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Section. Generative Additive Models

1. Generalized Additive Models

2. Backfitting 



Ø Generalized Additive Models

Generalized additive models are a combine of two worlds: generalized linear 
models and additive models, and is altogether a very flexible, powerful 
platform for modeling.

Let 𝑋 ∈ ℝ! be a vector of predictors. Let 𝑌 be a label vector.

Let 𝜇 𝑋 = 𝐸(𝑌|𝑋)

1. Linear Models: We model 𝜇 𝑋 as a linear function of 𝑋:  

𝐸 𝑌 𝑋 ≡ 𝜇 𝑋 = 𝛽"𝑋 = 𝛽# +𝛽$𝑋$ +⋯+ 𝛽!𝑋!

2. Generalized Linear Models: model some function of 𝜇 𝑋 as a linear function of 𝑋:

𝑔 𝜇 𝑋 = 𝛽# + 𝛽$𝑋$ +⋯+ 𝛽!𝑋!

Here 𝑔 𝑢 is the link function.



Example of link function:

1. 𝑔 𝜇 = 𝜇 Gaussian model(standard regression)

2. 𝑔 𝜇 = log %
$&%

Binomial model(logistic regression)

3. 𝑔 𝜇 = log (𝜇) Poisson model

4. 𝜇 = 𝑔&$ 𝜉 = $
'( ∫&)

* exp − +!

'
𝑑𝑢 Probit model

non-canonical link function:

Generalized Linear Models:

𝜇 𝑋 = 𝑔&$ 𝛽"𝑋



3. An additive model is given by 

𝐸 𝑌 𝑋 ≡ 𝜇 𝑋 = 𝛽# + 𝑓$ 𝑥$ +⋯+ 𝑓! 𝑥!

The generalized linear model allows us to account for different types of 
outcome data 𝑦, and the additive model element allows us to consider a 
transformation of the mean 𝜇 𝑋 = 𝐸(𝑌|𝑋) as a nonlinear (but additive) 
function of  �⃗�.

4. Generalized Linear Models for a fixed link function 𝑔(𝜇) and basis 
𝑓$, … , 𝑓! has the form

𝑔 𝜇 𝑋 = 𝛽# + 𝑓$ 𝑥$ +⋯+ 𝑓! 𝑥!

For example, if 𝑓, 𝑥, = 𝛽,𝑥,, then it is the generalized linear regression. 
More generally, we can choose 𝑓$(𝑥$), … , 𝑓!(𝑥!) be the smoothing spline 
function of 𝑥,.



Example: 

• Standard Linear Model

• Polynomial Regression (AddiEve models)

• GLM formulation

• GAM formulaEon

𝜇 = 𝑏# + 𝑏$ ⋅ 𝑥$ + 𝑏' ⋅ 𝑥'

𝜇 = 𝑏# + 𝑏$ ⋅ 𝑥$ + +𝑏' ⋅ 𝑥' + 𝑏- ⋅ 𝑥$' + 𝑏. ⋅ 𝑥''

𝑔(𝜇) = 𝑓(𝑋)

𝑔(𝜇) = 𝑏# + 𝑏$ ⋅ 𝑥$ + 𝑏' ⋅ 𝑥'

Assume 𝑦|𝑥 ∼ 𝑁 𝜇, 𝜎'



How to specify func?ons 𝒇𝟏, … , 𝒇𝒅 ?

We focus on the case of smoothing spline functions. 

Consider (Sobolev) space

𝒮 𝑎, 𝑏 = 𝑓: 𝑎, 𝑏 → ℝ | 𝑓11continuous and S
2

3
𝑓11 𝑡 '𝑑𝑡 is Uinite

Ø Additive cubic smoothing spline model

𝑔 𝜇 𝑋 = 𝛽# + 𝑓$ 𝑥$ +⋯+ 𝑓! 𝑥!

Suppose the training data set is 𝒟 = �⃗� 4 , 𝑦 4
4&$
5

Fit a Generalized Additive Model:

Note that 𝑓, sees only the 𝑗67 coordinate 𝑥,. Then now 𝑓, sees only the 
𝑗67 coordinate 𝑥,

(4) of the training point �⃗� 4 .



Among all functions 𝑓, 𝑥 ∈ 𝒮 𝑎, 𝑏 that minimizes the penalized residual 
sum of squares.

𝑓! ∈ 𝒮[𝑎, 𝑏]
𝛽#

X𝛽#, Y𝑓$, … , Y𝑓! = argmin \
4:$

;

𝑦 4 − 𝛽# −\
,:$

!

𝑓, 𝑥,
4

'

+\
,:$

!

𝜆,S
2

3
𝑓,11 𝑡,

'
𝑑𝑡,

The knots of 𝑓, can be chosen as any points, but they end up just being 
at the 𝑥,

4 , i.e. the 𝑗67 coordinates of the data points �⃗�(4) (as usual).

How to go about solving this?

Solution above is an called an additive cubic smoothing spline model. 



Additive cubic smoothing spline model

(1) So our desired regression function 𝜇 𝑋 = 𝐸(𝑌|𝑋) is estimated as

�̂� 𝑋 = _𝛽# + X𝑓$ 𝑥$ +⋯+ X𝑓! 𝑥!

such that for fixed 𝑗, each function X𝑓, 𝑥, is a cubic spline with knots at the 
unique points �⃗�,

(4)

Notice that above we can freeze 𝑗 and look at different values 𝑥,
4 of 𝑥,

based on the training set, i.e., 𝑥,
4

4:$

;

(2) Solution is not unique. It is the same solution if we replace X𝑓, by X𝑓, + 𝑐, and 
replace _𝛽# by _𝛽# − ∑𝑐, .



(3) For any given (fixed) 𝑗, the optimization problem looks like

argmin \
4:$

;

𝑧4 − 𝑓, 𝑥,
4

'
+ 𝜆,S

2

3
𝑓,11 𝑡,

'
𝑑𝑡,

𝑓,

𝑧(4) = 𝑦 4 − 𝛽# −\
<=,

Y𝑓< 𝑥,
4where

iterate repeatedly through the dimensions 𝑗 = 1, … , 𝑝

So a standard smoothing spline problem in each separate 
dimension.

Restrict to 𝑓, such that \
4:$

;

Y𝑓, 𝑥,
4 = 0



Ø Backfitting (one variable at a time) for Generalized Additive Models

The above separaEon of variables 𝑥, suggests a Gauss-Seidel method/
implementaEon i.e., want

X⃗𝜃 = argmin
>∈ℝ"

ℎ(�⃗�)

Algorithm:

1. Initialize X⃗𝜃

2. While not converged, do

For 𝑖 = 1, … ,𝑚

Y𝜃4 = argmin
>#

ℎ( X𝜃$, … , X𝜃4&$, 𝜃4 , X𝜃4A$, … , X𝜃B)

i.e., freeze all values X𝜃, for 𝑗 ≠ 𝑖 and just optimize single 𝜃4 at a time. 



• Popular in parEal differenEal equaEon methods.

• Usually linear convergence, i.e. error 𝑒5 aVer n steps saEsfies

[As opposed say to quadratic convergence]

𝑒5 = 𝑐 𝑒5&$, for 𝑐 < 1



Backfitting for Generalized Additive Models

Model: 𝑦 = 𝛽# + 𝑓$ 𝑥$ +⋯+ 𝑓! 𝑥!

1. Initialize _𝛽# =
1
𝑁\

4:$

;

𝑦(4)

X𝑓, = 0, for 𝑗 = 1, … , 𝑑

2. While some X𝑓C sEll changing for 𝑗 = 1, … , 𝑑

Model just 𝑗67 function 𝑓,(𝑥,) and freeze the other 𝑓<(𝑥<), thus write 

𝑦 = 𝛽# + 𝑓$ 𝑥$ +⋯+ 𝑓! 𝑥! = 𝛽# + 𝑓, 𝑥, +\
<=,

𝑓<(𝑥<)



So model

𝑦 − 𝛽# −\
<=,

𝑓< 𝑥< = 𝑓, 𝑥,

So we will fit 𝑓, by replacing

𝑦(4) ⟼ 𝑦(4) − 𝛽# −\
<=,

Y𝑓< 𝑥< =:𝑧(,) =adjusted response

and do least squares with these adjusted 𝑦 values 𝑧(,)

Form vector 𝑧, = 𝑧 $ , 𝑧 ' , … , 𝑧; of adjusted 𝑦 values. 

Recall with least squares get smoothing matrix 𝑆, to get esEmated funcEon. Thus 
write

Y𝑓, = 𝑆, 𝑧,



Y𝑓, =

Y𝑓, 𝑥,
$

Y𝑓, 𝑥,
'

⋮
Y𝑓, 𝑥,

;

Where 

Also adjust:

Y𝑓, ⟼
Y𝑓, −

1
N\
4:$

;
Y𝑓, 𝑥,

4



Comments:

Note that 'smoothing matrix 𝑆, takes adjusted 𝑦(4) values and gives 
estimates r𝑦(4) for them under current model, here just for the 𝑗67
coordinate part. 

This means we are just fitting the function 𝑓, and freezing the other 𝑓<

But note this easy computation only gives X𝑓 𝑥,
4 at data points. 

More complicated if we want a formula for all 𝑥.

Note again that brackets 𝑧, contains vector �⃗� with 𝑦(4) replaced by

𝑦(4) − 𝛽# −\
<=,

Y𝑓< 𝑥<



Comments:

This algorithm can be computationally intensive, so may slow down 
say leave one out cross-validation, which must be repeated many 
times.

This method uses the assumed above structure as a sum of individual 
coordinate functions 𝑓, 𝑥, to get at curse of dimensionality.

But what if there are interactions among variables?

Then include low order products like 𝑓4 𝑥4 ⋅ 𝑓, 𝑥, in the model.



Textbook: 

Hastie[HTF]: Sec 9.1


