MATH 7339 - Machine Learning and Statistical Learning Theory 2-He Wang

Section. Generative Additive Models

- 1. Generalized Additive Models
- 2. Backfitting

Generalized Additive Models

Generalized additive models are a combine of two worlds: **generalized linear models** and **additive models**, and is altogether a very flexible, powerful platform for modeling.

Let $\vec{X} \in \mathbb{R}^d$ be a vector of predictors. Let *Y* be a label vector.

Let $\mu(\vec{X}) = E(Y|\vec{X})$

1. Linear Models: We model $\mu(\vec{X})$ as a linear function of \vec{X} :

$$E(Y|\vec{X}) \equiv \mu(\vec{X}) = \vec{\beta}^T \vec{X} = \beta_0 + \beta_1 X_1 + \dots + \beta_d X_d$$

2. Generalized Linear Models: model some function of $\mu(\vec{X})$ as a linear function of \vec{X} :

$$g\left(\mu(\vec{X})\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_d X_d$$

Here g(u) is the **link function**.

Generalized Linear Models:

$$\mu(\vec{X}) = g^{-1}(\vec{\beta}^T \vec{X})$$

Example of link function:

1.
$$g(\mu) = \mu$$
 Gaussian model(standard regression)

2.
$$g(\mu) = \log \frac{\mu}{1-\mu}$$
 Binomial model(logistic regression)

3. $g(\mu) = \log (\mu)$ Poisson model

4.
$$\mu = g^{-1}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\xi} \exp\left(-\frac{u^2}{2}\right) du$$

Probit model

non-canonical link function:

3. An additive model is given by

$$E(Y|\vec{X}) \equiv \mu(\vec{X}) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

4. Generalized Linear Models for a fixed link function $g(\mu)$ and basis f_1, \ldots, f_d has the form

$$g\left(\mu(\vec{X})\right) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

For example, if $f_j(x_j) = \beta_j x_j$, then it is the generalized linear regression. More generally, we can choose $f_1(x_1), \dots, f_d(x_d)$ be the *smoothing spline* function of x_j .

The generalized linear model allows us to account for different types of outcome data y, and the additive model element allows us to consider a transformation of the mean $\mu(\vec{X}) = E(Y|\vec{X})$ as a nonlinear (but additive) function of \vec{x} .

Example:

Assume $y|x \sim N(\mu, \sigma^2)$

• Standard Linear Model

$$\mu = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2$$

• Polynomial Regression (Additive models)

$$\mu = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_1^2 + b_4 \cdot x_2^2$$

• GLM formulation

$$g(\mu) = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2$$

• GAM formulation

$$g(\mu) = f(X)$$

> Additive cubic smoothing spline model

Suppose the training data set is $\mathcal{D} = \{(\vec{x}^{(i)}, y^{(i)})\}_{i=1}^{n}$

Fit a Generalized Additive Model:

$$g\left(\mu(\vec{X})\right) = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

How to specify functions f_1, \dots, f_d ?

We focus on the case of smoothing spline functions.

Note that f_j sees only the j^{th} coordinate x_j . Then now f_j sees only the j^{th} coordinate $x_i^{(i)}$ of the training point $\vec{x}^{(i)}$.

Consider (Sobolev) space

$$\mathcal{S}[a,b] = \left\{ f: [a,b] \to \mathbb{R} \mid f'' \text{ continuous and } \int_a^b (f''(t))^2 dt \text{ is finite} \right\}$$

Among all functions $f_j(x) \in S[a, b]$ that **minimizes** the penalized residual sum of squares.

$$(\hat{\beta}_0, \hat{f}_1, \dots, \hat{f}_d) = \operatorname{argmin}_{i=1} \sum_{i=1}^N \left(y^{(i)} - \beta_0 - \sum_{j=1}^d f_j \left(x_j^{(i)} \right) \right)^2 + \sum_{j=1}^d \lambda_j \int_a^b \left(f_j''(t_j) \right)^2 dt_j$$

$$f_j \in \mathcal{S}[a, b] \qquad \beta_0$$

The knots of f_j can be chosen as any points, but they end up just being at the $x_i^{(i)}$, i.e. the j^{th} coordinates of the data points $\vec{x}^{(i)}$ (as usual).

How to go about solving this?

Solution above is an called an additive cubic smoothing spline model.

Additive cubic smoothing spline model

(1) So our desired regression function $\mu(\vec{X}) = E(Y|\vec{X})$ is estimated as

$$\left(\hat{\mu}(\vec{X})\right) = \widehat{\beta_0} + \widehat{f_1}(x_1) + \dots + \widehat{f_d}(x_d)$$

such that for fixed *j*, each function $\hat{f}_j(x_j)$ is a cubic spline with knots at the unique points $\vec{x}_i^{(i)}$

Notice that above we can freeze *j* and look at different values $x_j^{(i)}$ of x_j based on the training set, i.e., $\{x_j^{(i)}\}_{i=1}^N$

(2) Solution is not unique. It is the same solution if we replace \hat{f}_j by $\hat{f}_j + c_j$ and replace $\hat{\beta}_0$ by $\hat{\beta}_0 - \sum c_j$.

Restrict to f_j such that

$$\sum_{i=1}^{N} \widehat{f}_j\left(x_j^{(i)}\right) = 0$$

(3) For any given (fixed) *j*, the optimization problem looks like

$$\underset{f_j}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \left(z_i - f_j \left(x_j^{(i)} \right) \right)^2 + \lambda_j \int_a^b \left(f_j^{\prime\prime}(t_j) \right)^2 dt_j$$

where
$$z^{(i)} = y^{(i)} - \beta_0 - \sum_{k \neq j} \widehat{f}_k \left(x_j^{(i)} \right)$$

iterate repeatedly through the dimensions j = 1, ..., p

So a standard smoothing spline problem in each separate dimension.

Backfitting (one variable at a time) for Generalized Additive Models

The above separation of variables x_j suggests a Gauss-Seidel method/ implementation i.e., want

$$\hat{\vec{\theta}} = \operatorname*{argmin}_{\vec{\theta} \in \mathbb{R}^m} h(\vec{\theta})$$

Algorithm:

1. Initialize $\hat{\vec{\theta}}$

2. While not converged, do

For i = 1, ..., m $\hat{\theta}_i = \underset{\theta_i}{\operatorname{argmin}} h(\hat{\theta}_1, ..., \hat{\theta}_{i-1}, \frac{\theta_i}{\theta_i}, \hat{\theta}_{i+1}, ..., \hat{\theta}_m)$

i.e., freeze all values $\hat{\theta}_j$ for $j \neq i$ and just optimize single θ_i at a time.

- Popular in partial differential equation methods.
- Usually linear convergence, i.e. error e_n after n steps satisfies

 $e_n = c \ e_{n-1}$, for c < 1

[As opposed say to quadratic convergence]

Backfitting for Generalized Additive Models

Model:
$$y = \beta_0 + f_1(x_1) + \dots + f_d(x_d)$$

1. Initialize
$$\widehat{\beta_0} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$

 $\widehat{f_j} = 0$, for $j = 1, ..., d$

2. While some \hat{f}_j still changing for j = 1, ..., d

Model just j^{th} function $f_j(x_j)$ and freeze the other $f_k(x_k)$, thus write

$$y = \beta_0 + f_1(x_1) + \dots + f_d(x_d) = \beta_0 + f_j(x_j) + \sum_{k \neq j} f_k(x_k)$$

So model

$$y - \beta_0 - \sum_{k \neq j} f_k(x_k) = f_j(x_j)$$

So we will fit f_i by replacing

$$y^{(i)} \mapsto y^{(i)} - \beta_0 - \sum_{k \neq j} \widehat{f}_k(x_k) = adjusted response$$

and do least squares with these adjusted y values $z^{(j)}$

Form vector $\vec{z_j} = (z^{(1)}, z^{(2)}, ..., z^N)$ of adjusted y values.

Recall with least squares get smoothing matrix S_j to get estimated function. Thus write

$$\widehat{\vec{f}_j} = S_j \ \overrightarrow{z_j}$$

$$\widehat{\vec{f}_j} = \begin{bmatrix} \widehat{\vec{f}_j} \left(x_j^{(1)} \right) \\ \widehat{\vec{f}_j} \left(x_j^{(2)} \right) \\ \vdots \\ \widehat{\vec{f}_j} \left(x_j^{(N)} \right) \end{bmatrix}$$

Also adjust:

$$\widehat{\overrightarrow{f_j}} \mapsto \widehat{\overrightarrow{f_j}} - \frac{1}{N} \sum_{i=1}^{N} \widehat{\overrightarrow{f_j}} \left(x_j^{(i)} \right)$$

Comments:

Note that 'smoothing matrix S_j takes adjusted $y^{(i)}$ values and gives estimates $\hat{y}^{(i)}$ for them under current model, here just for the j^{th} coordinate part.

This means we are just fitting the function f_i and freezing the other f_k

But note this easy computation only gives $\hat{f}(x_j^{(i)})$ at data points. More complicated if we want a formula for all *x*.

Note again that brackets \vec{z}_i contains vector \vec{y} with $y^{(i)}$ replaced by

$$y^{(i)} - \beta_0 - \sum_{k \neq j} \widehat{f}_k(x_k)$$

Comments:

This algorithm can be computationally intensive, so may slow down say leave one out cross-validation, which must be repeated many times.

This method uses the assumed above structure as a sum of individual coordinate functions $f_i(x_i)$ to get at curse of dimensionality.

But what if there are interactions among variables?

Then include low order products like $f_i(x_i) \cdot f_j(x_j)$ in the model.

Textbook:

Hastie[HTF]: Sec 9.1