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Overview of Times Series

1. Time series models
(a) Stationarity.
(b) Autocorrelation function.
(c) Transforming to stationarity.

2. Time domain methods

(a) AR/MA/ARMA models.
(b) ACF and partial autocorrelation function.
(c) Forecasting

(d) Parameter estimation
(e) ARIMA models/seasonal ARIMA models

3. Spectral analysis

(a) Spectral density
(b) Periodogram
(c) Spectral estimation



"Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer.

Introduction to time series and exploratory techniques. Time plots, calculation of
the sample autocorrelation. (Class Notes. Shumway and Stoffer Ch. 1 and 2)

Time Series Regression (Class Notes. Shumway and Stoffer Ch. 2)
ARMA modeling. Estimation of autoregressive moving averages processes via
frequentist and Bayesian approaches. Model diagnostics, forecasting and

applications. (Class Notes. Shumway and Stoffer Ch. 3)

Spectral estimation using Fourier analysis and Filtering. Bayesian Approach (Class
Notes. Shumway and Stoffer Ch. 4)



Notation and Terminology :

 X;,X,,...,X; is a stochastic process, i.e., a collection of random
variables indexed by a set T.

° X4,X5,...,X: 1S @ Single realization.
1 2 t

« If T consists of real numbers (or a subset), the process is called a
continuous time stochastic process.

« If T is restricted to integers (or a subset), the process is called a
discrete time stochastic process.

» These processes may take on values which are real or restricted to
integers and are called continuous state space or discrete state
space respectively.

Time series analysis is generally restricted to discrete time, continuous state
space stochastic processes.

Continuous time, continuous state space stochastic processes are generally
covered in stochastic processes.



> Time Series Models

Time Series are data collected in a sequence. They are usually evenly

spaced and because of the sequential nature are statistically dependent
observations.

A time series model specifies the joint distribution of the sequence of
random variables: {X,} .

For example:

P(X; <xq,..,X; < x) forall t and xq,x5,...,x;

We’ll mostly restrict our attention to second-order moments properties only:
E[X;], Cov(Xs, X:).



Closing price of S&P 500 stocks

At the end of each month At the end of each week

SP500: 1960-1990 SP500: Jan-Jun 1987
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X, is a discrete time, continuous state space stochastic process.



Example: White noise

Typically, we are thinking of a sequence of random variables that
may be dependent on one another, x4, ..., x,,. There may be times
when we want to think of this as an infinite list ..., x_;, xo, x4, ...

One model {X,} with which we are already familiar consists of a sequence
of uncorrelated random variables. When the mean is zero and the
sequence is indexed by time (t), this is usually called white noise.

E[X,] =0, Var(X;) = 0% and Cov(X,,X,) = O0foralls # ¢

Denote X~ WN(0,0%)

Note: Uncorrelated RVs does not imply they are independent.
Independent RVs implies they are uncorrelated.



Example: iid white noise.

{X;} independent and identically distributed, i.e.,

P(Xl < X1, ""Xt < Xt) == P(Xl < Xl) P(Xt < Xt)

It 1s NOT interesting for forecasting:

P(Xy < x¢| Xy, o, Xpo1) = P(Xp < xt)



Example: Gaussian white noise

X~ Normal(0,0%)

For example, when o = 1,

P(X, < x,) = —x%/2 gy
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Example: Binary i.i.d. Process

PX, =1 =p; PX,=-1)=1-p
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Example: Random Walk
A model for analyzing trend is the random walk model. Your current position is

determined by where you were at the last step plus the random step that you
just took. So, the equation would be

St == EXL

where X; is the iid noise.

For example, if {X;} is the binary
process as last example,




Random walks:

Differences: VS, = S; — S;_1 = X;

Mean: E(S;) =

10

values

Variance: Var(S;) =

10

Time

15

20




S&P500 data

Differences: VS; = S; — S;_1 = X;

SP500: Jan-Jun 1987 SP500, Jan-Jun 1987. first differences
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Trend and Seasonal Models

thTt‘l'St‘l'Et

= [y + 1t + 2 a; cos(A;t) + y; sin(4;t) + E;
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thTt_I_Et
= o + p1t + E;
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thTt‘l'St‘l'Et

= B + But + Z a; cos(A;t) + v, sin(A;0) + E,
i
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Trend and Seasonal Models: Residuals
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Time Series Modelling (Chasing stationarity)

Step 1. Some of the features of time series data we look out for are:

« Trend.
«  Periodicity / Seasonality.
« Is the mean changing over time?

* Is the variation changing over time?

Are there abrupt/step changes?

Are there outliers?

Time series plots will be an important tool.



Step 2. Transform data so that residuals are stationary

(1) Estimate and subtract T, and S;.
(2) Differencing.

(3) Nonlinear transformations (log, root function).

Step 3. Fit model to residuals.



S&P 500 data. Differencing and Trend

SP500: Jan—Jun 1987 SP500, Jan—Jun 1987 first differences
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Define the lag-1 difference operator, (think ‘first derivative)

VX =X — X1 = (1= B)X;

where B is the backshift operator, BX; := X;_;



° Ith :ﬁo +ﬁ1t+Yt, then

VX, =By +VY,

o If X, = By + Byt + Bpt? + -+ + Bit® + Y, then

VX =By +Bo(t? = (t = 12 + -+ (tF = (t — DF) + VY,

and
VX, = k! By + V*Y,



Define the lag-s difference operator,

Ve X =Xt — Xe s = (1 = BY)X;

where B® is the backshift operator applied s times.

If X, =T, +S5; +Y; and S; has period s, (i.e., S; = S;_g), then

VS Xt == Tt - Tt—S + VS Yt



Objectives of Time Series Analysis

1. Compact description of data.
2. Interpretation.

3. Forecasting.

4. Control.

5. Hypothesis testing.

6. Simulation.



Classical decomposition: An example

Monthly sales for a souvenir shop at a beach resort town in Queensland.
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Transformed data
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Residuals
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Objectives of Time Series Analysis

1. Compact description of data.

Example: Classical decomposition: X, = Ty + S; + f(Y;) + W,.

2. Interpretation. (e.g., Seasonal adjustment.)

3. Forecasting. (e.g., Predict sales, unemployment. )

4. Control. (e.g., Example: Impact of monetary policy on unemployment)
5. Hypothesis testing. (e.g., Global warming.)

6. Simulation. (e.g.,Estimate probability of catastrophic events)



Unemployment data

Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994)
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Trend plus seasonal variation Residuals

x 10

| | | |

| -6 I |
1683 1984 1985 1986 1987 1988 1989 1990 1983 1984 1985 1986 1087 1088 1989 1990




Predictions based on a (simulated) variable
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Two Approaches to Time Series

There are two primary approaches to time series.

1. Time domain approach. This approach focuses on the rules for a
time series to move forward.

For example, how do yesterday's and today's observations affect
tomorrow's observation?

2. Frequency domain approach. This approach tries to understand how
differing oscillations can contribute to current observations.

For example, taking hourly temperatures in Boston. There will be a
very clear 24 hour oscillation. There will be another clear 8,760 hour
oscillation. The current temperature is a sum of these two sinusoids

(plus a lot of noise and fluctuation).



References:
. "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer.
. "Introduction to Time Series and Forecasting", 3rd ed. 2016, by Brockwell and Davis.
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* Facebook: Forecasting at scale: https://facebook.github.io/prophet/
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https://facebook.github.io/prophet/

Interesting and useful sources of economic and finance data:

* General data assembled by the St. Louis Fed: research.stlouisfed.org/fred2/.

* Interest rate data from the Fed Board of Governors:
www.federalreserve.gov/econresdata/statisticsdata.htm.

e Other data from the Fed Board of Governors:
www.federalreserve.gov/releases/h15/update/.

» Data from the World Bank: data.worldbank.org/.

» Stock price data: finance.yahoo.com/.

Reading and manipulating stock prices from Yahoo Finance.
* There is a useful R program written by John Nolan.

* Python: https://pypi.org/project/yfinance/
e MATLAB: https://www.mathworks.com/matlabcentral/fileexchange/68361-

vahoo-finance-and-quandl|-data-downloader
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