Section. Generative Additive Models

1. Generalized Additive Models

2. Backfitting



> Generalized Additive Models

Generalized additive models are a combine of two worlds: generalized linear
models and additive models, and is altogether a very flexible, powerful
platform for modeling.

Let X € R? be a vector of predictors. Let Y be a label vector.
Let u(X) = E(Y|X)
1. Linear Models: We model 11(X) as a linear function of X:

E(Y|X) = u(X) = BTX = Bo +B1X1 + -+ BaXq

2. Generalized Linear Models: model some function of ,u()?) as a linear function of X:

g (.U()_())) = Bo + f1X1 + -+ BaXy

Here g(u) is the link function.



Generalized Linear Models:

u(X) = g7 ("X)

Example of link function:

Lg(w =p Gaussian model(standard regression)
2.g(p) = logﬁ Binomial model(logistic regression)

3. g(u) = log (w) Poisson model

4. u=g-1¢) = \/%_nfio exp (— u;) du Probit model

non-canonical link function:



3. An additive model is given by

E(Y|X) = u(X) = Bo + fi(xy) + -+ fa(xq)

4. Generalized Linear Models for a fixed link function g(u) and basis
fi, ..., fy has the form

g (1(X)) = Bo + fi () + -+ fa(xa)

For example, if fj(x;) = B;x;, then it is the generalized linear regression.
More generally, we can choose f;(x;), ..., f4(x4) be the smoothing spline
function of ;.

The generalized linear model allows us to account for different types of
outcome data y, and the additive model element allows us to consider a

transformation of the mean u(X) = E(Y|X) as a nonlinear (but additive)
function of x.



Example:
Assume y|x ~ N(u, o?)

Standard Linear Model
‘Ll:bo‘l'bl'xl‘l'bz‘xz

Polynomial Regression (Additive models)

,u=b0+b1°x1++b2°x2+b3°X12+b4°X§

GLM formulation

g(u) =byg+ by -x1+ by x;

GAM formulation

gw) = f(X)



» Additive cubic smoothing spline model
Suppose the training data setis D = {(f(i),y(i))}?_l
Fit a Generalized Additive Model:

g (r(X)) = o + f0er) + - + falxa)

How to specify functions f{, ..., f4 ?

We focus on the case of smoothing spline functions.

Note that f; sees only the jt" coordinate xj. Then now f; sees only the

jt" coordinate xj(i) of the training point ¥,
Consider (Sobolev) space

b
Sla, b] = {f: la,b] - R | f"'continuous and j (f”(t))zdt is finite}



Among all functions f;(x) € S[a, b] that minimizes the penalized residual
sum of squares.

2

N d d
(Bo,f s, f,) = argmin z y® — By — Zf] (x(l) + z Aj j f]"(t )
i=1 Jj=1 j=1
f; € Sla, b]
Bo

The knots of f; can be chosen as any points, but they end up just being

(@)

atthe x;”, i.e. the j*™" coordinates of the data points ¥ (as usual).

How to go about solving this?

Solution above is an called an additive cubic smoothing spline model.



Additive cubic smoothing spline model

(1) So our desired regression function u(X) = E(Y|X) is estimated as

(ﬁ()?)) = Bo + fi(xy) + -+ fu(xq)

such that for fixed j, each function f;(x;) is a cubic spline with knots at the

unigue points fj(i)

Notice that above we can freeze j and look at different values xj(i) of x;

ini - "
based on the training set, i.e., {xj }
i=1

(2) Solution is not unique. It is the same solution if we replace f; by f; + ¢; and
replace B, by B — X ¢; -



N
(@) =
Restrict to f; such that Zfl (le ) =0

=1
(3) For any given (fixed) j, the optimization problem looks like

N

argmin Z (zi — f; (xj(i)))z + A jab (fj”(tj))z dt;

fj i=1

where ;) =, _pg _ z 7 (x]@)

k%)
iterate repeatedly through the dimensionsj =1, ..., p

So a standard smoothing spline problem in each separate
dimension.



> Backfitting (one variable at a time) for Generalized Additive Models

The above separation of variables x; suggests a Gauss-Seidel method/
implementation i.e., want

0 = argmin h(é)
feR™m

Algorithm:
1. Initialize 5
2. While not converged, do
Fori=1,..,m

9:- = argmin h(él, e éi_l, o;, éiﬂ, e ém)
9.

L

i.e., freeze all values éj for j # i and just optimize single 6; at a time.



* Popularin partial differential equation methods.

e Usually linear convergence, i.e. error e,, after n steps satisfies

e, =cey_q,forc <1

[As opposed say to quadratic convergence]



Backfitting for Generalized Additive Models

MOde/.'y = ,80 + fl(xl) + .-+ fd(xd)

N
1. Initialize B, = lz y®
. 0 N .
1=1
fj =0, forj=1,..,d

2. While somefj still changing forj =1, ..., d

Model just j* function fi(x;) and freeze the other f; (x;), thus write

y = Bo+ Al + o+ falea) = o+ £(5) + ) filu)

k+j



So model

y—Bo— ka(xk) = f](x])

k+j
So we will fit f; by replacing

yW o y® — gy — Z frla) =0 =adjusted response
k+j

and do least squares with these adjusted y values z()

Form vector z; = (2,2, ..., z) of adjusted y values.

Recall with least squares get smoothing matrix §; to get estimated function. Thus
write



Where

Also adjust:

)




Comments:

Note that 'smoothing matrix S; takes adjusted y*) values and gives

estimates 7 for them under current model, here just for the jt"
coordinate part.

This means we are just fitting the function f; and freezing the other f;

But note this easy computation only gives f (x.(i)) at data points.

j
More complicated if we want a formula for all x.

Note again that brackets Z; contains vector y with y® replaced by

y(i) — Bo — Zﬁc(xk)

k+j



Comments:

This algorithm can be computationally intensive, so may slow down
say leave one out cross-validation, which must be repeated many
times.

This method uses the assumed above structure as a sum of individual
coordinate functions f;(x;) to get at curse of dimensionality.

But what if there are interactions among variables?

Then include low order products like f;(x;) - f;(x;) in the model.



Textbook:

Hastie[HTF]: Sec 9.1



