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For any linear method (e.g., linear regression, 
logistics regression, LDA), we can easily 
generalize it to non-linear method by 
introducing new variables (features).

𝑧! = 𝑥!, 𝑧" = 𝑥",

𝑧# = 𝑥!$, 𝑧% = 𝑥"$, 𝑧& = 𝑥!"𝑥", 𝑧'= 𝑥!𝑥"" , …

For example, 

𝑧$= 𝑥!", 𝑧( = 𝑥"", 𝑧) = 𝑥!𝑥",

Formally, we can consider this procedure as defining a feature map:

𝜙: ℝ! → ℝ"

�⃗� → 𝜙 �⃗� =
𝜙!(�⃗�)
⋮

𝜙*(�⃗�)

Feature map

𝜙+(�⃗�) are the basis funcNons.



The difficulty is that dimension 𝐷 is very large or even infinite. 

For example, using polynomial of degree m, there are 𝐷~𝑂(𝑑,) parameters.   

For a relatively easy question, if 𝑑 = 100 and 𝑚 = 4, there are about 
𝑑( ≈ 4 million parameters!

Question: How to solve the difficulty?  

Answer: The kernel method (trick) to avoid the explicit computation in 𝜙 �⃗� , but 
only compute the inner product by a very easy computation. 



Ø Dual Representation of Linear Regressions:

ℎ �⃗� = �⃗�-�⃗�

If the mean of the data matrix 𝑋 is zero, Ridge regression cost funcNon: 

𝐽.+/01(�⃗� ): = 𝑋�⃗� − �⃗�
-
𝑋�⃗� − �⃗� + 𝜆�⃗�-�⃗�

Data:

Model:

𝐷 = �⃗� + , 𝑦 + | 𝑖 = 1, …𝑛

The optimal solution is

�⃗� = 𝑋-𝑋 + λ𝐼 2!𝑋-�⃗�

Define  �⃗� = 𝑋-𝛽 for some new parameter vector 𝛽 ∈ ℝ3, called dual parameters  

�⃗� = 𝑋-𝛽 = �⃗� ! … �⃗� 3
𝛽!
⋮
𝛽3

=K
+4!

3

𝛽+ �⃗� +



The dual model for linear regression is 

ℎ �⃗� = �⃗�-�⃗� = �⃗�, �⃗� = K
+4!

3

𝛽+ �⃗� , �⃗� +

Solutions of 𝛽 for optimizing the cost function:

𝛽 = 𝑋𝑋- + 𝜆𝐼 2! �⃗�

Here, 𝑋𝑋- =
⋮

⋯ �⃗�(+) , �⃗� 7 ⋯
⋮

The cost function

𝐽.+/01(𝛽 ):= 𝑋𝑋-𝛽 − �⃗�
-
𝑋𝑋-𝛽 − �⃗� + 𝜆𝛽-𝑋𝑋-𝛽

All computation is about �⃗�∗-�⃗�



Bayesian Linear Regressions:

• Data : 𝒟 = (�⃗� + , 𝑦 + ) +4!
9

• Model Assumption: 𝑦(+) = 𝑓 �⃗� + + 𝜖+ = ∑+4!
: 𝜃7ℎ7 �⃗� + + 𝜖+ = ℎ- �⃗� + �⃗� + 𝜖+

𝜖+ are iid 𝑁 0, 𝜎"

• Prior Assumption: �⃗�~ 𝑁 0, Σ (or more generally  �⃗�~ 𝑁 �⃗�, Σ )

Likelihood: 𝑦 + �⃗�, �⃗� + ~ 𝑁 ℎ- �⃗� + �⃗�, 𝜎"

• Conclusion: Posterior �⃗�|𝒟 is also a normal distribu-on with mean

𝐸 �⃗�|𝒟 = 𝐻-𝐻 + Σ2!𝜎" 2!𝐻-�⃗�

The covariance matrix is 

𝐶𝑜𝑣 �⃗�|𝒟 = 𝐻-𝐻 + 𝜎"Σ2! 2!𝜎"

𝐻+7 ≔ ℎ7(�⃗�(+))



Use the matrix identity: 𝐴𝐵 + 𝑐𝐼 2!𝐴 = 𝐴 𝐵𝐴 + 𝑐𝐼 2!

𝐸 �⃗�|𝒟 = 𝐻-𝐻 + Σ2!𝜎" 2!𝐻-�⃗� = Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!�⃗�

𝐶𝑜𝑣 �⃗�|𝒟 = 𝐻-𝐻 + 𝜎"Σ2! 2!𝜎" = Σ − Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!𝐻Σ

We can check: 

If we wish to use our model to predict the outputs 𝑦∗ given �⃗�∗, we will use the 
normal distribuNon with mean:

H∗Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!�⃗�

and variance 
H∗;ΣH∗ − H∗;Σ𝐻- 𝐻Σ𝐻- + 𝜎"𝐼 2!𝐻ΣH∗ + 𝜎"𝐼

𝐻∗ ≔ ℎ(�⃗�∗) 𝑆𝑜, all computations are about ℎ �⃗�∗ ;Σℎ �⃗�



Suppose there is a machine learning model, in the optimization of the cost and the 

prediction formula, only inner products of the data points are involved:  �⃗�(+), �⃗�(7) , 

or �⃗�(+), �⃗� for prediction for �⃗� .  

AZer we applied the feature map, 

𝜙: ℝ/ → ℝ*

all calculaNons will be replaced by 𝜙 �⃗� ∈ ℝ*.  (Very large dimension)

We assume that all calculations only involve inner products

𝜙(�⃗�(+)), 𝜙(�⃗�(7)) or  𝜙(�⃗�(+)), 𝜙(�⃗� )

Define it as the Kernel function:

𝐾 �⃗� ` , �⃗� a ≔ 𝜙(�⃗�(`)), 𝜙(�⃗�(a))

Ø The kernel method



Example: (quadraIc )

For �⃗� and 𝑧 ∈ ℝ$, consider the quadratic feature map:

𝜙 �⃗� ≔

𝑥!𝑥!
𝑥!𝑥"
𝑥!𝑥$
𝑥"𝑥!
𝑥"𝑥"
𝑥"𝑥$
𝑥$𝑥!
𝑥$𝑥"
𝑥$𝑥$

∈ ℝ$!

The kernel function: 

𝐾 �⃗�, 𝑧 ≔ 𝜙 �⃗� , 𝜙 𝑧 =K
+4!

/

K
74!

/

𝑥+𝑥7𝑧+𝑧7

= K
+4!

/

𝑥+𝑧+ K
74!

/

𝑥7𝑧7 = K
+4!

/

𝑥+𝑧+

"

= �⃗�-𝑧 "



Ø Kernel Functions

1.  Quadratic Kernel

𝐾 �⃗�, 𝑧 : = �⃗�#𝑧 + 𝑐 $

What is the feature map 𝜙: ℝ/ → ℝ* ?

For �⃗� and 𝑧 ∈ ℝ/, define kernel funcNon:

𝜙 �⃗� ≔

𝑥!𝑥!
⋮

𝑥!𝑥/
⋮

𝑥/𝑥/
2𝑐 𝑥!
⋮
2𝑐 𝑥$
𝑐

∈ ℝ/!</<!

Do we need the feature map 𝜙?  



2.  Polynomial Kernel

𝐾 �⃗�, 𝑧 : = �⃗�#𝑧 + 𝑐 %

For �⃗� and 𝑧 ∈ ℝ/, define degree 𝑛 polynomial kernel function:

3. Sigmoid Kernel

𝐾 �⃗�, 𝑧 ≔ tanh(𝜂�⃗�#𝑧 + 𝑐)

For �⃗� and 𝑧 ∈ ℝ/, define Sigmoid kernel funcNon:

where tanh 𝑡 = 1"21#"

1"<1#"



Polynomial Gaussians Sigmoid

𝐾 𝑥, 𝑥=
where 𝑥′ is 
the red cross ×

Basis 
FuncNons
𝜙+(𝑥)

Illustrations of the kernel functions and basis functions. 



4.  Gaussian Kernel

𝐾 �⃗�, 𝑧 ≔ exp −
�⃗� − 𝑧 $

2𝜎$

For �⃗� and 𝑧 ∈ ℝ/, define Gaussian kernel function (also called Squared exponential 
kernel, or RBF kernel.):

Remark:  

• If 𝜎 is very small, then overfitting. If 𝜎 is very large, then underfitting

• What is the feature map 𝜙: ℝ/ → ℝ* ?



5. More popular kernels: 

Laplacian kernel: 𝐾 �⃗�, 𝑧 ≔ exp −𝛼 �⃗� − 𝑧

Abel kernel: 𝐾 𝑥, 𝑧 ≔ exp −𝛼|𝑥 − 𝑧| for 𝑥, 𝑧 ∈ ℝ

https://www.cs.toronto.edu/~duvenaud/cookbook/

6. More kernel See: The Kernel Cookbook:

https://www.cs.toronto.edu/~duvenaud/cookbook/


How to show a map is a feature maps?

Theorem: (Mercer 1909)

Let 𝐾: ℝ/× ℝ/ → ℝ be a binary map.

The map 𝐾 is a kernel function if and only if  for any finite sequence 

{�⃗� ! , … , �⃗� , }, the matrix 

𝑀 =
⋮

⋯ 𝐾 �⃗� + , �⃗� 7 ⋯
⋮

is symmetric and positive semi-definite.



Proof:
“⟹”

If 𝐾 is a kernel function, then there exists a map 𝜙:ℝ/ → ℝ* such that

𝐾 �⃗� + , �⃗� 7 = 𝜙(�⃗�(+)), 𝜙(�⃗�(7))

First, 𝐾 �⃗� + , �⃗� 7 = 𝐾 �⃗� 7 , �⃗� + by the property of inner product.

Second, the quadratic form 

𝑧-𝑀𝑧 =K
+,7

/

𝑧+ 𝜙(�⃗�(+)), 𝜙(�⃗�(7)) 𝑧7 =K
+,7

/

𝑧+𝜙(�⃗�(+)), 𝜙(�⃗�(7))𝑧7

= K
+4!

/

𝑧+𝜙(�⃗�(+)) ,K
74!

/

𝑧7𝜙(�⃗�(7)) = K
+4!

/

𝑧+𝜙(�⃗� + )

"

≥ 0

𝑀 defined by inner product this way is called the Gram matrix.



“ ⟸ ”

Consider 𝜙 @⃗ (−) ≔ 𝐾 −, �⃗� , which is map from ℝ3 𝑡𝑜 ℝ.

Let ℱ ≔ Span 𝜙 @⃗ �⃗� ∈ ℝ3} be a subspace of the funcNon space 𝐶(ℝ3, ℝ )

Claim 1. 𝜙 @⃗ defines a map from ℝ3 to ℱ.

Suppose 𝐾 is a binary map such that 𝑀 = 𝐾 �⃗� + , �⃗� 7 saNsfies the properNes.

Claim 2. ℱ is an inner product space with 

𝜙 @⃗ , 𝜙 A⃗ ℱ
≔𝐾(�⃗�, 𝑧)



How to construct new kernel functions from old kernels?

Theorem:

If 𝐾! 𝑎𝑛𝑑 𝐾" are kernel functions, then the following are also kernel functions.

• 𝐾(�⃗�, 𝑧): = 𝑎𝐾!(�⃗�, 𝑧) + 𝑏𝐾"(�⃗�, 𝑧), where 𝑎, 𝑏 ≥ 0

• 𝐾(�⃗�, 𝑧): = 𝐾!(�⃗�, 𝑧)𝐾"(�⃗�, 𝑧)

• 𝐾 �⃗�, 𝑧 ≔ 𝐾! 𝑓 �⃗� , 𝑓 𝑧 , where f is a funcNon from ℝ/ → ℝC

• 𝐾 �⃗�, 𝑧 ≔ 𝑃 𝐾! �⃗�, 𝑧 , where 𝑃(𝑡) is a polynomial with non-negaNve coeffects.

• 𝐾 �⃗�, 𝑧 ≔ exp 𝐾! �⃗�, 𝑧

• 𝐾 �⃗�, 𝑧 ≔ �⃗�-𝑆𝑧, where 𝑆 is a symmetric posiNve semidefinite matrix.

• 𝐾 �⃗�, 𝑧 ≔ 𝑓(�⃗�)𝐾! �⃗�, 𝑧 𝑓(𝑧) , where 𝑓:ℝ/ → ℝ is any funcNon.



The Kernel linear regression is 

ℎ �⃗� =K
+4!

3

𝛽+ 𝐾(�⃗� , �⃗� + )

Solutions of 𝛽 for optimizing the cost function:

𝛽 = 𝐾 + 𝜆𝐼 2! �⃗�

Here, 𝐾 =
⋮

⋯𝐾(�⃗� , �⃗� + )⋯
⋮

The cost function

𝐽.+/01(𝛽 ):= 𝐾𝛽 − �⃗�
-
𝐾𝛽 − �⃗� + 𝜆𝛽-𝐾𝛽

q Kernel linear regression



Example of Bayesian linear regression using the squared exponenNal covariance funcNon. 

The true function is 𝑓 = sin(𝑥). The kernel parameters are 𝜆 = 𝑙 = 1, and the 
noise variance was set to 𝜎" = 0.1".

𝐾 �⃗�, �⃗�=; 𝜆, 𝑙 ≔ 𝜆" exp −
�⃗� − �⃗�′ "

2𝑙"

Kernel variance

Predict the outputs 𝑦∗ given �⃗�∗, 
we will use the normal 
distribution with mean:

𝜇D∗|𝒟 = 𝐾(�⃗�∗, 𝑋) 𝐾(𝑋, 𝑋) + 𝜎"𝐼 2!�⃗�

and variance

𝐾D∗|𝒟 = 𝐾(�⃗�∗, �⃗�∗) − 𝐾(�⃗�∗, 𝑋) 𝐾(𝑋, 𝑋) + 𝜎"𝐼 2!𝐾(𝑋, �⃗�∗)

q Kernel Bayesian Linear Regression: 



q Kernel Logististics regression

Logistic Regression with labels {−1, 1}

The Log loss for each data point is 

𝑃 𝑌 = 1 �⃗�, �⃗� = ℎG �⃗� : =
1

1 + 𝑒2G%@⃗
=

1
1 + 𝑒2(H%@⃗<I)Model:

loss ℎ �⃗� 7 , 𝑦 7 = −log𝑃 𝑦 7 �⃗� 7 , �⃗� = log 1 + 𝑒2 G%@⃗(') D(')



Define weights in terms of features:

�⃗� = 𝜙(�⃗� ! ) …𝜙 �⃗� 9
𝛽!
⋮
𝛽9

=K
+4!

9

𝛽+ 𝜙(�⃗� + )

Suppose there is a feature map 𝜙:ℝ/ → ℝ*

ℎG �⃗� : =
1

1 + 𝑒2G%J(@⃗)

𝑃 𝑌 = 1 �⃗�, �⃗� = ℎG �⃗� =
1

1 + 𝑒2 ∑)*+, L)J(@⃗ ) )%J(@⃗)

=
1

1 + 𝑒2 ∑)*+, L) M @⃗ ) ,@⃗

The kernel logistics model: 



Loss(𝛽) =
1
𝑁K
74!

9

loss ℎ �⃗� 7 , 𝑦 7 =
1
𝑁K
74!

9

log 1 + 𝑒2 ∑)*+
, L) M @⃗ ) ,@⃗(') D(')

Then we need to solve the optimization question 

argmin
L

Loss(𝛽)

by gradient descent or Newton’s method.

=
1
𝑁K
74!

9

log 1 + 𝑒2 L%M D(')Let 𝐾+7 = 𝐾 �⃗� + , �⃗�(7)

Remark: we can also generalize the loss with penalty 𝜆𝛽-𝐾𝛽



q Kernel SVM (using hinge loss):

Equivalently, the soZ margin SVM opNmizaNon problem is the same as 
minimize the Hinge loss:  

min
I,H

K
+4!

3

1 − 𝑦 + 𝑓 𝑥 +
< +

𝜆
2
𝑤 "

Here: 𝑓 �⃗� = 𝑤-�⃗� + 𝑏

Compare soft margin SVM, we set 𝜆 = !
N
.

𝑙 𝑦, 𝑓 ≔ 1 − 𝑦𝑓 < = max(0, 1 − 𝑦𝑓)

𝑦 = 1 𝑜𝑟 − 1

𝑦 = 1

𝑓

𝑙(1, 𝑓)

We already see the Kernel SVM, through margin maximization..

Similar calculaNon as in kernel logisNcs, we can achieve the kernel SVM with hinge loss.



Definition: Given a vector space 𝑉 , a map(function) 𝑓: 𝑉 → ℝ from 𝑉 to 
the real numbers is linear if 

𝑓 𝑎�⃗� + 𝑏�⃗� = 𝑎𝑓 �⃗� + 𝑏𝑓(�⃗�)

for any 𝑎, 𝑏 ∈ ℝ, any �⃗�, �⃗� ∈ 𝑉

Definition: If 𝑉 is an inner product space, we say that 𝑓 is bounded if

𝑓 �⃗� ≤ 𝐶 �⃗�

for some fixed number 𝐶 > 0 and all �⃗� ∈ 𝑉

Ø Hilbert spaces and Kernels



Definition. Let 𝑋 ⊂ ℝ/ be compact (i.e., a closed bounded subset). A (real) 
reproducing kernel Hilbert space (RKHS) ℋ on 𝑋 is a Hilbert space of 
functions on 𝑋. (i.e., a complete collection of functions which is closed under 
addition and scalar multiplication, and for which an inner product is defined)

The space ℋ also needs the property: for any fixed �⃗� ∈ 𝑋 the evaluation 
function �⃗�∗: ℋ → ℝ defined by

�⃗�∗ 𝑓 := 𝑓(�⃗�)

is bounded, linear function on ℋ

Reproducing Kernel Hilbert space



This theorem means that evaluation of 𝑓 at fixed �⃗� is equivalent to taking 
inner product of 𝑓 𝑧 with the fixed function 𝐾 𝑧, �⃗� (in variable 𝑧 with �⃗�
fixed)

Theorem: Given a reproducing kernel Hilbert space ℋ of functions on 𝑋 ⊂
ℝ/, there exists a unique symmetric positive kernel function 𝐾(�⃗�, �⃗�) such 
that for all 𝑓 ∈ ℋ, 

𝑓 �⃗� ≔ 𝑓 𝑧 , 𝐾 𝑧, �⃗� ℋ

inner product above is in the variable 𝑧 .  (�⃗� is fixed.) 



Proof: Recall Riesz Representation Theorem from functional analysis:
If 𝜙:ℋ → ℝ is a bounded linear functional on ℋ, there exists a 
unique 𝑦 ∈ ℋ such that 𝜙 �⃗� = 𝑦, 𝑥 for any �⃗� ∈ ℋ.

For any fixed x ∈ X, recall x∗ is a bounded linear functional on ℋ. By 
Riesz Representation Theorem, there exists a fixed function, 𝐾@⃗(𝑧)
such that for all 𝑓 ∈ ℋ

𝑓 �⃗� = �⃗�∗ 𝑓 = 𝑓 𝑧 , 𝐾@⃗ 𝑧 ℋ

That is, evaluation of 𝑓 at �⃗� is equivalent to an inner product with the 
function 𝐾@⃗(𝑧). 

Define 𝐾 �⃗�, �⃗� = 𝐾@⃗(�⃗�).

1. 𝐾 �⃗�, �⃗� is symmetric, that is 𝐾 �⃗�, �⃗� = 𝐾 �⃗�, �⃗�

2. 𝐾 �⃗�, �⃗� is posiNve definite (That is 𝑐-𝐾𝑐 ≥ 0).



Definition: We call the above kernel 𝐾 �⃗�, �⃗� the reproducing kernel of 
ℋ.

Definition: A Mercer kernel is a positive definite kernel 𝐾 �⃗�, �⃗� which is 
also continuous as a function of x and y and bounded.

Definition: For a continuous function 𝑓 on a compact set 𝑋 ⊂ ℝ/ we 
define

𝑓 P ≔ max
@⃗∈R

|𝑓(�⃗�)|



Theorem

(i) For every Mercer kernel 𝐾:𝑋×𝑋 → ℝ, there exists a unique Hilbert 
space ℋ (an RKHS) of functions on 𝑋 such that 𝐾 is its reproducing 
kernel.

(ii) Moreover, this ℋ consists of continuous functions, and for any 𝑓 ∈
ℋ

𝑓 P ≤ 𝑀M 𝑓 ℋ

where 𝑀M ≔ max
@⃗,D∈R

|𝐾(�⃗�, �⃗�)|



Every reproducing kernel 𝑲 induces a unique RKHS, 

Every RKHS has a unique reproducing kernel.

Every reproducing kernel is positive-definite, 

Every positive definite kernel defines a unique RKHS, of which it is the 
unique reproducing kernel.



Radial Basis Functions(RBF)

Radial Basis Function (RBF) is a real-valued function whose value depends 
only on the distance from two points �⃗� and 𝑐𝒊 in multi-dimensional space 
ℝ/.  ( 𝑐T +4!9 is a set of fixed centers.)

𝜙+ �⃗� = ℎ( �⃗� − 𝑐+ ) for 𝑖 = 1, … , 𝑁

Here, ℎ: [0,∞) → ℝ is a radial funcNon. 

The RBFs are typically used to construct function approximations defined on 
scattered multidimensional data 𝒟 = (�⃗� + , 𝑦 + ) +4!

9
of the form

𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

The coefficients can be calculated by least squares methods 𝑤 = 𝐻-𝐻 2!𝐻-�⃗�.



RBFs were initially used (Powell, late 1970s) to perform interpolation (exact fit) 
rather than regression.

Commonly used of radial functions ℎ: [0,∞) → ℝ include

• Gaussian: ℎ 𝑟, 𝜎 = exp − U!

V!
, where 𝜎 is a hyperparameter (shape parameter).

• Multiquadric: ℎ 𝑟 = 𝑟" + 𝑏

• Inverse MulIquadric: ℎ 𝑟 = !
U!<I

• Thin plate spline: ℎ 𝑟 = 𝑟" ln 𝑟

• Polyharmonic spline: ℎ 𝑟 = 𝑟W for k=1,3,5,…

ℎ 𝑟 = 𝑟W ln 𝑟 for k=2,4,6,…

Euclidean norm is usually used in the distance between �⃗� 𝑎𝑛𝑑 𝑐+.
The Mahalanobis distance �⃗� − 𝑐+ ": = �⃗� − 𝑐+ -𝑆(�⃗� − 𝑐+) performs better 
with pattern recognition.



Ø RBF Network

• Dave Broomhead and David Lowe, “Multivariable Functional Interpolation and 
Adaptive Networks” (1988) connects the RBF to the neural net.

𝑁

𝑁𝑑

𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

ℎ+ �⃗� = ℎ( �⃗� − 𝑐+ ) for 𝑖 = 1, … , 𝑁



𝑓 �⃗� =K
+4!

9

𝑤+ℎ �⃗� − �⃗� +

We can normalize the above RBF function 

As the normalized RBF network: 

𝑔 �⃗� : =
∑+4!9 𝑤+ℎ �⃗� − �⃗� +

∑+4!9 ℎ �⃗� − �⃗� + =K
+4!

9

𝑤+𝑢 �⃗� − �⃗� +

where 𝑢 �⃗� − �⃗� + : =
ℎ �⃗� − �⃗� +

∑+4!9 ℎ �⃗� − �⃗� +

Normalized 
Basis 
FuncNons.

Normalized RBF network



Data 𝒟 = (�⃗� + , 𝑦 + ) +4!
9

Nadaraya-Watson Models

Optimize E with respect to 𝑓 �⃗� ,  we have a popular interpolation strategy is:

𝑓 �⃗� =K
+4!

9

𝑦(+)ℎ �⃗� − �⃗� +

where 
ℎ �⃗� − �⃗� + =

𝑣(�⃗� − �⃗� + )
∑74!9 𝑣(�⃗� − �⃗� 7 )

We assume the noise on input variable �⃗� is 𝜉 with distribuNon 𝑣 𝜉

The sum of square error is 

𝐸 =
1
2K
+4!

9

� 𝑓 �⃗� + + 𝜉 − 𝑦 3 "
𝑣 𝜉 𝑑 𝜉

is the normalized basis.



Logistic map in time series:

The logistic map was derived from a differential equation describing 
population growth, popularized by Robert May. It has become the prototype 
for chaotic time series.

𝑥 𝑡 + 1 ≔ 𝑟𝑥 𝑡 1 − 𝑥 𝑡

where 𝑟 can be considered as a growth rate 

Time Series Plots 
hlp://s3.amazonaws.com/complexityexplorer/DynamicsAndChaos/Programs/N
me_series.html

http://s3.amazonaws.com/complexityexplorer/DynamicsAndChaos/Programs/time_series.html


Gaussian Process for Regression: 

Consider the general regression problem:

Data 𝒟 = (�⃗� + , 𝑦 + ) +4!
9

where �⃗� + ∈ 𝒳 ⊂ ℝ/ and 𝑦(+) ∈ 𝒞 ⊂ ℝ

Suppose  𝑦(+) = 𝑓 �⃗� + + 𝜖+ , where iid 𝜖+~𝑁(0, 𝜎")

Goal: predict the value of the function 𝑓(�⃗�∗) for a test location �⃗�∗.

Gaussian processes take a non-parameteric approach to regression. We select a 
prior distribuNon over the funcNon 𝑓 and condiNon this distribuNon on our 
observaNons, using the posterior distribuNon to make predicNons. (Bayesian) 

Problem: the latent function 𝑓:𝒳 → ℝ is usually infinite dimensional; 
however, the multivariate Gaussian distribution is only useful in finite 
dimensions.
The Gaussian process is a natural generalizaNon of the mulNvariate 
Gaussian distribuNon to potenNally infinite seongs.



Definition: A Gaussian process is a (potentially infinite) collection of random
variables such that the joint distribution of any finite number of them is 
multivariate Gaussian.

A Gaussian process distribution on 𝑓 is written

𝑝 𝑓 = 𝒢𝒫(𝑓; 𝜇, 𝐾)

and just like the multivariate Gaussian distribution, is parameterized by its 
first two moments (now functions):

• 𝐸 𝑓 = 𝜇:𝒳 → ℝ the mean function.

• 𝐸 𝑓 𝑥 − 𝜇 𝑥 𝑓 𝑥= − 𝜇 𝑥= = 𝐾:𝒳×𝒳 → ℝ a posiNve 
semidefinite  covariance funcNon (or kernel.)



Mean and covariance functions

The mean funcIon encodes the central tendency of the funcNon, and is 
oZen assumed to be a constant (usually zero).

The covariance function encodes information about the shape and structure 
we expect the function to have. A simple and very common example is the 
squared exponential covariance:

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′

which encodes the notation that “nearby points should have similar function 
values.”



Suppose we have selected a GP prior 𝒢𝒫(𝑓; 𝜇, 𝐾) for the function 𝑓. 
Consider a finite set of points 𝑿 ⊆ 𝒳 . The GP prior on 𝑓, by definition, implies the 
following joint distribution on the associated function values 𝒇 = 𝑓(𝑿):

Prior on finite sets

𝑝 𝒇 𝑿 = 𝑁(𝒇; 𝜇 𝑿 , 𝐾(𝑿, 𝑿))

That is, we simply evaluate the mean and covariance functions at 𝑿
and take the associated multivariate Gaussian distribution.



Prior: Sampling examples

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′ "



𝐾 �⃗�, �⃗�= = 𝜆" exp −
1
2𝑙" �⃗� − �⃗�′ "

𝜆 =
1
2 , 𝑙 = 2.



𝐾 �⃗�, �⃗�= = exp − �⃗� − �⃗�′



From the prior to the posterior

How do we condiIon our prior on some observaNons  𝑫 = (𝑿, 𝒇) to make 
predicNons about the value of 𝑓 at some points �⃗�∗

We have constructed prior distributions over the function 𝑓. 

Write the joint distribuNon between the training funcNon values 𝑓(𝑿) = 𝒇 and the 
test funcNon values 𝑓 �⃗�∗ = 𝑓∗

𝑝 𝒇, 𝑓∗ = 𝑁 𝒇
𝑓∗
; 𝝁(𝑿)𝜇(𝑓∗)

, 𝑲 𝑿, 𝑿 𝑲 𝑿, 𝒙∗
𝑲 𝒙∗, 𝑿 𝑲 𝒙∗, 𝒙∗

Condition this multivariate Gaussian on the known training values 𝒇.

𝑝 𝑓∗ �⃗�∗, 𝑫) = 𝑁(𝑓∗ ; 𝜇X|* , 𝐾X|* (�⃗�∗, �⃗�∗) )

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝑲2!(𝑓 − 𝜇(𝑋))

𝐾X|* �⃗� , �⃗� ′ ≔ 𝐾 �⃗� , �⃗�= − 𝐾 �⃗�, 𝑋 𝑲2!𝐾 𝑋, �⃗�

where
𝑲 = 𝑲 𝑿,𝑿



The posterior mean

One way to understand the posterior mean function 𝜇X|* �⃗� is as a correction 
to the prior mean consisting of a weighted combination of kernel functions, one 
for each training data point:

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝐾2!(𝑓 − 𝜇(𝑋))

= 𝜇 �⃗� +K
+4!

9

𝛼+𝐾 �⃗� + , �⃗�

where 𝛼+ = 𝐾2! 𝑓 �⃗� + − 𝜇 �⃗� +



Prior

𝐾 �⃗�, �⃗�= = exp −
1
2 �⃗� − �⃗�′ "



Posterior example



Posterior: Sampling



Dealing with noise

So far, we have assumed we can sample the function 𝑓 exactly, which is uncommon 
in regression settings. How do we deal with observation noise?

The same way we did with Bayesian linear regression.

We must create a model for our observations given the latent function. 
To begin, we will choose the simple iid, zero-mean additive Gaussian noise model:

𝑦 �⃗� = 𝑓 �⃗� + 𝜖

𝜖|�⃗�~𝑁 𝜖; 0, 𝜎"

So �⃗�|𝑓~𝑁(�⃗�; 𝒇, 𝜎"𝐼) 𝒇:= 𝑓(𝑋)



Noisy posterior

To derive the posterior given noisy observations D, we again write the joint 
distribution between the training function values �⃗� and the test function values 
𝑓∗

𝑝 �⃗�, 𝑓∗ = 𝑁 𝒚
𝑓∗
; 𝝁(𝑿)𝜇(𝑓∗)

, 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 𝑲 𝑿, 𝒙∗
𝑲 𝒙∗, 𝑿 𝑲 𝒙∗, 𝒙∗

condition as before

𝑝 𝑓∗ �⃗�∗, 𝑫) = 𝑁(𝑓∗ ; 𝜇X|* , 𝐾X|* (�⃗�∗, �⃗�∗) )

𝜇X|* �⃗� ≔ 𝜇 �⃗� + 𝐾 �⃗�, 𝑋 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 2!(𝑓 − 𝜇(𝑋))

𝐾X|* �⃗� , �⃗� ′ ≔ 𝐾 �⃗� , �⃗�= − 𝐾 �⃗�, 𝑋 𝑲 𝑿, 𝑿 + 𝝈𝟐𝑰 2!𝐾 𝑋, �⃗�

where



Noisy posterior: Sampling

𝜎 = 0.1



Noisy posterior: Sampling



Hyperparameters are important

𝐾 �⃗�, �⃗�= = 𝜆" exp −
1
2𝑙" �⃗� − �⃗�′ "

hlp://gaussianprocess.org/gpml/chapters/RW2.pdf

http://gaussianprocess.org/gpml/chapters/RW2.pdf
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There are two ways of producing an RBF model in Matlab- one is to do it explicitly 
yourself, the other is to use Matlab’s built-in rouNnes using the “Neural Network 
Toolbox”. If you’re using the toolbox, then the OLS is built into the newrb command.


