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Review: Linear Regression and Logistic Regression

So far, we've seen two canonical settings for regression. Let 𝑋 ∈ ℝ! be a 
vector of predictors. 

In linear regression, we observe 𝑦 ∈ ℝ, and assume a linear model:

Then, 𝐸 𝑌 𝑋 = 𝛽"𝑋

In logistic regression, we observe 𝑦 ∈ {0,1}, and we assume a logistic 
model

log
𝑃 𝑌 = 1 𝑋

1 − 𝑃 𝑌 = 1 𝑋
= 𝛽"𝑋

In both settings, we are assuming that a transformation(link) 𝑔 𝑢 of the 
conditional expectation 𝐸 𝑌 𝑋 is a linear function of 𝑋, i.e.,

𝑔 𝐸 𝑌 𝑋 = 𝛽"𝑋

𝑌 = 𝛽"𝑋 + 𝜖 with 𝜖~𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜎#



In linear regression, this transformation was the identity transformation

In logistic regression, it was the logit transformation

𝑔(𝑢) = 𝑢; 

𝑔 𝑢 = log
𝑢

1 − 𝑢

Different transformations might be appropriate for different types of data.

For a third data type, it is entirely possible that transformation neither is 
really appropriate. We think of another transformation.



q Components of a linear regression model

The two components (that we are going to relax) are

1. Random component: the response variable

2. Link(transformation): between the random and covariates 𝑋. 

𝑌|𝑋~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎#

is continuous and normally distributed with mean 𝜇 = 𝜇 𝑋 = 𝐸 𝑌 𝑋 .

𝜇 𝑋 = �⃗�"𝑋



q Generalization (first view)

A generalized linear model (GLM) generalizes normal linear regression 
models in the following directions.

1. Random component: 

2. Link(transformation): between the random and covariates 𝑋 :

𝑔 𝜇 𝑋 = 𝛽"𝑋

𝑌|𝑋 ∼ some distribution

where 𝑔 called link function and 𝜇 𝑋 = 𝐸 𝑌 𝑋 .

In principle, we could specify any distribution. But mathematics of 
GLM only works nicely for exponential family of distributions.



The random component specifies a distribution for the outcome variable 
(conditional on 𝑋).

In the case of linear regression, we assume that

𝑌|𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎#

for some mean 𝜇 and variance 𝜎#

In the case of logistic regression, we assume that

𝑌|𝑋 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

for some probability 𝑝.

In a generalized model, we are allowed to assume that 𝑌|𝑋 ~ a distribution 
from exponential family. 



Ø Exponential Family

Exponential family comprises a set of flexible distribution ranging both 
continuous and discrete random variables. The members of this family have 
many important properties which merits discussing them in some general 
format. Most of the commonly used statistical distributions are members of the 
exponential family of distributions. 
• Gaussian: ℝ𝒑
• Bernoulli: binary {𝟎, 𝟏}
• Binomial: counts of success/failure
• Multinomial: categorical 
• Poisson: ℕ%
• Exponential: ℝ%
• Gamma: ℝ%
• Laplace: ℝ%
• Beta: (𝟎, 𝟏)
• Von mises: sphere
• Dirichlet:  Δ (Simplex)
• Weibull: ℝ%
• Weishart: symmetric positive-definite matrices



• Binomial (with fixed number of trials)

• Multinomial (with fixed number of trials)

• Negative binomial (with fixed number of failures)

A number of common distributions are exponential families, but only when 
certain parameters are fixed and known. For example:

Examples of common distributions that are not exponential families 

Check Wikipedia for each of the distributions.

https://en.wikipedia.org/wiki/Exponential_family

• Student's t, 

• most mixture distributions, 

• and even the family of uniform distributions when the bounds are not fixed.

https://en.wikipedia.org/wiki/List_of_probability_distributions
https://en.wikipedia.org/wiki/Exponential_family


𝑝 �⃗�; 𝜂 =
1

𝑍 𝜂 ℎ �⃗� exp 𝜂"𝑇 �⃗�

A pdf/pmf of a distribution in 𝑑-parameters exponential family densities 
is in the form

= ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂

• 𝜂 ∈ ℝ! is the natural parameter of the distribution. 

• 𝑇 �⃗� ∈ ℝ! is a vector of sufficient statistics. In many cases, 𝑇 �⃗� = �⃗�, 
then the distribution is said to be in canonical form.

• 𝐴 𝜂 = log Z 𝜂 is called the log partition function/log normalizer. 𝐴 𝜂 is the 
normalization constant, to make sure the total probability is 1.

Definition(Exponential Family):

• ℎ �⃗� is the is the “underlying/base measure”, in many cases, ℎ �⃗� = 1.

Here,



𝐴 𝜂 := log \ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

Hence, 

𝑝 �⃗�; 𝜂 = ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂

Other formats of pdf/pmf of exponential family: 

= exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 + 𝐶(�⃗�)

Sometimes, for GLM construction, we also introduce an extra scale parameter 𝜙, called 
the dispersion parameter, to control the shape of 𝑝 �⃗�

where 𝐶 �⃗� = log ℎ �⃗�

𝑝 �⃗�; 𝜂, 𝜙 = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)

This format is better for constructing generalized linear models.  



An even more general form is 

𝑝 �⃗�; 𝜂 = ℎ �⃗� exp [𝑓 𝜂 ]"𝑇 �⃗� − 𝐴 𝑓 𝜂

A fixed choice of 𝐴, ℎ and 𝜙 defines a family (or set) of distributions that
is parameterized by 𝜂; as we vary 𝜂, we then get different distributions 
within this family.

In general, the parameter 𝜂 is not the mean of the distribution.  We 
can view 𝜂 as a function of the mean �⃗� = 𝐸(�⃗�) and write 𝜂 = 𝑔 �⃗� ,
which is called the link function. The inverse �⃗� = 𝑔&'(𝜂) is called the 
response function.



Example: (Bernoulli) 

𝑝(𝑦; 𝜇) = 𝐵𝑒𝑟𝑛(𝑦; 𝜇) = 𝜇( 1 − 𝜇 '&( for 𝑦 ∈ {0,1}

The pdf function of Bernoulli distribution:

𝑝(𝑦; 𝜇) = exp(𝑦 log 𝜇 + 1 − 𝑦 log(1 − 𝜇))

We can write it as

= exp 𝑦 log
𝜇

1 − 𝜇 + log 1 − 𝜇

Compare to 𝑝(𝑦; 𝜂) = ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 , we have 

𝜂 = log
𝜇

1 − 𝜇 ⟹ 𝜇 =
1

1 + 𝑒&)

𝑇 𝑦 = 𝑦 and ℎ �⃗� = 1

𝐴 𝜂 = − log 1 − 𝜇 = log(1 + 𝑒))

Canonical Link function:



Example: (Categorical/Multinomial) 

Categorical has a vector of parameters 𝜙* where 𝑘 goes from 1 to K.

𝑝 𝑦; 𝜙 = 𝜙'
𝕀(-.')𝜙#

𝕀(-.#)… 𝜙0
𝕀(-.1) = 𝜙'

𝕀(-.')𝜙#
𝕀(-.#)… 𝜙0

𝕀(-.1)

To express the multinomial as an exponential family distribution, define 

𝑇 𝑖 = 𝑒2 ∈ ℝ*&' and 𝑇 𝑘 = 0

𝑝 𝑦; 𝜙 = ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 , where

ℎ �⃗� = 1; 𝐴 𝜂 = − log(𝜙0) 𝜂 =

log(𝜙'/𝜙*)
log(𝜙#/𝜙*)

⋮
log(𝜙*&'/𝜙*)

= exp f
2.'

0&'

𝕀 y = i log 𝜙2 + 1 − f
2.'

0&'

𝕀 y = i log(𝜙*)

So, 𝕀 y = i = T y 3

= exp f
2.'

0&'

𝕀 y = i log 𝜙2/𝜙* + log(𝜙*)



Example: (Binomial) 

The binomial distribution (𝑩𝒊(𝒑, 𝒏)) is frequently used to model the number of 
successes in a sample of size n independent sequences yes-no experiments. The 
pmf is 

𝑝 𝑥; 𝑛, 𝜇 = 𝑛
𝑥 𝜇4 1 − 𝜇 5&4

= exp 𝑥 log
𝜙

1 − 𝜙
+ 𝑛 log 1 − 𝜙 − log 𝑛

𝑥

Thus: = exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 + 𝐶(�⃗�)

Here, 𝑇 �⃗� = x 𝜂 = log
𝜙

1 − 𝜙

𝐴 𝜂 = −𝑛 log 1 − 𝜙 = 𝑛 log 1 + 𝑒6

𝐶 �⃗� = − log 𝑛
𝑥



Example: (Normal) 

𝑝(𝑦; 𝜇, 𝜎#) =
1
2𝜋 𝜎

exp −
1
2𝜎# 𝑦 − 𝜇 #

=
1
2𝜋 𝜎

exp −
1
2𝜎# 𝑦

# +
𝜇
𝜎# 𝑦 −

1
2𝜎# 𝜇

#

The pdf function for normal distributation 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎# is

Compare to 𝑝(𝑦; 𝜂) = ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 , we have 

(1) If we treat both 𝜇, 𝜎# as two parameters, we need to define 

ℎ 𝑦 = 2𝜋 𝜎

𝜂 =
𝜂'

𝜂#
=

𝜇
𝜎#

−
1
2𝜎#

𝑇 𝑦 =
𝑦

𝑦#
𝐴 𝜂 = −2𝜂# '/# exp

𝜂'#

4𝜂#



Example: (Normal with known 𝜎#) 

(2) When 𝜎# is known (treat as constant), denote �⃗� =
𝜇
𝜎# it becomes a 

one-parameter exponential family on

𝑇 𝑦 = 𝑦𝜂 = 8
9!

, so 𝜇 = 𝜎#𝜂

𝐴 𝜂 =
1
2𝜎# 𝜇

# =
𝜎#𝜂#

2
ℎ 𝑦 =

1
2𝜋 𝜎

exp −
𝑥#

2𝜎#

𝑝(𝑦; 𝜂, 𝜙) = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)In format of 

𝜙 = 𝜎#, and 𝜂 = 𝜇, and  𝐴 𝜂 = )!

# 𝐶 𝑦, 𝜙 = −
1
2
𝑦#

𝜙 + log 2𝜋𝜙

Canonical Link function is identity.



Example: (Poisson) 

Poisson is a discrete distribution defined to express the number events 
that occur in a unit of time or space. This distribution, which is similar to 
Gaussian distribution but for count data, is given by

𝑝 𝑦 𝜆 =
𝜆(𝑒&:

𝑦! =
1
𝑦! exp(𝑦 log 𝜆 − 𝜆)

Compare to exponential family,

𝐸 𝑌 = 𝜆, Var Y = 𝜆

𝑇 𝑦 = 𝑦

ℎ 𝑦 =
1
𝑦!

𝐴 𝜂 = 𝜆 = 𝑒)

𝜂 = log 𝜆



Example: (Exponential Distribution) 

The exponential distribution is a distribution that models the independent arrival 
time. Its distribution (the probability density function, pdf) is given as

𝑃 𝑦; 𝜆 = 𝜆𝑒&:( for y ≥ 0

𝑇 𝑦 = −𝑦

ℎ 𝑦 = 𝕀(𝑦 ≥ 0)

𝑍 𝜆 =
1
𝜆

So, 𝐴 𝜆 = log 𝑍 𝜆 = − log 𝜆

Compare to exponential family,

𝜂 = 𝜆

𝐸 𝑌 =
1
𝜆 , Var Y =

1
𝜆#



Exponential Distribution Y

Poisson Distribution 

Exponential v.s. Poisson



Example: Laplace Distribution (double exponential distribution)

The Laplace distribution (𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇, 𝑏)) has been used in speech recognition 
and in JPEG image compression.

𝑓 𝑥 𝜇, 𝑏 =
1
2𝑏 exp −

𝑥 − 𝜇
𝑏

𝐸 𝑋 = 𝜇

𝑉𝑎𝑟(𝑋) = 2𝑏#

𝜂 = −
1
𝑏

𝑇 𝑦 = 𝑥 − 𝜇

With known 𝜇

In general, it is not.



Example: Beta Distribution

Beta Distribution (𝐵𝑒𝑡𝑎(𝛼, 𝛽)) is often used as prior on Binomial distributions
(it is a conjugate prior).

𝑓 𝑥; 𝛼, 𝛽 =
Γ 𝛼 + 𝛽
Γ 𝛼 Γ 𝛼

𝑥;&' 1 − 𝑥 <&'

where Γ 𝑧 = \
=

>
𝑡?&'𝑒&@𝑑𝑡 is the Gamma function.

= exp 𝛼 − 1 log x + 𝛽 − 1 log 1 − x + log B 𝛼, 𝛽



Example: Gamma Distribution

Gamma Distribution (𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃)) is popular as a prior on coefficients. 
Obtained from integral over waiting times in Poisson distribution

𝑝 𝑥; 𝑘, 𝜃 =
𝑥*&'𝑒&

4
A

𝜃*Γ(𝑘)

Here, Γ 𝑘 = 𝑘! Is the gamma function. 

= exp 𝑘 − 1 log 𝑥 −
𝑥
𝜃 − 𝑘 log 𝜃 − log Γ 𝑘



Ø Moments of Exponential Family

In the family of exponential distributions, the 𝐴 𝜂 function is in fact the
Moment generating function of 𝑇 𝑌 . 

𝐴 𝜂 := log \ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

𝑑 𝐴(𝜂)
𝑑 𝜂 =

𝑑
𝑑𝜂 ∫ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

∫ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦
=
∫𝑇 �⃗� ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

∫ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

=
∫𝑇 �⃗� ℎ 𝑦 exp 𝜂"𝑇 �⃗� 𝑑𝑦

exp(𝐴(𝜂))
= \𝑇 �⃗� ℎ 𝑦 exp 𝜂"𝑇 �⃗� − 𝐴(𝜂) 𝑑𝑦 = 𝐸 𝑇 �⃗�

We show this by derivatizing this term:

That is gradient ∇) 𝐴 𝜂 = 𝐸 𝑇 �⃗� , Hessian matrix 𝐻 𝐴 𝜂 = 𝐶𝑜𝑣 𝑇 �⃗�

Let us compute the one dimensional case:



Similarly, for the second derivative,  

𝑑# 𝐴(𝜂)
𝑑𝜂# = 𝑉𝑎𝑟 𝑇 �⃗�

Example: (Bernouli)

𝐴 𝜂 = log(1 + 𝑒))

So, 
𝑑 𝐴(𝜂)
𝑑 𝜂 = ⋯ =

1
1 + 𝑒&) = 𝜇 = 𝐸(𝑌)

Remark: Here our calculation is for one dimension 𝜂. In general, when 𝜂 ∈
ℝ𝒅, we only need to change differential ! C())

! )
to gradient ∇) 𝐴 𝜂 .

A(η) is a convex function, since (co)variance matrix is positive semi-definite.



Ø Construction of Generalized Linear Models (GLM)

1. Random component: 

3. Link: between the random 𝜇 𝑋 and covariates 𝑋 :

𝑔 𝜇 𝑋 = 𝜉 = 𝛽"𝑋

𝑌|𝑋 ∼ some exponential family distribution (with parameter 𝜂)

where 𝑔 called link function, and 𝜇 𝑋 = 𝐸 𝑌 𝑋 = Ψ&'(𝜂)

Our goal is to estimate the expectation of this distribution 𝜇 𝑋 ≔ 𝐸 𝑌 𝑋 .

2. Linear assumption (systematic(non-random) component):

Assume there is a linear predictor 𝜉 = 𝛽"𝑋

Since our goal is 𝜇 𝑋 = 𝑔&' 𝜉 = 𝑔&' 𝛽"𝑋 , we need the link function to 
be invertible, in addition, we also need 𝑔 is monotonic.



𝛽

General relationship between the variables in a generalized linear model:

𝑋

𝜉 �⃗� 𝜂 𝑌|𝑋

𝛽"𝑋 = 𝜉

𝑔

𝑔 &' Exponential Family
Ψ

Ψ&'

link function

Usually we assume 𝜉 = 𝜂 and 𝑔 = Ψ, which is the canonical link function.

If 𝑇 = 𝑖𝑑, since ∇) 𝐴 𝜂 = E Y 𝑋 = �⃗�, then the canonical link function is 

�⃗� = ∇) 𝐴 𝜂



Canonical link examples: 

Normal: Identity function: 𝑔 𝜇 = 𝜇

Binomial: logit function: 𝑔 𝜇 = log 8
'&8

Poisson: log function: 𝑔 𝜇 = log(𝜇)

Gamma: 𝑔 𝜇 = − '
8

Negative binomial: 𝑔 𝜇 = log 8
* '%"#



Non-Canonical link examples for binary classification: 

𝑔&' 𝜉 =
1
2𝜋

\
&>

D
exp −

𝑢#

2 𝑑𝑢

Probit model:

Log-log model

𝑔&' 𝜉 = exp (−exp(−𝜉))

Complementary Log-log model

𝑔&' 𝜉 = 1 − exp (−exp(𝜉))

We need invertible functions from ℝ to [0,1], here are some popular examples



Recover linear regression

𝑌|𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎#

𝑝(𝑦; 𝜂, 𝜙) = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)

𝑇 𝑦 = 𝑦; 𝜙 = 𝜎#; 𝜂 = 𝜇; 𝐴 𝜂 = )!

#
;

𝐶 𝑦, 𝜙 = −
1
2
𝑦#

𝜙 + log 2𝜋𝜙

Recall

Canonical Link function: 𝑔 = Ψ = id



q Summary of Generalized Linear Models (GLM)

𝑝(𝑦|�⃗�; 𝜂, 𝜙) = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)

• 𝑌|𝑋 has a distribution function (Usually 𝑇 = identity):

• Gradient ∇) 𝐴 𝜂 = 𝐸 𝑇 �⃗� =: �⃗�, 

• GLM model for prediction: �⃗� = 𝑔&'(𝛽"�⃗�). 

�⃗� 𝜂
𝑔

𝑔 &' Ψ

Ψ&'

𝛽"�⃗�

�⃗� = Ψ&'(𝜂)

• If 𝑔 = Ψ, it is the canonical link. But there are other non-canonical choices. 

𝜂 = Ψ 𝑔&' 𝛽"�⃗�

• Optimization via MLE
�⃗𝛽 = argmin

<
𝑃(�⃗�|𝑋, 𝜂)



Ø Maximum Likelihood estimates for 𝜂

The log-likelihood is given by

Suppose the i.i.d. data set 𝐷 = �⃗� 2
2.'
E

is observed from a distribution 
with exponential family pdf/pmf

𝑝 �⃗�; 𝜂, 𝜙 = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)

The likelihood is given by (fix 𝜙)

𝐿 𝜂 =�
2.'

E

𝑝 �⃗�2; 𝜂 , 𝜙 =�
2.'

E

exp
𝜂" 𝑇 �⃗�(2) − 𝐴 𝜂

𝜙 + 𝐶(�⃗�(2), 𝜙)

𝑙 𝜂 = log 𝐿 𝜂 =
1
𝜙

f
2.'

E

𝜂 " 𝑇 �⃗� 2 − 𝑁𝐴 𝜂 +f
2.'

E

𝐶(�⃗�(2), 𝜙)



A η is convex. In most exponential family models, A η is strictly convex, l( ) 
has a unique maximum at �⃗𝜂, solved by

∇) 𝑙 𝜂 = 0

∇) 𝑙 𝜂 =
1
𝜙 f

2.'

E

𝑇 �⃗� 2 − 𝑁∇) 𝐴 𝜂 = 0

Theorem: The unique solution �⃗𝜂 that maximizes 𝑙 𝜂 and L 𝜂 is when   

∇) 𝐴 𝜂 �
).F)

=
1
𝑁f

2.'

E

𝑇 �⃗� 2



Ø Maximum Likelihood estimates for GLM parameters 

Suppose the i.i.d. data set 𝐷 = (�⃗� 2 , �⃗� 2 ) 2.'
E

, where 𝑌|𝑋 is from a distribution 
with exponential family pdf/pmf. 

The likelihood is given by (fix 𝜙)

𝐿 𝜂 =�
2.'

E

𝑝 �⃗�(2); 𝜂(2), 𝜙 =�
2.'

E

exp
𝜂(2)"𝑇 �⃗�(2) − 𝐴 𝜂(2)

𝜙
+ 𝐶(�⃗�(2), 𝜙)

𝑝 �⃗� | �⃗�; 𝜂, 𝜙 = exp
𝜂"𝑇 �⃗� − 𝐴 𝜂

𝜙 + 𝐶(�⃗�, 𝜙)

The log-likelihood is given by

𝑙 𝜂 = log 𝐿 𝜂 =
1
𝜙 f

2.'

E

𝜂(2)"𝑇 �⃗� 2 − 𝐴 𝜂(2) +f
2.'

E

𝐶(�⃗�(2), 𝜙)



Link function 𝑔 𝜇 𝑋 = 𝜉 = 𝛽"�⃗� and 𝜇 𝑋 = Ψ(𝜂)

GLM Model: 𝜇 �⃗� = 𝑔&' 𝛽"�⃗�

Replacing 𝜂 = Ψ 𝑔&' 𝜉 = Ψ 𝑔&' 𝛽"�⃗� , the log-likelihood is given by

𝑙 𝛽 =
1
𝜙

f
2.'

E

Ψ 𝑔&' 𝛽"�⃗�(2)
"
𝑇 �⃗� 2 − 𝐴 Ψ 𝑔&' 𝛽"�⃗�(2) +f

2.'

E

𝐶(�⃗�(2), 𝜙)

Now, it is an optimization question. We can use Gradient Descent or 
Newton’s method to find argmax 𝑙 𝛽 of the log-likelihood. 



Example(Gaussian)

Consider the GLM for independent Gaussian observations 
𝑦(2)~𝑁(𝜇 2 , 𝜎#) for 𝑖 = 1, … , 𝑁 with fixed 𝜎#

Recall that the natural parameter 𝜂 = 𝜇 = 𝛽"�⃗� = �⃗�"𝛽

The log-likelihood is given by

𝑙 𝛽 =
1
𝜙 f

2.'

E

(𝜂"𝑇 �⃗� 2 − 𝐴 𝜂 ) +f
2.'

E

𝐶(�⃗�(2), 𝜙)

=
1
𝜎# f

2.'

E

𝛽"�⃗�(2) �⃗� 2 −
𝛽"�⃗� 2 �⃗� 2 "𝛽

2 +f
2.'

E

𝐶(�⃗�(2), 𝜙)

𝑇(𝑦) = 𝑦
𝜙 = 𝜎#,
𝜂 = 𝜇, 

𝐴 𝜂 = )!

#

=
1
𝜎# 𝛽"𝑋"�⃗� −

𝛽"𝑋"𝑋𝛽
2 +f

2.'

E

𝐶(�⃗�(2), 𝜙)

Maximizing this function with respect to𝛽, we have the OLS: 

𝑋"𝑋𝛽 = 𝑋"�⃗�



Example(Logistics Regression)

𝜂 = log
𝜇

1 − 𝜇 ⟹ 𝜇 =
1

1 + 𝑒&)

𝑇 𝑦 = 𝑦 and ℎ �⃗� = 1

𝐴 𝜂 = − log 1 − 𝜇 = log(1 + 𝑒))

Recall that 

Consider the GLM for independent Bernoulli observations 𝑦(2)~𝐵𝑒𝑟 𝜇 2

for 𝑖 = 1, … , 𝑁

𝜙 = 1.

𝜉 = 𝛽"�⃗� = �⃗�"𝛽

Canonical Link function: logit function: 𝜉 = 𝜂 = 𝑔 𝜇 = log 8
'&8

𝜇 =
1

1 + 𝑒&4⃗$<

Logistics Model:



The log-likelihood is given by

𝑙 𝛽 =
1
𝜙

f
2.'

E

(𝜂"𝑇 �⃗� 2 − 𝐴 𝜂 ) +f
2.'

E

𝐶(�⃗�(2), 𝜙)

=f
2.'

E

(𝛽"�⃗�(2) �⃗� 2 − log(1 + 𝑒<$4⃗)

= 𝛽"𝑋"�⃗� +f
2.'

E

− log 1 + 𝑒<$4⃗ %

To maximize the log-likelihood, the gradient of 𝑙 𝛽 is 

∇<𝑙 𝛽 = 𝑋"�⃗� − 𝑋"ℎ<(𝑋)

𝑋"ℎ(𝑋) H =f
2.'

E
𝑒<$4⃗ %

1 + 𝑒<$4⃗ %
[�⃗� 2 ]Hwhere,



Example(Probit Regression, not canonical link)

𝜇 = 𝑔&' 𝜉 =
1
2𝜋

\
&>

D
exp −

𝑢#

2 𝑑𝑢

Probit model by using a non-canonical link function:

This the cdf function of Normal(0,1)

With pdf as 𝑝(𝑦|𝑥; 𝜂) = ℎ �⃗� exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 , where

𝜂 = log
𝜇

1 − 𝜇 = Ψ(𝜇) ⟹ 𝜇 =
1

1 + 𝑒&)𝑇 𝑦 = 𝑦 and ℎ �⃗� = 1

𝐴 𝜂 = − log 1 − 𝜇 = log(1 + 𝑒))

Consider the GLM for independent Bernoulli observations 𝑦(2)~𝐵𝑒𝑟 𝜇 2

for 𝑖 = 1, … , 𝑁

𝛽

𝑋

𝜉 �⃗� 𝜂 𝑌|𝑋
𝑔

𝑔 &' Ψ

Ψ&'



The probability is 

𝑝(𝑦|𝑥; 𝜂) = exp 𝜂"𝑇 �⃗� − 𝐴 𝜂 = 𝜇( 1 − 𝜇 '&( for 𝑦 ∈ {0,1},

In canonical link, we have 𝜂 = 𝜉 = 𝛽"�⃗� = �⃗�"𝛽

In non-canonical link, we have 𝜂 = Ψ 𝑔&' 𝜉 = Ψ 𝑔&' 𝛽"�⃗�

The likelihood is given by 

𝐿 𝛽 =�
2.'

E

𝑝 �⃗�(2); 𝜂(2) =�
2.'

E

𝑔&' 𝛽"�⃗�(2)
((%)

1 − 𝑔&' 𝛽"�⃗�(2)
'&((%)

Probit model
𝜇 =

1
2𝜋

\
&>

<$4⃗
exp −

𝑢#

2 𝑑𝑢



This log-likelihood function is globally concave in 𝛽, and therefore standard 
numerical algorithms for optimization will converge rapidly to the unique
maximum.

The log-likelihood is given by 

𝑙 𝛽 =f
2.'

E

𝑦(2) log 𝑔&' 𝛽"�⃗�(2) + 1 − 𝑦 2 log 1 − 𝑔&' 𝛽"�⃗� 2



Logistics v.s. Probit

Sigmoid v.s. Gaussian cdf

Logit link v.s. probit link

𝜇(�⃗�) =
1

1 + 𝑒&4⃗$<
Logistics Model:

Probit model 𝜇(�⃗�) =
1
2𝜋

\
&>

<$4⃗
exp −

𝑢#

2 𝑑𝑢



Example(practice, not exponential family)

Suppose 𝑌|𝑋 is a distribution with pdf 𝑝 𝑦; 𝜇 = '
#
exp − 𝑦 − 𝜇

Q: Do it belongs to exponential family?

Q: Find the MLE for the GLM. 

Historically the GLM was first developed for the exponential family but was later 
extended to the non-exponential family and even to the case where the distribution is 
not completely known.



Example: (Poisson Model) 

𝑝 𝑦 𝜆 =
𝜆(𝑒&:

𝑦! =
1
𝑦! exp(𝑦 log 𝜆 − 𝜆)

𝑇 𝑦 = 𝑦 ℎ 𝑦 =
1
𝑦! 𝐴 𝜂 = 𝜆 = 𝑒)𝜂 = log 𝜆;

Recall

Consider the GLM for independent Poisson observations

𝑦(2)~𝑃𝑜𝑖 𝜇 2 for 𝑖 = 1, … , 𝑁

with

So, the canonical link function is 𝒈 𝝀 = 𝐥𝐨𝐠 𝝀 when 𝜂 = 𝜉 = 𝛽"�⃗� = �⃗�"𝛽

The Poisson model is 𝜆(�⃗�) = 𝑒<$4⃗
𝐸 𝑌 = 𝜆



Build a model to estimate the number 𝑦 of customers arriving in your store 
(or number of page-views on your website) in any given hour, based on 
certain features �⃗� such as store promotions, recent advertising, weather, 
day-of-week, etc.

Poisson distribution usually gives a good model for numbers of visitors.

MLE:

𝑙 𝛽 =f
2.'

E

𝜂 2 " �⃗� 2 − 𝐴 𝜂 2 =f
2.'

E

�⃗� 2 "𝛽 �⃗� 2 − exp 𝛽"�⃗�(2)

Optimization: find argmax 𝑙 𝛽



Example: (Disease Occurring Rate, Exponential) 

In the early stages of a disease epidemic, the rate at which new cases 
occur increases exponentially through time.

Thus, if  𝜇2 is the expected number of new cases on day 𝑡2, it might 
be appropriate a model of the form:

𝜇2 = 𝛾 exp(𝛿𝑡2)

Take the log of both sides,

log 𝜇2 = log 𝛾 + 𝛿𝑡2

= 𝜃= + 𝜃'𝑡2

Furthermore, since the outcome is a count, the Poisson distribution seems 
reasonable.  Thus, this model fits into the GLM framework with a Poisson 
outcome distribution, a log link, and a linear predictor of 𝜃= + 𝜃'𝑡2



Example(Prey Capture Rate, Gamma Distribution): 

The rate of capture of prey, 𝑦2, by a hunting animal increases as the 
density of prey, 𝑥2, increases, but will eventually level off  as the 
predator has as much food as it can eat

A suitable model for this situation might be

𝜇2 =
𝛼𝑥2
ℎ + 𝑥2

This model is not linear, but taking the reciprocal of both sides,

1
𝜇2
=
ℎ + 𝑥2
𝛼𝑥2

= 𝜃= + 𝜃'
1
𝑥2

Because the variability in prey capture likely increases with the mean, 
we might use a GLM with a reciprocal link and a gamma distribution.

where 𝛼 represents the maximum capture rate, and ℎ represents the prey 
density at which the capture rate is half the maximum rate.



Prey Capture Rate



𝑝 �⃗�|�⃗�, Σ =
1

2𝜋 ! Σ
exp −

1
2 �⃗� − �⃗� "Σ&' �⃗� − �⃗�

The probability density function of the multivariate Gaussian distribution 𝑁(�⃗�, �⃗�, Σ) is

Ø Multivariate Gaussian

where covariance matrix Σ is an symmetric positive definite matrix. 

Σ = cov �⃗�, �⃗� = E �⃗� − �⃗� �⃗� − �⃗� I

The dependence of the multivariate Gaussian density on �⃗� is entirely 
through the value of the quadratic form

Δ#: = �⃗� − �⃗� "Σ&' �⃗� − �⃗�

The value Δ is Mahalanobis distance, and can be seen as a generalization of 
the Z score 𝑧 = 4&8

9



q Marginalization

Suppose �⃗� has a multivariate Gaussian distribution 𝑁(�⃗�, �⃗�, Σ)

Let us partition the vector into two components:

�⃗� = 𝑥'
𝑥#

We partition the mean vector and covariance matrix in the same way:

�⃗� = 𝜇'
𝜇#

Σ = Σ'' Σ'#
Σ#' Σ##

The marginal distribution of the sub-vector 𝑥' has a simple form

𝑁(𝑥', 𝜇', Σ'')



q Conditioning

Suppose now that we learn the exact value of the sub-vector 𝑥#

We may then condition our prior distribution on this observation, giving a posterior 
distribution over the remaining variables.

• The posterior distribution 𝑝 𝑥' �⃗�#, 𝜇 , Σ ) is a Gaussian distribution, denoted as

𝑁(𝑥', 𝜇'|#, Σ''|#)

𝜇'|# = �⃗�' + Σ'#Σ##&' �⃗�# − �⃗�#

Σ''|# = Σ'' − Σ'#Σ##&'Σ#'



Other important operations of normal random variables include 
Pointwise multiplication ; Convolutions 𝒙 ∗ 𝒚;  Affine transformations 𝑨𝒙 + 𝒃
They all Gaussian. 

𝐴�⃗� + 𝑏

𝑁(�⃗�, 𝐴�⃗� + b, AΣ𝐴&')

𝑏 = 1
−1



More Textbooks:

1. P. McCullagh; John A. Nelder. Generalized Linear Models, Second 
Edition Chapman and Hall

2. Charles E. McCulloch, Shayle R. Searle Generalized, Lin-
ear, and Mixed Models Wiley, New York

3. Paul Roback and Julie Legler, Beyond Multiple Linear Regression: 
Applied Generalized Linear Models and Multilevel Models in R. (Chapter 
4 Poisson Regression)

Machine Learning: a Probabilistic Perspective- Kevin P. Murphy

Pattern Recognition and Machine Learning - Christopher M. Bishop

References:



https://www.mathworks.com/help/stats/glmfit.html

MATLAB: Fit generalized linear regression model

https://www.mathworks.com/help/stats/fitting-data-with-generalized-linear-models.html

Example: 

https://www.mathworks.com/help/stats/generalized-linear-regression.html

https://www.mathworks.com/help/stats/glmfit.html
https://www.mathworks.com/help/stats/fitting-data-with-generalized-linear-models.html
https://www.mathworks.com/help/stats/generalized-linear-regression.html

