MATH 7339 - Machine Learning and Statistical Learning Theory 2

Section ARMA

1. AR, MA, ARMA
2. Stationarity, causality and invertibility
3. linear process representation of ARMA
4. Autocovariance of an ARMA process
5. Homogeneous linear difference equations

\square AR(p): Autoregressive Models of order p.

A class of models closely related to the random walk are the autoregressive models (AR). An autoregressive model is defined so that the current location is a linear combination of previous locations plus a random term (Gaussian white noise).

The $\mathbf{A R}(\mathbf{p})$ model is

$$
X_{t}=\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+W_{t}
$$

where $W_{t} \sim W N\left(0, \sigma^{2}\right)$
Let B be the backshift operator, $B X_{t}:=X_{t-1}$. The above two $\operatorname{AR}(\mathrm{p})$ descriptions can be written as

$$
\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right) X_{t}=W_{t} \quad \text { or } \phi(B) X_{t}=W_{t}
$$

Question: Under what condition(s) is the random walk a special case of an AR model?

\square MA(q): Moving Average Models or order q

One way to think about Moving Average models is to take a sliding window and take a weighted average of a white noise process for everything in the window. So, start with a white noise process, $\left\{W_{t}\right\}$. Then a moving average of order q is of the following form

$$
X_{t}=W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}
$$

where $W_{t} \sim W N\left(0, \sigma^{2}\right)$

Use backshift operator

$$
X_{t}=\left(1+\theta_{1} B+\cdots \theta_{q} B^{q}\right) W_{t} \quad \text { or } X_{t}=\theta(B) W_{t}
$$

\square ARMA(p,q): Autoregressive moving average models

An ARMA (\mathbf{p}, \mathbf{q}) process $\left\{X_{t}\right\}$ is a stationary process that satisfies

$$
X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}=W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}
$$

where $W_{t} \sim W N\left(0, \sigma^{2}\right)$

$$
\text { or } \phi(B) X_{t}=\theta(B) W_{t}
$$

ARMA processes can accurately approximate many stationary processes.

Theorem: For any stationary process with autocovariance γ and any $k>0$, there is an ARMA process $\left\{X_{t}\right\}$ for which

$$
\gamma_{X}(h)=\gamma(h) \quad \text { for } h=0,1, \ldots, k
$$

$\operatorname{AR}(p)=\operatorname{ARMA}(p, 0)$.
$\operatorname{MA}(q)=\operatorname{ARMA}(0, q)$.
Usually, we insist that $\phi_{p}, \theta_{q} \neq 0$ and that the polynomials

$$
\begin{aligned}
& \phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p} \\
& \theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
\end{aligned}
$$

have no common factors. This implies it is not a lower order ARMA model.

Example of parameter redundancy

A white noise process $X_{t}=W_{t}$

So

$$
X_{t}-X_{t-1}+0.5 X_{t-2}=W_{t}-W_{t-1}+0.5 W_{t-2}
$$

So,

$$
\left(1-B+0.5 B^{2}\right) X_{t}=\left(1-B+0.5 B^{2}\right) W_{t}
$$

This is in the form of an $\operatorname{ARMA}(2,2)$ process. But it is white noise.

There are a few issues with ARMA models:

- Parameter redundancy in models.
- AR models that depend on the future.
- MA models that are not unique..

To overcome these issues, we require some restrictions on the model parameters

AR(1) in terms of the back-shift operator

Assume that X_{t} is stationary solution to

$$
X_{t}=\phi X_{t-1}+W_{t}
$$

If $|\phi|<1$, then

$$
X_{t}=\sum_{j=0}^{\infty} \phi^{j} W_{t-j}
$$

Let B be the backshift operator, $B X_{t}:=X_{t-1}$. The above two $\operatorname{AR}(1)$ descriptions can be written as

$$
(1-\phi B) X_{t}=W_{t} \quad \text { and } \quad X_{t}=\sum_{j=0}^{\infty} \phi^{j} B^{j} W_{t}=\pi(B) W_{t}
$$

Denote

$$
\phi(B)=1-\phi B \quad \text { and } \quad \pi(B)=\sum_{j=0}^{\infty} \phi^{j} B^{j}
$$

So, $\pi(B)=\phi(B)^{-1}$ as in the Taylor expansion of $\frac{1}{1-\phi B}$

A linear process $\left\{X_{t}\right\}$ is causal (strictly, a causal function of $\left\{W_{t}\right\}$) if there is a

$$
\psi(B)=\psi_{0}+\psi_{1} B+\cdots+\psi_{t} B^{2}+\cdots
$$

with

$$
\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty \quad \text { and } \quad X_{t}=\psi(B) W_{t}
$$

Example.

- $\operatorname{AR}(1)$ is causal if $|\phi|<1$.
- $\mathrm{MA}(\mathrm{q})$ is causal.

A linear process $\left\{X_{t}\right\}$ is Invertible (strictly, a invertible function of $\left\{W_{t}\right\}$) if there is a

$$
\pi(B)=\pi_{0}+\pi_{1} B+\cdots+\pi_{t} B+\cdots
$$

with

$$
\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty \quad \text { and } \quad W_{t}=\pi(B) X_{t}
$$

- Causality and Invertibility are properties of $\left\{X_{t}\right\}$ and $\left\{W_{t}\right\}$

Example.

- $\operatorname{AR}(1)$ is causal if $|\phi|<1$.

Consider the MA(1) process defined by

$$
X_{t}=W_{t}+\theta W_{t-1}=(1+\theta B) W_{t}
$$

So, if $|\theta|<1$, we have the Tayler series expansion

$$
W_{t}=\frac{1}{1+\theta B} X_{t}=\sum_{j=0}^{\infty}(-\theta)^{j} B^{j} X_{t}
$$

So, MA(1) is invertible if $|\theta|<1$.
\square AR(p): Stationarity and causality

Theorem: A (unique) stationary solution to $\phi(B) X_{t}=W_{t}$ exists iff

$$
\phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p}=0 \text { implies }|z| \neq 1
$$

This $A R(p)$ process is causal iff

$$
\phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p}=0 \text { implies }|z|>1
$$

\square Calculating ψ for an $\operatorname{AR}(p)$: matching coefficients.

AR(p) model:

$$
X_{t}=\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+W_{t}
$$

Equivalently, $\phi(B) X_{t}=W_{t}$, where

$$
\phi(B)=1-\phi_{1} B-\cdots-\phi_{p} B^{p}
$$

Let us solve $\psi(B)$ such that

$$
X_{t}=\psi(B) W_{t}
$$

So,

$$
\psi(B) \phi(B)=1
$$

Equivalently,

$$
\left(\psi_{0}+\psi_{1} B+\cdots+\psi_{t} B^{t}+\cdots\right)\left(1-\phi_{1} B-\cdots-\phi_{p} B^{p}\right)=1
$$

Equivalently, $\quad \psi_{0}=1$

$$
\begin{aligned}
& \psi_{1}-\phi_{1} \psi_{0}=0 \\
& \psi_{2}-\phi_{1} \psi_{1}-\phi_{2} \psi_{0}=0 \\
& \cdots \cdots \\
& \psi_{k}-\sum_{s=1}^{p} \phi_{s} \psi_{k-s}=0 \quad \text { for } k>0
\end{aligned}
$$

Equivalently, $\quad \psi_{j}=0$ for $j<0$

$$
\begin{aligned}
& \psi_{0}=1 \\
& \phi(B) \psi_{j}=0
\end{aligned}
$$

We can solve these linear difference equations in several ways:

- numerically, or
- by guessing the form of a solution and using an inductive proof, or
- by using the theory of linear difference equations.

Calculating $\boldsymbol{\psi}$ for an ARMA(p,q): matching coefficients

Example: $\phi(B) X_{t}=\theta(B) W_{t}$

$$
\left(1+0.25 B^{2}\right) X_{t}=(1+0.2 B) W_{t}
$$

Let us solve $\psi(B)$ such that

$$
X_{t}=\psi(B) W_{t}
$$

So,

$$
(1+0.2 B)=\left(1+0.25 B^{2}\right)\left(\psi_{0}+\psi_{1} B+\cdots+\psi_{t} B^{t}+\cdots\right)
$$

Compare the same degree of B, we have the first order differential equation of ψ_{i} as $\theta_{j}=\phi(B) \psi_{j}$ with $\theta_{0}=1$ and $\theta_{j}=0$ otherwise.

We can use the θ_{j} to give the initial conditions and solve it using the theory of homogeneous difference equations.

$$
\psi_{j}=\left(1, \frac{1}{5},-\frac{1}{4},-\frac{1}{20}, \frac{1}{16}, \frac{1}{80},-\frac{1}{64},-\frac{1}{320}, \ldots\right)
$$

The method is the same for the general case.

ARMA(p,q):Stationarity, causality, and invertibility

Theorem: If ϕ and θ have no common factors, the $\operatorname{ARMA}(p, q)$ process is the (unique) solution to

$$
\phi(B) X_{t}=\theta(B) W_{t}
$$

- This ARMA process is stationary iff the roots of $\phi(z)$ avoid the unit circle, i.e.,

$$
\phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p}=0 \text { implies }|z| \neq 1
$$

- This ARMA process is casual iff the roots of $\phi(z)$ outside the unit circle, i.e.,

$$
\phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p}=0 \text { implies }|z|>1
$$

- This ARMA process is invertible iff the roots of $\theta(z)$ outside the unit circle, i.e.,

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}=0 \text { implies }|z|>1
$$

Example: (ARMA(1,1))

$$
(1-1.5 B) X_{t}=(1+0.2 B) W_{t}
$$

1. ϕ and θ have no common factors, and ϕ 's root is at $\frac{2}{3}$, which is not on the unit circle, so $\left\{X_{t}\right\}$ is an $\operatorname{ARMA}(1,1)$ process.
2. ϕ 's root (at $2 / 3$) is inside the unit circle, so $\left\{X_{t}\right\}$ is not causal.
3. θ 's root is at -5 , which is outside the unit circle, $\left\{X_{t}\right\}$ is invertible.

Example: (ARMA(2,1))

$$
(1+0.25 B) X_{t}=(1+2 B) W_{t}
$$

1. ϕ and θ have no common factors, and ϕ 's root is at $\pm 2 i$, which is not on the unit circle, so $\left\{X_{t}\right\}$ is an $\operatorname{ARMA}(2,1)$ process.
2. ϕ 's root (at $\pm 2 i$) is outside the unit circle, so $\left\{X_{t}\right\}$ is causal.
3. θ 's root is at $-1 / 2$, which is inside the unit circle, $\left\{X_{t}\right\}$ is not invertible.
\square Autocovariance functions of linear processes

Suppose the mean of X_{t} is zero. Consider a linear process:

$$
X_{t}=\psi(B) W_{t}
$$

where $\psi(B)=\psi_{0}+\psi_{1} B+\cdots+\psi_{n} B^{n}+\cdots$, and $W_{t}=W N\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
\gamma(h) & =E\left(X_{t} X_{t+h}\right) \\
& =E\left[\left(\psi_{0} W_{t}+\psi_{1} W_{t-1}+\cdots+\psi_{n} W_{t-n}+\cdots\right)\left(\psi_{0} W_{t+h}+\psi_{1} W_{t+h-1}+\cdots\right)\right] \\
& =\sigma^{2}\left(\psi_{0} \psi_{h}+\psi_{1} \psi_{h+1}+\psi_{2} \psi_{h+2}+\cdots\right) \\
& =\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+h} \quad \text { for } h \geq 0
\end{aligned}
$$

Example: MA(q) process

$$
X_{t}=W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}=\theta(B) W_{t}
$$

The autocovariance:

$$
\gamma(h)=\left\{\begin{array}{cc}
\sigma^{2} \sum_{j=0}^{q-h} \theta_{j} \theta_{j+h} & \text { for } h \leq q \\
0 & \text { for } h>q
\end{array}\right.
$$

The autocorrelation function (ACF) of an $\mathrm{MA}(\mathrm{q})$ model is

$$
\rho(h)=\frac{\gamma(h)}{\gamma(0)}=\left\{\begin{array}{cl}
\frac{\sum_{j=0}^{q-h} \theta_{j} \theta_{j+h}}{1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}} & \text { for } h \leq q \\
0 & \text { for } h>q
\end{array}\right.
$$

The ACF will be zero for lags greater than q. Thus, the ACF provides information about the order of the dependence for a MA model.

Autocovariance functions ARMA(p,q) process

$$
\phi(B) X_{t}=\theta(B) W_{t}
$$

Method 1. Write causal ARMA as $X_{t}=\psi(B) W_{t}$, then use the above result for $\gamma(h)$.

Method 2.

$$
\phi(B) X_{t}=\theta(B) W_{t}
$$

$$
X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}=W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}
$$

So
$E\left[\left(X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}\right) X_{t-h}\right]=E\left[\left(W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}\right) X_{t-h}\right]$

So,

$$
\gamma(h)-\phi_{1} \gamma(h-1)-\cdots-\phi_{p} \gamma(h-p)=\sigma^{2} \sum_{j=0}^{q-h} \theta_{h+j} \psi_{j}
$$

This is a linear difference equation.
\square Homogeneous linear difference equations.

Homogeneous linear difference equations of order k :

$$
a_{0} x_{t}+a_{1} x_{t-1}+\cdots+a_{k} x_{t-k}=0
$$

Equivalently,

$$
\left(a_{0}+a_{1} B+\cdots+a_{k} B^{k}\right) x_{t}=0 \quad \text { or } a(B) x^{t}=0
$$

auxiliary equation:

$$
\begin{gathered}
a_{0}+a_{1} z+\cdots+a_{k} z^{k}=0 \\
\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{k}\right)=0
\end{gathered}
$$

The roots of this characteristic polynomial are $z_{i} \in \mathbb{C}$.

$$
\left(B-z_{1}\right)\left(B-z_{2}\right) \cdots\left(B-z_{k}\right) x_{t}=0
$$

So, $\quad\left(B-z_{1}\right) x_{t}=0$

Three cases:

1. The z_{i} are real and distinct.
2. The z_{i} are complex and distinct.
3. Some z_{i} are repeated.

1. The z_{i} are real and distinct.

$$
x_{t}=c_{1} z_{1}^{-t}+c_{2} z_{2}^{-t}+\cdots+c_{k} z_{k}^{-t}
$$

Example:

$$
\begin{aligned}
z_{1} & =1.2, z_{2}=-1.3 \\
x_{t} & =c_{1} z_{1}^{-t}+c_{2} z_{2}^{-t}
\end{aligned}
$$

2. The z_{i} are complex and distinct.

$$
x_{t}=c_{1} z_{1}^{-t}+c_{2} z_{2}^{-t}+\cdots+c_{k} z_{k}^{-t}
$$

Suppose z_{1}, then there is a complex conjugate root $z_{j}=\overline{z_{1}}$

For example,

$$
x_{t}=c_{1} z_{1}^{-t}+\bar{c}_{1} \bar{z}_{1}^{-t}=2 r\left|z_{1}\right|^{-t} \cos (\omega t-\alpha)
$$

Here $z_{1}=\left|z_{1}\right| e^{i \omega}$ and $c_{1}=r e^{i \alpha}$

Examples: $\quad x_{t}=c_{1} z_{1}^{-t}+\bar{c}_{1} \bar{z}_{1}^{-t}$

$$
z_{1}=1+0.1 i, z_{2}=1-0.1 i
$$

$$
z_{1}=1.2+i, z_{2}=1.2-i
$$

3. Some z_{i} are repeated.

$$
\left(B-z_{1}\right)^{m} x_{t}=0
$$

Check $\left(c_{1}+c_{2} t+\cdots+c_{m-1} t^{m-1}\right) z_{1}^{-t}$ is a solution

Example $z_{1}=z_{2}=1.5$.

$$
\left(c_{1}+c_{2} t\right) z_{1}^{-t}
$$

Find Autocovariance functions of ARMA processes

$$
\begin{gathered}
\left(1+0.25 B^{2}\right) X_{t}=(1+0.2 B) W_{t} \quad \Leftrightarrow \quad X_{t}=\psi(B) W_{t} \\
\psi_{j}=\left(1, \frac{1}{5},-\frac{1}{4},-\frac{1}{20}, \frac{1}{16}, \frac{1}{80},-\frac{1}{64},-\frac{1}{320}, \ldots\right) . \\
\gamma(h)-\phi_{1} \gamma(h-1)-\phi_{2} \gamma(h-2)=\sigma_{w}^{2} \sum_{j=0}^{q-h} \theta_{h+j} \psi_{j} \\
\Leftrightarrow \gamma(h)+0.25 \gamma(h-2)=\left\{\begin{array}{cl}
\sigma_{w}^{2}\left(\psi_{0}+0.2 \psi_{1}\right) & \text { if } h=0, \\
0.2 \sigma_{w}^{2} \psi_{0} & \text { if } h=1, \\
0 & \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

We have the homogeneous linear difference equation

$$
\gamma(h)+0.25 \gamma(h-2)=0
$$

for $h \geq 2$, with initial conditions

$$
\begin{aligned}
\gamma(0)+0.25 \gamma(-2) & =\sigma_{w}^{2}(1+1 / 25) \\
\gamma(1)+0.25 \gamma(-1) & =\sigma_{w}^{2} / 5
\end{aligned}
$$

Homogeneous lin. diff. eqn:

$$
\gamma(h)+0.25 \gamma(h-2)=0
$$

The characteristic polynomial is

$$
1+0.25 z^{2}=\frac{1}{4}\left(4+z^{2}\right)=\frac{1}{4}(z-2 i)(z+2 i)
$$

which has roots at $z_{1}=2 e^{i \pi / 2}, \overline{z_{1}}=2 e^{-i \pi / 2}$.
The solution is of the form

$$
\gamma(h)=c z_{1}^{-h}+\bar{c} \bar{z}_{1}^{-h}
$$

$z_{1}=2 e^{i \pi / 2}, \overline{z_{1}}=2 e^{-i \pi / 2}, c=|c| e^{i \theta}$.
We have

$$
\begin{aligned}
\gamma(h) & =c z_{1}^{-h}+\bar{c} \bar{z}_{1}^{-h} \\
& =2^{-h}\left(|c| e^{i(\theta-h \pi / 2)}+|c| e^{i(-\theta+h \pi / 2)}\right) \\
& =c_{1} 2^{-h} \cos \left(\frac{h \pi}{2}-\theta\right)
\end{aligned}
$$

And we determine c_{1}, θ from the initial conditions

$$
\begin{aligned}
\gamma(0)+0.25 \gamma(-2) & =\sigma_{w}^{2}(1+1 / 25) \\
\gamma(1)+0.25 \gamma(-1) & =\sigma_{w}^{2} / 5
\end{aligned}
$$

We determine c_{1}, θ from the initial conditions:

Notations:

One way to remove linear connections is through linear regression.
Let \hat{x}_{t+h} denote the regression of x_{t+h} on $\left\{x_{t+h-1}, x_{t+h-2}, \ldots, x_{t+1}\right\}$

$$
\hat{x}_{t+h}=\beta_{1} x_{t+h-1}+\beta_{2} x_{t+h-2}+\cdots+\beta_{h-1} x_{t+1}
$$

Here we do not include the intercept assuming the mean of x_{t} is zero. Otherwise, replace x_{t} with $x_{t}-\mu_{x}$.

Let \hat{x}_{t} denote the regression of x_{t} on $\left\{x_{t+1}, x_{t+2}, \ldots, x_{t+h-1}\right\}$

$$
\hat{x}_{t}=\beta_{1} x_{t+1}+\beta_{2} x_{t+2}+\cdots+\beta_{h-1} x_{t+h-1}
$$

Use OLS to estimate the parameters.

$$
X_{t}, X_{t+1}, X_{t+2}, \ldots, X_{t+h-1}, X_{t+h}
$$

> partial autocorrelation function (PACF)

ACF provides considerable information for MA(q). But for AR(p) and ARMA, ACF tells us little information. We will pursuing a similar function like ACF next.

The Partial AutoCorrelation Function (PACF) of a stationary time series $\left\{X_{t}\right\}$ is

$$
\begin{aligned}
& \phi_{11}=\operatorname{Coor}\left(X_{t+1}, X_{t}\right)=\rho(1) \\
& \phi_{h h}=\operatorname{Coor}\left(X_{t+h}-\hat{X}_{t+h}, X_{t}-\hat{X}_{t}\right) \text { for } h=2,3,4, \ldots
\end{aligned}
$$

This $\phi_{h h}$ is the correlation between X_{0} and X_{h}, which removes the linear effects of X_{1}, \ldots, X_{h-1}

$$
\ldots, X_{-1}, X_{0}, X_{1}, X_{2}, \ldots, X_{h-1}, X_{h}, X_{h+1}, \ldots
$$

Autocorrelation Function (ACF) of $\operatorname{AR}(1)$

AR(1) model:

$$
\begin{aligned}
& X_{t}=\phi_{1} X_{t-1}+W_{t} \\
& \gamma(1)=\operatorname{Cov}\left(X_{0}, X_{1}\right)=\phi_{1} \gamma(0) \\
& \gamma(2)=\operatorname{Cov}\left(X_{0}, X_{2}\right) \\
&=\operatorname{Cov}\left(X_{0}, \phi_{1} X_{1}+W_{2}\right) \\
&=\operatorname{Cov}\left(X_{0}, \phi_{1}^{2} X_{0}+\phi_{1} W_{1}+W_{2}\right) \\
&=\phi_{1}^{2} \gamma(0)
\end{aligned}
$$

Clearly, X_{0} and X_{2} are correlated through X_{1}.
In the PACF, we remove this dependence by considering the covariance of the prediction errors of X_{2}^{1} and X_{0}^{1}

Partial Autocorrelation Function: AR(1)

Calculate the PACF of a causal $\operatorname{AR}(1)$ model: $X_{t}=\phi X_{t-1}+W_{t}$, with $|\phi|<1$

$$
\phi_{11}=\operatorname{corr}\left(X_{1}, X_{0}\right)=\rho(1)=\phi
$$

Suppose regression $\hat{X}_{t+2}=\beta X_{t+1}$
We choose β to minimize

$$
E\left(\left(X_{t+2}-\beta X_{t+1}\right)^{2}\right)=\gamma_{X}(0)-2 \beta \gamma_{X}(1)+\beta^{2} \gamma_{X}(0)
$$

So, $\beta=\phi$. Similarly for the regression $\hat{X}_{t}=\alpha X_{t+1}$

Then

$$
\phi_{22}=\operatorname{Cov}\left(X_{t+2}-\hat{X}_{t+2}, X_{t}-\hat{X}_{t}\right)=0
$$

Partial Autocorrelation Function: AR(p)

In general, for a causal $\mathbf{A R (p)}$ model

$$
X_{h}=\phi_{1} X_{h-1}+\cdots+\phi_{p} X_{h-p}+W_{h}
$$

The regression of X_{h} on X_{h-1}, \ldots, X_{1} is

$$
\hat{X}_{h}=\phi_{1} X_{h-1}+\cdots+\phi_{p} X_{h-p}
$$

Thus, when $h>p$, by causality,

$$
\phi_{h h}=\operatorname{Coor}\left(X_{h}-\hat{X}_{h}, X_{0}-\hat{X}_{0}\right)=\left\{\begin{array}{lc}
\phi_{h} & \text { if } 1 \leq h \leq p \\
0 & \text { otherwise }
\end{array}\right.
$$

ACF and PACF of AR(1)

PACF

ACF and PACF of Causal AR(2)

AR(2)

PACF of an invertible MA(q)

$$
\begin{gathered}
X_{t}=W_{t}+\theta_{1} W_{t-1}+\cdots+\theta_{q} W_{t-q}=\theta(B) W_{t} \\
X_{t}=-\sum_{i=1}^{\infty} \pi_{i} X_{t-i}+W_{t} \\
\hat{X}_{n+1}=P\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right) \\
=P\left(-\sum_{i=1}^{\infty} \pi_{i} X_{n+1-i}+W_{n+1} \mid X_{1}, \ldots, X_{n}\right) \\
=-\sum_{i=1}^{\infty} \pi_{i} P\left(X_{n+1-i} \mid X_{1}, \ldots, X_{n}\right) \\
=-\sum_{i=1}^{n} \pi_{i} X_{n+1-i}-\sum_{i=n+1}^{\infty} \pi_{i} P\left(X_{n+1-i} \mid X_{1}, \ldots, X_{n}\right)
\end{gathered}
$$

In general, $\phi_{h h} \neq 0$

ACF and PACF of MA(1)

ACF

PACF

ACF and PACF of Causal MA(2)

ACF and PACF of Causal ARMA(2,2)

ARMA(2,2)

Sample PACF

For a realization x_{1}, \ldots, x_{n} of a time series, the sample PACF is defined by

$$
\begin{aligned}
& \hat{\phi}_{00}=1 \\
& \hat{\phi}_{h h}=\text { last component of } \hat{\phi}_{h}
\end{aligned}
$$

where $\hat{\phi}_{h}=\hat{\Gamma}_{h}^{-1} \hat{\gamma}_{h}$

Summary

- The ACF of MA(q) model cuts off after lag q. The PACF of an AR(p) model cuts off after lag p.
- Identification of an MA(q) model is best done with ACF; identification of an $A R(p)$ model is best done with PACF.
- The PACF between x_{t} and x_{t-h} is the correlation between $x_{t}-\hat{x}_{t}$ and $x_{t-h}-\hat{\mathrm{x}}_{\mathrm{t}-\mathrm{h}}$. Think of it as taking the correlation between the residuals from two regression models. The dependence on all intermediate variables is removed.

ACF and PACF of Causal AR and Invertible MA

	$\mathbf{A R}(\mathbf{p})$	MA(q)	ARMA(p,q)
ACF	Decay	0 after lag q	Decay
PACF	0 after lag p	Decay	Decay

Fish Population Example. This time series contains data on fish population in the central Pacific Ocean. The numbers represent the number of new fish in the years 1950-1987.

Question: Based on the ACF and PACF plots, what process do you think is most likely to describe this time series?

Recruitment Series

- "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer.

Sections 3.1-3.3

Select ARIMA Model for Time Series:
https://www.mathworks.com/help/econ/box-jenkins-model-selection.html

