
MATH 7339 - Machine Learning and Statistical Learning Theory 2

Section Kernel Methods

1. Dual representation

2. Kernel functions

3. Kernel Linear Regressions

4. Kernel Logistic Regression

5. Radial Basis Functions

6. Gaussian Processes

For any linear method (e.g., linear regression,
logistics regression, LDA), we can easily
generalize it to non-linear method by
introducing new variables (features).

𝑧! = 𝑥!, 𝑧" = 𝑥",

𝑧# = 𝑥!$, 𝑧% = 𝑥"$, 𝑧& = 𝑥!"𝑥", 𝑧'= 𝑥!𝑥"" , …

For example,

𝑧$= 𝑥!", 𝑧(= 𝑥"", 𝑧) = 𝑥!𝑥",

Formally, we can consider this procedure as defining a feature map:

𝜙: ℝ! → ℝ"

�⃗� → 𝜙 �⃗� =
𝜙!(�⃗�)
⋮

𝜙*(�⃗�)

Feature map

𝜙+(�⃗�) are the basis funcNons.

The difficulty is that dimension 𝐷 is very large or even infinite.

For example, using polynomial of degree m, there are 𝐷~𝑂(𝑑,) parameters.

For a relatively easy question, if 𝑑 = 100 and 𝑚 = 4, there are about
𝑑(≈ 4 million parameters!

Question: How to solve the difficulty?

Answer: The kernel method (trick) to avoid the explicit computation in 𝜙 �⃗� , but
only compute the inner product by a very easy computation.

Ø Dual Representation of Linear Regressions:

ℎ �⃗� = �⃗�-�⃗�

If the mean of the data matrix 𝑋 is zero, Ridge regression cost funcNon:

𝐽.+/01(�⃗�): = 𝑋�⃗� − �⃗�
-
𝑋�⃗� − �⃗� + 𝜆�⃗�-�⃗�

Data:

Model:

𝐷 = �⃗� + , 𝑦 + | 𝑖 = 1, …𝑛

The optimal solution is

�⃗� = 𝑋-𝑋 + λ𝐼 2!𝑋-�⃗�

Define �⃗� = 𝑋-𝛽 for some new parameter vector 𝛽 ∈ ℝ3, called dual parameters

�⃗� = 𝑋-𝛽 = �⃗� ! … �⃗� 3
𝛽!
⋮
𝛽3

=K
+4!

3

𝛽+ �⃗� +

The dual model for linear regression is

ℎ �⃗� = �⃗�-�⃗� = �⃗�, �⃗� = K
+4!

3

𝛽+ �⃗� , �⃗� +

Solutions of 𝛽 for optimizing the cost function:

𝛽 = 𝑋𝑋- + 𝜆𝐼 2! �⃗�

Here, 𝑋𝑋- =
⋮

⋯ �⃗�(+) , �⃗� 7 ⋯
⋮

The cost function

𝐽.+/01(𝛽):= 𝑋𝑋-𝛽 − �⃗�
-
𝑋𝑋-𝛽 − �⃗� + 𝜆𝛽-𝑋𝑋-𝛽

All computation is about �⃗�∗-�⃗�

Bayesian Linear Regressions:

• Data : 𝒟 = (�⃗� + , 𝑦 +) +4!
9

• Model Assumption: 𝑦(+) = 𝑓 �⃗� + + 𝜖+ = ∑+4!
: 𝜃7ℎ7 �⃗� + + 𝜖+ = ℎ- �⃗� + �⃗� + 𝜖+

𝜖+ are iid 𝑁 0, 𝜎"

• Prior Assumption: �⃗�~ 𝑁 0, Σ (or more generally �⃗�~ 𝑁 �⃗�, Σ)

Likelihood: 𝑦 + �⃗�, �⃗� + ~ 𝑁 ℎ- �⃗� + �⃗�, 𝜎"

• Conclusion: Posterior �⃗�|𝒟 is also a normal distribu-on with mean

𝐸 �⃗�|𝒟 = 𝐻-𝐻 + Σ2!𝜎" 2!𝐻-�⃗�

The covariance matrix is

𝐶𝑜𝑣 �⃗�|𝒟 = 𝐻-𝐻 + 𝜎"Σ2! 2!𝜎"

𝐻+7 ≔ ℎ7(�⃗�(+))

Use the matrix identity: 𝐴𝐵 + 𝑐𝐼 2!𝐴 = 𝐴 𝐵𝐴 + 𝑐𝐼 2!

𝐸 �⃗�|𝒟 = 𝐻-𝐻 + Σ2!𝜎" 2!𝐻-�⃗� = Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!�⃗�

𝐶𝑜𝑣 �⃗�|𝒟 = 𝐻-𝐻 + 𝜎"Σ2! 2!𝜎" = Σ − Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!𝐻Σ

We can check:

If we wish to use our model to predict the outputs 𝑦∗ given �⃗�∗, we will use the
normal distribuNon with mean:

H∗Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!�⃗�

and variance
H∗;ΣH∗ − H∗;Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!𝐻ΣH∗ + 𝜎"𝐼

𝐻∗ ≔ ℎ(�⃗�∗) 𝑆𝑜, all computations are about ℎ �⃗�∗ ;Σℎ �⃗�

Suppose there is a machine learning model, in the optimization of the cost and the

prediction formula, only inner products of the data points are involved: �⃗�(+), �⃗�(7) ,

or �⃗�(+), �⃗� for prediction for �⃗� .

AZer we applied the feature map,

𝜙: ℝ/ → ℝ*

all calculaNons will be replaced by 𝜙 �⃗� ∈ ℝ*. (Very large dimension)

We assume that all calculations only involve inner products

𝜙(�⃗�(+)), 𝜙(�⃗�(7)) or 𝜙(�⃗�(+)), 𝜙(�⃗�)

Define it as the Kernel function:

𝐾 �⃗� ` , �⃗� a ≔ 𝜙(�⃗�(`)), 𝜙(�⃗�(a))

Ø The kernel method

Example: (quadraIc)

For �⃗� and 𝑧 ∈ ℝ$, consider the quadratic feature map:

𝜙 �⃗� ≔

𝑥!𝑥!
𝑥!𝑥"
𝑥!𝑥$
𝑥"𝑥!
𝑥"𝑥"
𝑥"𝑥$
𝑥$𝑥!
𝑥$𝑥"
𝑥$𝑥$

∈ ℝ$!

The kernel function:

𝐾 �⃗�, 𝑧 ≔ 𝜙 �⃗� , 𝜙 𝑧 =K
+4!

/

K
74!

/

𝑥+𝑥7𝑧+𝑧7

= K
+4!

/

𝑥+𝑧+ K
74!

/

𝑥7𝑧7 = K
+4!

/

𝑥+𝑧+

"

= �⃗�-𝑧 "

Ø Kernel Functions

1. Quadratic Kernel

𝐾 �⃗�, 𝑧 : = �⃗�#𝑧 + 𝑐 $

What is the feature map 𝜙: ℝ/ → ℝ* ?

For �⃗� and 𝑧 ∈ ℝ/, define kernel funcNon:

𝜙 �⃗� ≔

𝑥!𝑥!
⋮

𝑥!𝑥/
⋮

𝑥/𝑥/
2𝑐 𝑥!
⋮
2𝑐 𝑥$
𝑐

∈ ℝ/!</<!

Do we need the feature map 𝜙?

2. Polynomial Kernel

𝐾 �⃗�, 𝑧 : = �⃗�#𝑧 + 𝑐 %

For �⃗� and 𝑧 ∈ ℝ/, define degree 𝑛 polynomial kernel function:

3. Sigmoid Kernel

𝐾 �⃗�, 𝑧 ≔ tanh(𝜂�⃗�#𝑧 + 𝑐)

For �⃗� and 𝑧 ∈ ℝ/, define Sigmoid kernel funcNon:

where tanh 𝑡 = 1"21#"

1"<1#"

Polynomial Gaussians Sigmoid

𝐾 𝑥, 𝑥=
where 𝑥′ is
the red cross ×

Basis
FuncNons
𝜙+(𝑥)

Illustrations of the kernel functions and basis functions.

4. Gaussian Kernel

𝐾 �⃗�, 𝑧 ≔ exp −
�⃗� − 𝑧 $

2𝜎$

For �⃗� and 𝑧 ∈ ℝ/, define Gaussian kernel function (also called Squared exponential
kernel, or RBF kernel.):

Remark:

• If 𝜎 is very small, then overfitting. If 𝜎 is very large, then underfitting

• What is the feature map 𝜙: ℝ/ → ℝ* ?

5. More popular kernels:

Laplacian kernel: 𝐾 �⃗�, 𝑧 ≔ exp −𝛼 �⃗� − 𝑧

Abel kernel: 𝐾 𝑥, 𝑧 ≔ exp −𝛼|𝑥 − 𝑧| for 𝑥, 𝑧 ∈ ℝ

https://www.cs.toronto.edu/~duvenaud/cookbook/

6. More kernel See: The Kernel Cookbook:

https://www.cs.toronto.edu/~duvenaud/cookbook/

How to show a map is a feature maps?

Theorem: (Mercer 1909)

Let 𝐾: ℝ/× ℝ/ → ℝ be a binary map.

The map 𝐾 is a kernel function if and only if for any finite sequence

{�⃗� ! , … , �⃗� , }, the matrix

𝑀 =
⋮

⋯ 𝐾 �⃗� + , �⃗� 7 ⋯
⋮

is symmetric and positive semi-definite.

Proof:
“⟹”

If 𝐾 is a kernel function, then there exists a map 𝜙:ℝ/ → ℝ* such that

𝐾 �⃗� + , �⃗� 7 = 𝜙(�⃗�(+)), 𝜙(�⃗�(7))

First, 𝐾 �⃗� + , �⃗� 7 = 𝐾 �⃗� 7 , �⃗� + by the property of inner product.

Second, the quadratic form

𝑧-𝑀𝑧 =K
+,7

/

𝑧+ 𝜙(�⃗�(+)), 𝜙(�⃗�(7)) 𝑧7 =K
+,7

/

𝑧+𝜙(�⃗�(+)), 𝜙(�⃗�(7))𝑧7

= K
+4!

/

𝑧+𝜙(�⃗�(+)) ,K
74!

/

𝑧7𝜙(�⃗�(7)) = K
+4!

/

𝑧+𝜙(�⃗� +)

"

≥ 0

𝑀 defined by inner product this way is called the Gram matrix.

“ ⟸ ”

Consider 𝜙 @⃗ (−) ≔ 𝐾 −, �⃗� , which is map from ℝ3 𝑡𝑜 ℝ.

Let ℱ ≔ Span 𝜙 @⃗ �⃗� ∈ ℝ3} be a subspace of the funcNon space 𝐶(ℝ3, ℝ)

Claim 1. 𝜙 @⃗ defines a map from ℝ3 to ℱ.

Suppose 𝐾 is a binary map such that 𝑀 = 𝐾 �⃗� + , �⃗� 7 saNsfies the properNes.

Claim 2. ℱ is an inner product space with

𝜙 @⃗ , 𝜙 A⃗ ℱ
≔𝐾(�⃗�, 𝑧)

How to construct new kernel functions from old kernels?

Theorem:

If 𝐾! 𝑎𝑛𝑑 𝐾" are kernel functions, then the following are also kernel functions.

• 𝐾(�⃗�, 𝑧): = 𝑎𝐾!(�⃗�, 𝑧) + 𝑏𝐾"(�⃗�, 𝑧), where 𝑎, 𝑏 ≥ 0

• 𝐾(�⃗�, 𝑧): = 𝐾!(�⃗�, 𝑧)𝐾"(�⃗�, 𝑧)

• 𝐾 �⃗�, 𝑧 ≔ 𝐾! 𝑓 �⃗� , 𝑓 𝑧 , where f is a funcNon from ℝ/ → ℝC

• 𝐾 �⃗�, 𝑧 ≔ 𝑃 𝐾! �⃗�, 𝑧 , where 𝑃(𝑡) is a polynomial with non-negaNve coeffects.

• 𝐾 �⃗�, 𝑧 ≔ exp 𝐾! �⃗�, 𝑧

• 𝐾 �⃗�, 𝑧 ≔ �⃗�-𝑆𝑧, where 𝑆 is a symmetric posiNve semidefinite matrix.

• 𝐾 �⃗�, 𝑧 ≔ 𝑓(�⃗�)𝐾! �⃗�, 𝑧 𝑓(𝑧) , where 𝑓:ℝ/ → ℝ is any funcNon.

The Kernel linear regression is

ℎ �⃗� =K
+4!

3

𝛽+ 𝐾(�⃗� , �⃗� +)

Solutions of 𝛽 for optimizing the cost function:

𝛽 = 𝐾 + 𝜆𝐼 2! �⃗�

Here, 𝐾 =
⋮

⋯𝐾(�⃗� , �⃗� +)⋯
⋮

The cost function

𝐽.+/01(𝛽):= 𝐾𝛽 − �⃗�
-
𝐾𝛽 − �⃗� + 𝜆𝛽-𝐾𝛽

q Kernel linear regression

Example of Bayesian linear regression using the squared exponenNal covariance funcNon.

The true function is 𝑓 = sin(𝑥). The kernel parameters are 𝜆 = 𝑙 = 1, and the
noise variance was set to 𝜎" = 0.1".

𝐾 �⃗�, �⃗�=; 𝜆, 𝑙 ≔ 𝜆" exp −
�⃗� − �⃗�′ "

2𝑙"

Kernel variance

Predict the outputs 𝑦∗ given �⃗�∗,
we will use the normal
distribution with mean:

𝜇D∗|𝒟 = 𝐾(�⃗�∗, 𝑋) 𝐾(𝑋, 𝑋) + 𝜎"𝐼 2!�⃗�

and variance

𝐾D∗|𝒟 = 𝐾(�⃗�∗, �⃗�∗) − 𝐾(�⃗�∗, 𝑋) 𝐾(𝑋, 𝑋) + 𝜎"𝐼 2!𝐾(𝑋, �⃗�∗)

q Kernel Bayesian Linear Regression:

q Kernel Logististics regression

Logistic Regression with labels {−1, 1}

The Log loss for each data point is

𝑃 𝑌 = 1 �⃗�, �⃗� = ℎG �⃗� : =
1

1 + 𝑒2G%@⃗
=

1
1 + 𝑒2(H%@⃗<I)Model:

loss ℎ �⃗� 7 , 𝑦 7 = −log𝑃 𝑦 7 �⃗� 7 , �⃗� = log 1 + 𝑒2 G%@⃗(') D(')

Define weights in terms of features:

�⃗� = 𝜙(�⃗� !) …𝜙 �⃗� 9
𝛽!
⋮
𝛽9

=K
+4!

9

𝛽+ 𝜙(�⃗� +)

Suppose there is a feature map 𝜙:ℝ/ → ℝ*

ℎG �⃗� : =
1

1 + 𝑒2G%J(@⃗)

𝑃 𝑌 = 1 �⃗�, �⃗� = ℎG �⃗� =
1

1 + 𝑒2 ∑)*+, L)J(@⃗))%J(@⃗)

=
1

1 + 𝑒2 ∑)*+, L) M @⃗) ,@⃗

The kernel logistics model:

Loss(𝛽) =
1
𝑁K
74!

9

loss ℎ �⃗� 7 , 𝑦 7 =
1
𝑁K
74!

9

log 1 + 𝑒2 ∑)*+
, L) M @⃗) ,@⃗(') D(')

Then we need to solve the optimization question

argmin
L

Loss(𝛽)

by gradient descent or Newton’s method.

=
1
𝑁K
74!

9

log 1 + 𝑒2 L%M D(')Let 𝐾+7 = 𝐾 �⃗� + , �⃗�(7)

Remark: we can also generalize the loss with penalty 𝜆𝛽-𝐾𝛽

q Kernel SVM (using hinge loss):

Equivalently, the soZ margin SVM opNmizaNon problem is the same as
minimize the Hinge loss:

min
I,H

K
+4!

3

1 − 𝑦 + 𝑓 𝑥 +
< +

𝜆
2
𝑤 "

Here: 𝑓 �⃗� = 𝑤-�⃗� + 𝑏

Compare soft margin SVM, we set 𝜆 = !
N
.

𝑙 𝑦, 𝑓 ≔ 1 − 𝑦𝑓 < = max(0, 1 − 𝑦𝑓)

𝑦 = 1 𝑜𝑟 − 1

𝑦 = 1

𝑓

𝑙(1, 𝑓)

We already see the Kernel SVM, through margin maximization..

Similar calculaNon as in kernel logisNcs, we can achieve the kernel SVM with hinge loss.

Definition: Given a vector space 𝑉 , a map(function) 𝑓: 𝑉 → ℝ from 𝑉 to
the real numbers is linear if

𝑓 𝑎�⃗� + 𝑏�⃗� = 𝑎𝑓 �⃗� + 𝑏𝑓(�⃗�)

for any 𝑎, 𝑏 ∈ ℝ, any �⃗�, �⃗� ∈ 𝑉

Definition: If 𝑉 is an inner product space, we say that 𝑓 is bounded if

𝑓 �⃗� ≤ 𝐶 �⃗�

for some fixed number 𝐶 > 0 and all �⃗� ∈ 𝑉

Ø Hilbert spaces and Kernels

Definition. Let 𝑋 ⊂ ℝ/ be compact (i.e., a closed bounded subset). A (real)
reproducing kernel Hilbert space (RKHS) ℋ on 𝑋 is a Hilbert space of
functions on 𝑋. (i.e., a complete collection of functions which is closed under
addition and scalar multiplication, and for which an inner product is defined)

The space ℋ also needs the property: for any fixed �⃗� ∈ 𝑋 the evaluation
function �⃗�∗: ℋ → ℝ defined by

�⃗�∗ 𝑓 := 𝑓(�⃗�)

is bounded, linear function on ℋ

Reproducing Kernel Hilbert space

This theorem means that evaluation of 𝑓 at fixed �⃗� is equivalent to taking
inner product of 𝑓 𝑧 with the fixed function 𝐾 𝑧, �⃗� (in variable 𝑧 with �⃗�
fixed)

Theorem: Given a reproducing kernel Hilbert space ℋ of functions on 𝑋 ⊂
ℝ/, there exists a unique symmetric positive kernel function 𝐾(�⃗�, �⃗�) such
that for all 𝑓 ∈ ℋ,

𝑓 �⃗� ≔ 𝑓 𝑧 , 𝐾 𝑧, �⃗� ℋ

inner product above is in the variable 𝑧 . (�⃗� is fixed.)

Proof: Recall Riesz Representation Theorem from functional analysis:
If 𝜙:ℋ → ℝ is a bounded linear functional on ℋ, there exists a
unique 𝑦 ∈ ℋ such that 𝜙 �⃗� = 𝑦, 𝑥 for any �⃗� ∈ ℋ.

For any fixed x ∈ X, recall x∗ is a bounded linear functional on ℋ. By
Riesz Representation Theorem, there exists a fixed function, 𝐾@⃗(𝑧)
such that for all 𝑓 ∈ ℋ

𝑓 �⃗� = �⃗�∗ 𝑓 = 𝑓 𝑧 , 𝐾@⃗ 𝑧 ℋ

That is, evaluation of 𝑓 at �⃗� is equivalent to an inner product with the
function 𝐾@⃗(𝑧).

Define 𝐾 �⃗�, �⃗� = 𝐾@⃗(�⃗�).

1. 𝐾 �⃗�, �⃗� is symmetric, that is 𝐾 �⃗�, �⃗� = 𝐾 �⃗�, �⃗�

2. 𝐾 �⃗�, �⃗� is posiNve definite (That is 𝑐-𝐾𝑐 ≥ 0).

Definition: We call the above kernel 𝐾 �⃗�, �⃗� the reproducing kernel of
ℋ.

Definition: A Mercer kernel is a positive definite kernel 𝐾 �⃗�, �⃗� which is
also continuous as a function of x and y and bounded.

Definition: For a continuous function 𝑓 on a compact set 𝑋 ⊂ ℝ/ we
define

𝑓 P ≔ max
@⃗∈R

|𝑓(�⃗�)|

Theorem

(i) For every Mercer kernel 𝐾:𝑋×𝑋 → ℝ, there exists a unique Hilbert
space ℋ (an RKHS) of functions on 𝑋 such that 𝐾 is its reproducing
kernel.

(ii) Moreover, this ℋ consists of continuous functions, and for any 𝑓 ∈
ℋ

𝑓 P ≤ 𝑀M 𝑓 ℋ

where 𝑀M ≔ max
@⃗,D∈R

|𝐾(�⃗�, �⃗�)|

Every reproducing kernel 𝑲 induces a unique RKHS,

Every RKHS has a unique reproducing kernel.

Every reproducing kernel is positive-definite,

Every positive definite kernel defines a unique RKHS, of which it is the
unique reproducing kernel.

Radial Basis Functions(RBF)

Radial Basis Function (RBF) is a real-valued function whose value depends
only on the distance from two points �⃗� and 𝑐𝒊 in multi-dimensional space
ℝ/. (𝑐T +4!9 is a set of fixed centers.)

𝜙+ �⃗� = ℎ(�⃗� − 𝑐+) for 𝑖 = 1, … , 𝑁

Here, ℎ: [0,∞) → ℝ is a radial funcNon.

The RBFs are typically used to construct function approximations defined on
scattered multidimensional data 𝒟 = (�⃗� + , 𝑦 +) +4!

9
of the form

𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

The coefficients can be calculated by least squares methods 𝑤 = 𝐻-𝐻 2!𝐻-�⃗�.

RBFs were initially used (Powell, late 1970s) to perform interpolation (exact fit)
rather than regression.

Commonly used of radial functions ℎ: [0,∞) → ℝ include

• Gaussian: ℎ 𝑟, 𝜎 = exp − U!

V!
, where 𝜎 is a hyperparameter (shape parameter).

• Multiquadric: ℎ 𝑟 = 𝑟" + 𝑏

• Inverse MulIquadric: ℎ 𝑟 = !
U!<I

• Thin plate spline: ℎ 𝑟 = 𝑟" ln 𝑟

• Polyharmonic spline: ℎ 𝑟 = 𝑟W for k=1,3,5,…

ℎ 𝑟 = 𝑟W ln 𝑟 for k=2,4,6,…

Euclidean norm is usually used in the distance between �⃗� 𝑎𝑛𝑑 𝑐+.
The Mahalanobis distance �⃗� − 𝑐+ ": = �⃗� − 𝑐+ -𝑆(�⃗� − 𝑐+) performs better
with pattern recognition.

Ø RBF Network

• Dave Broomhead and David Lowe, “Multivariable Functional Interpolation and
Adaptive Networks” (1988) connects the RBF to the neural net.

𝑁

𝑁𝑑

𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

ℎ+ �⃗� = ℎ(�⃗� − 𝑐+) for 𝑖 = 1, … , 𝑁

𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

We can normalize the above RBF function

As the normalized RBF network:

𝑔 �⃗� : =
∑+4!9 𝑤+ℎ �⃗� − �⃗� +

∑+4!9 ℎ �⃗� − �⃗� + =K
+4!

9

𝑤+𝑢 �⃗� − �⃗� +

where 𝑢 �⃗� − �⃗� + : =
ℎ �⃗� − �⃗� +

∑+4!9 ℎ �⃗� − �⃗� +

Normalized
Basis
FuncNons.

Normalized RBF network

Data 𝒟 = (�⃗� + , 𝑦 +) +4!
9

Nadaraya-Watson Models

Optimize E with respect to 𝑓 �⃗� , we have a popular interpolation strategy is:

𝑓 �⃗� =K
+4!

9

𝑦(+)ℎ �⃗� − �⃗� +

where
ℎ �⃗� − �⃗� + =

𝑣(�⃗� − �⃗� +)
∑74!9 𝑣(�⃗� − �⃗� 7)

We assume the noise on input variable �⃗� is 𝜉 with distribuNon 𝑣 𝜉

The sum of square error is

𝐸 =
1
2K
+4!

9

� 𝑓 �⃗� + + 𝜉 − 𝑦 3 "
𝑣 𝜉 𝑑 𝜉

is the normalized basis.

Logistic map in time series:

The logistic map was derived from a differential equation describing
population growth, popularized by Robert May. It has become the prototype
for chaotic time series.

𝑥 𝑡 + 1 ≔ 𝑟𝑥 𝑡 1 − 𝑥 𝑡

where 𝑟 can be considered as a growth rate

Time Series Plots
hlp://s3.amazonaws.com/complexityexplorer/DynamicsAndChaos/Programs/N
me_series.html

http://s3.amazonaws.com/complexityexplorer/DynamicsAndChaos/Programs/time_series.html

Gaussian Process for Regression:

Consider the general regression problem:

Data 𝒟 = (�⃗� + , 𝑦 +) +4!
9

where �⃗� + ∈ 𝒳 ⊂ ℝ/ and 𝑦(+) ∈ 𝒞 ⊂ ℝ

Suppose 𝑦(+) = 𝑓 �⃗� + + 𝜖+ , where iid 𝜖+~𝑁(0, 𝜎")

Goal: predict the value of the function 𝑓(�⃗�∗) for a test location �⃗�∗.

Gaussian processes take a non-parameteric approach to regression. We select a
prior distribuNon over the funcNon 𝑓 and condiNon this distribuNon on our
observaNons, using the posterior distribuNon to make predicNons. (Bayesian)

Problem: the latent function 𝑓:𝒳 → ℝ is usually infinite dimensional;
however, the multivariate Gaussian distribution is only useful in finite
dimensions.
The Gaussian process is a natural generalizaNon of the mulNvariate
Gaussian distribuNon to potenNally infinite seongs.

Definition: A Gaussian process is a (potentially infinite) collection of random
variables such that the joint distribution of any finite number of them is
multivariate Gaussian.

A Gaussian process distribution on 𝑓 is written

𝑝 𝑓 = 𝒢𝒫(𝑓; 𝜇, 𝐾)

and just like the multivariate Gaussian distribution, is parameterized by its
first two moments (now functions):

• 𝐸 𝑓 = 𝜇:𝒳 → ℝ the mean function.

• 𝐸 𝑓 𝑥 − 𝜇 𝑥 𝑓 𝑥= − 𝜇 𝑥= = 𝐾:𝒳×𝒳 → ℝ a posiNve
semidefinite covariance funcNon (or kernel.)

Mean and covariance functions

The mean funcIon encodes the central tendency of the funcNon, and is
oZen assumed to be a constant (usually zero).

The covariance function encodes information about the shape and structure
we expect the function to have. A simple and very common example is the
squared exponential covariance:

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′

which encodes the notation that “nearby points should have similar function
values.”

Suppose we have selected a GP prior 𝒢𝒫(𝑓; 𝜇, 𝐾) for the function 𝑓.
Consider a finite set of points 𝑿 ⊆ 𝒳 . The GP prior on 𝑓, by definition, implies the
following joint distribution on the associated function values 𝒇 = 𝑓(𝑿):

Prior on finite sets

𝑝 𝒇 𝑿 = 𝑁(𝒇; 𝜇 𝑿 , 𝐾(𝑿, 𝑿))

That is, we simply evaluate the mean and covariance functions at 𝑿
and take the associated multivariate Gaussian distribution.

Prior: Sampling examples

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′ "

𝐾 �⃗�, �⃗�= = 𝜆" exp −
1
2𝑙" �⃗� − �⃗�′ "

𝜆 =
1
2 , 𝑙 = 2.

𝐾 �⃗�, �⃗�= = exp − �⃗� − �⃗�′

From the prior to the posterior

How do we condiIon our prior on some observaNons 𝑫 = (𝑿, 𝒇) to make
predicNons about the value of 𝑓 at some points �⃗�∗

We have constructed prior distributions over the function 𝑓.

Write the joint distribuNon between the training funcNon values 𝑓(𝑿) = 𝒇 and the
test funcNon values 𝑓 �⃗�∗ = 𝑓∗

𝑝 𝒇, 𝑓∗ = 𝑁 𝒇
𝑓∗
; 𝝁(𝑿)𝜇(𝑓∗)

, 𝑲 𝑿, 𝑿 𝑲 𝑿, 𝒙∗
𝑲 𝒙∗, 𝑿 𝑲 𝒙∗, 𝒙∗

Condition this multivariate Gaussian on the known training values 𝒇.

𝑝 𝑓∗ �⃗�∗, 𝑫) = 𝑁(𝑓∗ ; 𝜇X|* , 𝐾X|* (�⃗�∗, �⃗�∗))

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝑲2!(𝑓 − 𝜇(𝑋))

𝐾X|* �⃗� , �⃗� ′ ≔ 𝐾 �⃗� , �⃗�= − 𝐾 �⃗�, 𝑋 𝑲2!𝐾 𝑋, �⃗�

where
𝑲 = 𝑲 𝑿,𝑿

The posterior mean

One way to understand the posterior mean function 𝜇X|* �⃗� is as a correction
to the prior mean consisting of a weighted combination of kernel functions, one
for each training data point:

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝐾2!(𝑓 − 𝜇(𝑋))

= 𝜇 �⃗� +K
+4!

9

𝛼+𝐾 �⃗� + , �⃗�

where 𝛼+ = 𝐾2! 𝑓 �⃗� + − 𝜇 �⃗� +

Prior

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′ "

Posterior example

Posterior: Sampling

Dealing with noise

So far, we have assumed we can sample the function 𝑓 exactly, which is uncommon
in regression settings. How do we deal with observation noise?

The same way we did with Bayesian linear regression.

We must create a model for our observations given the latent function.
To begin, we will choose the simple iid, zero-mean additive Gaussian noise model:

𝑦 �⃗� = 𝑓 �⃗� + 𝜖

𝜖|�⃗�~𝑁 𝜖; 0, 𝜎"

So �⃗�|𝑓~𝑁(�⃗�; 𝒇, 𝜎"𝐼) 𝒇:= 𝑓(𝑋)

Noisy posterior

To derive the posterior given noisy observations D, we again write the joint
distribution between the training function values �⃗� and the test function values
𝑓∗

𝑝 �⃗�, 𝑓∗ = 𝑁 𝒚
𝑓∗
; 𝝁(𝑿)𝜇(𝑓∗)

, 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 𝑲 𝑿, 𝒙∗
𝑲 𝒙∗, 𝑿 𝑲 𝒙∗, 𝒙∗

condition as before

𝑝 𝑓∗ �⃗�∗, 𝑫) = 𝑁(𝑓∗ ; 𝜇X|* , 𝐾X|* (�⃗�∗, �⃗�∗))

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 2!(𝑓 − 𝜇(𝑋))

𝐾X|* �⃗� , �⃗� ′ ≔ 𝐾 �⃗� , �⃗�= − 𝐾 �⃗�, 𝑋 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 2!𝐾 𝑋, �⃗�

where

Noisy posterior: Sampling

𝜎 = 0.1

Noisy posterior: Sampling

Hyperparameters are important

𝐾 �⃗�, �⃗�= = 𝜆" exp −
1
2𝑙" �⃗� − �⃗�′ "

hlp://gaussianprocess.org/gpml/chapters/RW2.pdf

http://gaussianprocess.org/gpml/chapters/RW2.pdf

References:
• John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern

Analysis
• Christopher Burges, A tutorial on support vector machines for pattern

recognition, Data Mining and Knowledge Discovery 2, 121–167 (1998).

Textbooks:

[Bishop]: Chapter 6
[Hastie]: 5.8, 6.7,12.3

C. E. Rasmussen & C. K. I. Williams,
Gaussian Processes for Machine Learning", the MIT Press, 2006.
Available from http://www.GaussianProcess.org/gpml Includes a good Matlab toolkit

http://www.gaussianprocess.org/gpml

A PhD thesis: Radial Basis Functions: Biomedical Applications and Parallelization
https://dc.uwm.edu/cgi/viewcontent.cgi?article=2387&context=etd

Book: Radial Basis Functions-Theory and Implementations, Martin D. Buhmann,
Cambridge University Press https://doi.org/10.1017/CBO9780511543241

Other references:
• Aronszajn, Theory of reproducing kernels. Transactions of the

American Mathematical Society, 686, 337-404, 1950.
• Felipe Cucker and Steve Smale, On the mathematical foundations

of learning. Bulletin of the American Mathematical Society, 2002.
• Teo Evgeniou, Massimo Pontil and Tomaso Poggio, Regularization

Networks and Support Vector Machines Advances in Computational
Mathematics, 2000.

https://dc.uwm.edu/cgi/viewcontent.cgi?article=2387&context=etd
https://doi.org/10.1017/CBO9780511543241

There are two ways of producing an RBF model in Matlab- one is to do it explicitly
yourself, the other is to use Matlab’s built-in rouNnes using the “Neural Network
Toolbox”. If you’re using the toolbox, then the OLS is built into the newrb command.

