MATH 7339 - Machine Learning and Statistical Learning Theory 2-He Wang

Section. Generative Additive Models

1. Generalized Additive Models
2. Backfitting

Generalized additive models are a combine of two worlds: generalized linear models and additive models, and is altogether a very flexible, powerful platform for modeling.

Let $\vec{X} \in \mathbb{R}^{d}$ be a vector of predictors. Let Y be a label vector.

Let $\mu(\vec{X})=E(Y \mid \vec{X})$

1. Linear Models: We model $\mu(\vec{X})$ as a linear function of \vec{X} :

$$
E(Y \mid \vec{X}) \equiv \mu(\vec{X})=\vec{\beta}^{T} \vec{X}=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{d} X_{d}
$$

2. Generalized Linear Models: model some function of $\mu(\vec{X})$ as a linear function of \vec{X} :

$$
g(\mu(\vec{X}))=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{d} X_{d}
$$

Here $g(u)$ is the link function.

Generalized Linear Models:

$$
\mu(\vec{X})=g^{-1}\left(\vec{\beta}^{T} \vec{X}\right)
$$

Example of link function:

1. $g(\mu)=\mu$

Gaussian model(standard regression)
2. $g(\mu)=\log \frac{\mu}{1-\mu}$

Binomial model(logistic regression)
3. $g(\mu)=\log (\mu) \quad$ Poisson model
4. $\mu=g^{-1}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\xi} \exp \left(-\frac{u^{2}}{2}\right) d u$

Probit model
non-canonical link function:
3. An additive model is given by

$$
E(Y \mid \vec{X}) \equiv \mu(\vec{X})=\beta_{0}+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)
$$

4. Generalized Linear Models for a fixed link function $g(\mu)$ and basis f_{1}, \ldots, f_{d} has the form

$$
g(\mu(\vec{X}))=\beta_{0}+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)
$$

For example, if $f_{j}\left(x_{j}\right)=\beta_{j} x_{j}$, then it is the generalized linear regression. More generally, we can choose $f_{1}\left(x_{1}\right), \ldots, f_{d}\left(x_{d}\right)$ be the smoothing spline function of x_{j}.

The generalized linear model allows us to account for different types of outcome data y, and the additive model element allows us to consider a transformation of the mean $\mu(\vec{X})=E(Y \mid \vec{X})$ as a nonlinear (but additive) function of \vec{x}.

Example:

$$
\text { Assume } y \mid x \sim N\left(\mu, \sigma^{2}\right)
$$

- Standard Linear Model

$$
\mu=b_{0}+b_{1} \cdot x_{1}+b_{2} \cdot x_{2}
$$

- Polynomial Regression (Additive models)

$$
\mu=b_{0}+b_{1} \cdot x_{1}++b_{2} \cdot x_{2}+b_{3} \cdot x_{1}^{2}+b_{4} \cdot x_{2}^{2}
$$

- GLM formulation

$$
g(\mu)=b_{0}+b_{1} \cdot x_{1}+b_{2} \cdot x_{2}
$$

- GAM formulation

$$
g(\mu)=f(X)
$$

> Additive cubic smoothing spline model

Suppose the training data set is $\mathcal{D}=\left\{\left(\vec{x}^{(i)}, y^{(i)}\right)\right\}_{i-1}^{n}$

Fit a Generalized Additive Model:

$$
g(\mu(\vec{X}))=\beta_{0}+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)
$$

How to specify functions f_{1}, \ldots, f_{d} ?

We focus on the case of smoothing spline functions.

Note that f_{j} sees only the $j^{\text {th }}$ coordinate x_{j}. Then now f_{j} sees only the $j^{\text {th }}$ coordinate $x_{j}^{(i)}$ of the training point $\vec{x}^{(i)}$.

Consider (Sobolev) space

$$
\mathcal{S}[a, b]=\left\{f:[a, b] \rightarrow \mathbb{R} \mid f^{\prime \prime} \text { continuous and } \int_{a}^{b}\left(f^{\prime \prime}(t)\right)^{2} d t \text { is finite }\right\}
$$

Among all functions $f_{j}(x) \in \mathcal{S}[a, b]$ that minimizes the penalized residual sum of squares.

$$
\begin{gathered}
\left(\hat{\beta}_{0}, \widehat{f}_{1}, \ldots, \widehat{f}_{d}\right)=\underset{\substack{ \\
f_{j} \in \mathcal{S}[a, b] \\
\beta_{0}}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(y^{(i)}-\beta_{0}-\sum_{j=1}^{d} f_{j}\left(x_{j}^{(i)}\right)\right)^{2}+\sum_{j=1}^{d} \lambda_{j} \int_{a}^{b}\left(f_{j}^{\prime \prime}\left(t_{j}\right)\right)^{2} d t_{j} \\
\end{gathered}
$$

The knots of f_{j} can be chosen as any points, but they end up just being at the $x_{j}^{(i)}$, i.e. the $j^{\text {th }}$ coordinates of the data points $\vec{x}^{(i)}$ (as usual).

How to go about solving this?
Solution above is an called an additive cubic smoothing spline model.

Additive cubic smoothing spline model
(1) So our desired regression function $\mu(\vec{X})=E(Y \mid \vec{X})$ is estimated as

$$
(\hat{\mu}(\vec{X}))=\widehat{\beta_{0}}+\hat{f}_{1}\left(x_{1}\right)+\cdots+\hat{f}_{d}\left(x_{d}\right)
$$

such that for fixed j, each function $\hat{f}_{j}\left(x_{j}\right)$ is a cubic spline with knots at the unique points $\vec{x}_{j}{ }^{(i)}$

Notice that above we can freeze j and look at different values $x_{j}^{(i)}$ of x_{j} based on the training set, i.e., $\left\{x_{j}^{(i)}\right\}_{i=1}^{N}$
(2) Solution is not unique. It is the same solution if we replace \hat{f}_{j} by $\hat{f}_{j}+c_{j}$ and replace $\widehat{\beta_{0}}$ by $\widehat{\beta_{0}}-\sum c_{j}$.

Restrict to f_{j} such that $\sum_{i=1}^{N} \widehat{f}_{j}\left(x_{j}^{(i)}\right)=0$
(3) For any given (fixed) j, the optimization problem looks like

$$
\begin{aligned}
& \underset{f_{j}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(z_{i}-f_{j}\left(x_{j}^{(i)}\right)\right)^{2}+\lambda_{j} \int_{a}^{b}\left(f_{j}^{\prime \prime}\left(t_{j}\right)\right)^{2} d t_{j} \\
& \text { where } \quad z^{(i)}=y^{(i)}-\beta_{0}-\sum_{k \neq j} \widehat{f}_{k}\left(x_{j}^{(i)}\right)
\end{aligned}
$$

iterate repeatedly through the dimensions $j=1, \ldots, p$

So a standard smoothing spline problem in each separate dimension.

> Backfitting (one variable at a time) for Generalized Additive Models

The above separation of variables x_{j} suggests a Gauss-Seidel method/ implementation i.e., want

$$
\hat{\vec{\theta}}=\underset{\vec{\theta} \in \mathbb{R}^{m}}{\operatorname{argmin}} h(\vec{\theta})
$$

Algorithm:

1. Initialize $\hat{\vec{\theta}}$
2. While not converged, do

$$
\begin{aligned}
& \text { For } i=1, \ldots, m \\
& \widehat{\theta}_{i}=\underset{\theta_{i}}{\operatorname{argmin}} h\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{i-1}, \theta_{i}, \hat{\theta}_{i+1}, \ldots, \hat{\theta}_{m}\right)
\end{aligned}
$$

i.e., freeze all values $\hat{\theta}_{j}$ for $j \neq i$ and just optimize single θ_{i} at a time.

- Popular in partial differential equation methods.
- Usually linear convergence, i.e. error e_{n} after n steps satisfies

$$
e_{n}=c e_{n-1}, \text { for } c<1
$$

[As opposed say to quadratic convergence]

Backfitting for Generalized Additive Models

$$
\text { Model: } y=\beta_{0}+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)
$$

1. Initialize $\quad \widehat{\beta_{0}}=\frac{1}{N} \sum_{i=1}^{N} y^{(i)}$

$$
\hat{f}_{j}=0, \text { for } j=1, \ldots, d
$$

2. While some \hat{f}_{j} still changing for $j=1, \ldots, d$

Model just $j^{\text {th }}$ function $f_{j}\left(x_{j}\right)$ and freeze the other $f_{k}\left(x_{k}\right)$, thus write

$$
y=\beta_{0}+f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)=\beta_{0}+f_{j}\left(x_{j}\right)+\sum_{k \neq j} f_{k}\left(x_{k}\right)
$$

So model

$$
y-\beta_{0}-\sum_{k \neq j} f_{k}\left(x_{k}\right)=f_{j}\left(x_{j}\right)
$$

So we will fit f_{j} by replacing

$$
y^{(i)} \mapsto y^{(i)}-\beta_{0}-\sum_{k \neq j} \widehat{f_{k}}\left(x_{k}\right) \quad=: z^{(j)}=\text { adjusted response }
$$

and do least squares with these adjusted y values $z^{(j)}$

Form vector $\overrightarrow{z_{j}}=\left(z^{(1)}, z^{(2)}, \ldots, z^{N}\right)$ of adjusted y values.

Recall with least squares get smoothing matrix S_{j} to get estimated function. Thus write

$$
\widehat{\overrightarrow{f_{j}}}=S_{j} \overrightarrow{z_{j}}
$$

Where

$$
{\widehat{f_{j}}}_{j}=\left[\begin{array}{c}
\overrightarrow{f_{j}}\left(x_{j}^{(1)}\right) \\
\overrightarrow{\hat{F}_{j}}\left(x_{j}^{(2)}\right) \\
\vdots \\
\widehat{\hat{f}_{j}}\left(x_{j}^{(N)}\right)
\end{array}\right]
$$

Also adjust:

Comments:

Note that 'smoothing matrix S_{j} takes adjusted $y^{(i)}$ values and gives estimates $\hat{y}^{(i)}$ for them under current model, here just for the $j^{\text {th }}$ coordinate part.

This means we are just fitting the function f_{j} and freezing the other f_{k}

But note this easy computation only gives $\hat{f}\left(x_{j}^{(i)}\right)$ at data points. More complicated if we want a formula for all x.

Note again that brackets \vec{z}_{j} contains vector \vec{y} with $y^{(i)}$ replaced by

$$
y^{(i)}-\beta_{0}-\sum_{k \neq j} \widehat{f_{k}}\left(x_{k}\right)
$$

Comments:

This algorithm can be computationally intensive, so may slow down say leave one out cross-validation, which must be repeated many times.

This method uses the assumed above structure as a sum of individual coordinate functions $f_{j}\left(x_{j}\right)$ to get at curse of dimensionality.

But what if there are interactions among variables?

Then include low order products like $f_{i}\left(x_{i}\right) \cdot f_{j}\left(x_{j}\right)$ in the model.

Textbook:

Hastie[HTF]: Sec 9.1

