameter or
estimating a function of (possibly) less theoretical interest.

[i.e. if the goal is to just to obtain a function or number without
worrying about higher 'principles']

They are useful in low dimension, especially 1 dimension, like time series.

1. These kernel methods provide less theoretical 'insight'

• don't "explain" anything.
• they "draw" a sophisticated curve.

2. Also don't scale well to high dimension

3. Somewhat more complicated explanations of data than
from our other more structured methods

Disadvantages:

 4. Fitting gets done at evaluation time, memory-based methods require
in principle little or no training, similar as kNN
(https://en.wikipedia.org/wiki/Lazy_learning)

Problems in high dimension:

1. Curse of Dimensionality. 2. More points on boundary. 3.Non-visualizable.

https://en.wikipedia.org/wiki/Lazy_learning

Relationship/difference between kernel smoothing methods and
kernel methods - confused due to abuse of terminology.

Kernel Methods:

• Rise from dual representation.
• Inner product of the (usually in higher dimension) feature vectors.
• The advantage of such representations is: we can therefore work directly

in terms of of kernels and avoid explicit introduction of the feature vector
𝜙 𝑥 .

• A more general idea containing concepts such as linear kernel
regression/classification, kernel PCA, kernel SVM, Gaussian process etc.

Kernel Smoothing Methods

• Basically it specify the methods for deriving more smooth and less biased
 fitting curves

• The similarity of these two concepts are they share lots of basic kernel
function forms such as Gaussian kernel or radial basis function.

[Has@e] Chapter 6

