
MATH 7339 - Machine Learning and Statistical Learning Theory 2  

Section ARMA 

1. AR, MA, ARMA

2. Stationarity, causality and invertibility
3. linear process representation of ARMA

4. Autocovariance of an ARMA process
5. Homogeneous linear difference equations



q AR(p): Autoregressive Models of order p.

A class of models closely related to the random walk are the autoregressive
models (AR). An autoregressive model is defined so that the current 
location is a linear combination of previous locations plus a random term 
(Gaussian white noise).

𝑋! = 𝜙"𝑋!#" +⋯+ 𝜙$𝑋!#$ +𝑊!

where 𝑊!~𝑊𝑁(0, 𝜎%)

The AR(p) model is

Question: Under what condition(s) is the random walk a special case of an AR 
model?

Let 𝐵 be the backshift operator, 𝐵𝑋! ∶= 𝑋!#". The above two AR(p) descriptions 
can be written as

1 − 𝜙"𝐵 −⋯− 𝜙$𝐵$ 𝑋! = 𝑊! or 𝜙 𝐵 𝑋! = 𝑊!



q MA(q): Moving Average Models or order q

One way to think about Moving Average models is to take a sliding 
window and take a weighted average of a white noise process for 
everything in the window. So, start with a white noise process, 𝑊! . Then 
a moving average of order 𝑞 is of the following form

𝑋! = 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#&

where 𝑊!~𝑊𝑁(0, 𝜎%)

Use backshift operator

𝑋! = 1 + 𝜃"𝐵 +⋯𝜃&𝐵& 𝑊! or 𝑋! = 𝜃(𝐵)𝑊!



q ARMA(p,q): Autoregressive moving average models

An ARMA(p,q) process 𝑋! is a stationary process that satisfies

𝑋! − 𝜙"𝑋!#" −⋯− 𝜙$𝑋!#$ = 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#&

where 𝑊!~𝑊𝑁(0, 𝜎%)

ARMA processes can accurately approximate many stationary processes. 

Theorem: For any stationary process with autocovariance 𝛾 and any 𝑘 > 0, 
there is an ARMA process {𝑋!} for which

𝛾' ℎ = 𝛾(ℎ) for ℎ = 0,1, … , 𝑘

or 𝜙(𝐵)𝑋! = 𝜃(𝐵)𝑊!



Usually, we insist that  𝜙$, 𝜃& ≠ 0 and that the polynomials

AR(p) = ARMA(p,0).  

MA(q) = ARMA(0,q).

𝜙 𝑧 = 1 − 𝜙"𝑧 − ⋯− 𝜙$𝑧$

𝜃 𝑧 = 1 + 𝜃"𝑧 + ⋯+ 𝜃&𝑧&

have no common factors. This implies it is not a lower order ARMA model.

Example of parameter redundancy

A white noise process 𝑋! = 𝑊!

So 𝑋! − 𝑋!#" + 0.5𝑋!#% = 𝑊! −𝑊!#" + 0.5𝑊!#%

So, 1 − 𝐵 + 0.5𝐵% 𝑋! = 1 − 𝐵 + 0.5𝐵% 𝑊!

This is in the form of an ARMA(2,2) process. But it is white noise.



• Parameter redundancy in models.

• AR models that depend on the future.
• MA models that are not unique..

To overcome these issues, we require some restrictions on the 
model parameters

There are a few issues with ARMA models:



AR(1) in terms of the back-shift operator

Assume that 𝑋! is stationary solution to

𝑋! = 𝜙𝑋!#" +𝑊!

If 𝜙 < 1, then

𝑋! =@
()*

+

𝜙(𝑊!#(

Let 𝐵 be the backshift operator, 𝐵𝑋! ∶= 𝑋!#". The above two AR(1) descriptions 
can be written as

𝑋! =@
()*

+

𝜙(𝐵(𝑊! = 𝜋 𝐵 𝑊!1 − 𝜙𝐵 𝑋! = 𝑊!

𝜋 𝐵 =@
()*

+

𝜙(𝐵(
Denote 

𝜙 𝐵 = 1 − 𝜙𝐵

and

and

So, 𝜋 𝐵 = 𝜙 𝐵 #" as in the Taylor expansion of  "
"#,-



A linear process {𝑋!} is causal (strictly, a causal function of {𝑊!}) if there is a

q Causality

𝜓 𝐵 = 𝜓* + 𝜓"𝐵 +⋯+ 𝜓!𝐵% +⋯

with
@
()*

+

𝜓( < ∞ and 𝑋! = 𝜓 𝐵 𝑊!

Example. 
• AR(1) is causal if 𝜙 < 1. 

• MA(q) is causal.



q Invertibility

A linear process {𝑋!} is Invertible (strictly, a invertible function of {𝑊!}) if 
there is a

𝜋 𝐵 = 𝜋* + 𝜋"𝐵 +⋯+ 𝜋!𝐵 +⋯

with
@
()*

+

𝜋( < ∞ and 𝑊! = 𝜋 𝐵 𝑋!

• Causality and Invertibility are properties of {𝑋!} and {𝑊!}

Example. 

• AR(1) is causal if 𝜙 < 1. 



𝑋! = 𝑊! + 𝜃𝑊!#" = 1 + 𝜃𝐵 𝑊!

Consider the MA(1) process defined by

So, if 𝜃 < 1, we have the Tayler series expansion 

𝑊! =
1

1 + 𝜃𝐵 𝑋! =@
()*

+

(−𝜃)(𝐵(𝑋!

So, MA(1) is invertible if 𝜃 < 1.



q AR(p): Stationarity and causality

Theorem: A (unique) stationary solution to 𝜙 𝐵 𝑋! = 𝑊! exists iff

𝜙 𝑧 = 1 − 𝜙"𝑧 − ⋯− 𝜙$𝑧$ = 0 implies 𝑧 ≠ 1

This AR(p) process is causal iff

𝜙 𝑧 = 1 − 𝜙"𝑧 − ⋯− 𝜙$𝑧$ = 0 implies 𝑧 > 1



q Calculating 𝝍 for an AR(p): matching coefficients.

𝑋! = 𝜓 𝐵 𝑊!

𝑋! = 𝜙"𝑋!#" +⋯+ 𝜙$𝑋!#$ +𝑊!

Let us solve 𝜓 𝐵 such that 

Equivalently, 𝜙 𝐵 𝑋! = 𝑊!, where 

𝜙 𝐵 = 1 − 𝜙"𝐵 −⋯− 𝜙$𝐵$

So, 𝜓 𝐵 𝜙 𝐵 = 1

Equivalently, 

𝜓* + 𝜓"𝐵 +⋯+ 𝜓!𝐵! +⋯ 1 − 𝜙"𝐵 −⋯− 𝜙$𝐵$ = 1

AR(p) model:



Equivalently, 

𝜓* = 1

𝜙 𝐵 𝜓( = 0

𝜓( = 0 for 𝑗 < 0

We can solve these linear difference equations in several ways:

• numerically, or

• by guessing the form of a solution and using an inductive proof, or

• by using the theory of linear difference equations.

Equivalently, 𝜓* = 1

𝜓" − 𝜙"𝜓* = 0

𝜓% − 𝜙"𝜓" − 𝜙%𝜓* = 0

𝜓. −@
/)"

$

𝜙/𝜓.#/ = 0

……

for 𝑘 > 0



Calculating 𝝍 for an ARMA(p,q): matching coefficients

1 + 0.25𝐵% 𝑋! = 1 + 0.2𝐵 𝑊!

Example: 𝜙 𝐵 𝑋! = 𝜃 𝐵 𝑊!

𝑋! = 𝜓 𝐵 𝑊!

Let us solve 𝜓 𝐵 such that 

So, 

1 + 0.2𝐵 = 1 + 0.25𝐵% (𝜓* + 𝜓"𝐵 +⋯+ 𝜓!𝐵! +⋯)

Compare the same degree of 𝐵, we have the first order differential equation of 𝜓0

as 𝜃( = 𝜙 𝐵 𝜓( with 𝜃* = 1 𝑎𝑛𝑑 𝜃( = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We can use the 𝜃( to give the initial conditions and solve it using the theory of 
homogeneous difference equations.

𝜓( = (1, "
1
, − "

2
, − "

%*
, "
"3
, "
4*
, − "

32
, − "

5%*
, … )

The method is the same for the general case. 



ARMA(p,q):Stationarity, causality, and invertibility

Theorem: If 𝜙 and 𝜃 have no common factors,  the ARMA(p,q) process is the
(unique) solution to

• This ARMA process is stationary iff the roots of 𝜙 𝑧 avoid the unit circle, i.e., 

𝜙 𝐵 𝑋! = 𝜃 𝐵 𝑊!

𝜙 𝑧 = 1 − 𝜙"𝑧 − ⋯− 𝜙$𝑧$ = 0 implies 𝑧 ≠ 1

• This ARMA process is casual iff the roots of 𝜙 𝑧 outside the unit circle, i.e., 

𝜙 𝑧 = 1 − 𝜙"𝑧 − ⋯− 𝜙$𝑧$ = 0 implies 𝑧 > 1

• This ARMA process is invertible iff the roots of 𝜃 𝑧 outside the unit circle, i.e., 

𝜃 𝑧 = 1 + 𝜃"𝑧 + ⋯+ 𝜃&𝑧& = 0 implies 𝑧 > 1



Example: (ARMA(1,1)) 

1 − 1.5𝐵 𝑋! = 1 + 0.2𝐵 𝑊!

1. 𝜙 and 𝜃 have no common factors, and 𝜙’s root is at %
5
, which is not on

the unit circle, so {𝑋!} is an ARMA(1,1) process.
2. 𝜙’s root (at 2/3) is inside the unit circle, so {𝑋!} is not causal.
3. 𝜃’s root is at −5, which is outside the unit circle, {𝑋!} is invertible.

Example: (ARMA(2,1)) 

1 + 0.25𝐵 𝑋! = 1 + 2𝐵 𝑊!

1. 𝜙 and 𝜃 have no common factors, and 𝜙’s root is at ±2𝑖, which is not on
the unit circle, so {𝑋!} is an ARMA(2,1) process.
2. 𝜙’s root (at ±2𝑖) is outside the unit circle, so {𝑋!} is causal.
3. 𝜃’s root is at −1/2, which is inside the unit circle, {𝑋!} is not invertible.



q Autocovariance functions of linear processes

𝑋! = 𝜓 𝐵 𝑊!

Suppose the mean of 𝑋! is zero. Consider a linear process:

𝛾 ℎ = 𝐸 𝑋!𝑋!67

where 𝜓(𝐵) = 𝜓* + 𝜓"𝐵 +⋯+ 𝜓8𝐵8 +⋯ , and 𝑊! = 𝑊𝑁(0, 𝜎%)

= 𝐸[(𝜓*𝑊! + 𝜓"𝑊!#" +⋯+ 𝜓8𝑊!#8 +⋯)(𝜓*𝑊!67 + 𝜓"𝑊!67#" +⋯)]

= 𝜎% 𝜓*𝜓7 + 𝜓"𝜓76" + 𝜓%𝜓76% +⋯

= 𝜎%@
()*

+

𝜓(𝜓(67 for ℎ ≥ 0



Example: MA(q) process

𝑋! = 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#& = 𝜃 𝐵 𝑊!

𝛾 ℎ = 𝜎%@
()*

&#7

𝜃(𝜃(67

0

for ℎ ≤ 𝑞

for ℎ > 𝑞

The autocorrelation function (ACF) of an MA(q) model is

The autocovariance:

𝜌 ℎ =
𝛾 ℎ
𝛾 0 =

∑()*
&#7 𝜃(𝜃(67

1 + 𝜃"% +⋯+ 𝜃&%

0

for ℎ ≤ 𝑞

for ℎ > 𝑞

The ACF will be zero for lags greater than 𝑞. Thus, the ACF provides
information about the order of the dependence for a MA model.



ARMA(p,q) process

𝜙 𝐵 𝑋! = 𝜃 𝐵 𝑊!

Method 1. Write causal ARMA as 𝑋! = 𝜓 𝐵 𝑊!, then use the above result for 𝛾(ℎ). 

Method 2. 

𝑋! − 𝜙"𝑋!#" −⋯− 𝜙$𝑋!#$ = 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#&

𝜙(𝐵)𝑋! = 𝜃(𝐵)𝑊!

So

𝐸 𝑋! − 𝜙"𝑋!#" −⋯− 𝜙$𝑋!#$ 𝑋!#7 = 𝐸 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#& 𝑋!#7

So, 𝛾 ℎ − 𝜙"𝛾 ℎ − 1 −⋯− 𝜙$𝛾 ℎ − 𝑝 = 𝜎%@
()*

&#7

𝜃76(𝜓(

This is a linear difference equation.

q Autocovariance functions 



q Homogeneous linear difference equations.

Homogeneous linear difference equations of order 𝑘:

𝑎*𝑥! + 𝑎"𝑥!#" +⋯+ 𝑎.𝑥!#. = 0

Equivalently, 

𝑎* + 𝑎"𝐵 +⋯+ 𝑎.𝐵. 𝑥! = 0 or   𝑎 𝐵 𝑥! = 0

auxiliary equation: 𝑎* + 𝑎"𝑧 + ⋯+ 𝑎.𝑧. = 0

𝑧 − 𝑧" 𝑧 − 𝑧% ⋯ 𝑧 − 𝑧. = 0

The roots of this characteristic polynomial are 𝑧0 ∈ ℂ.

𝐵 − 𝑧" 𝐵 − 𝑧% ⋯ 𝐵 − 𝑧. 𝑥! = 0

So, 𝐵 − 𝑧" 𝑥! = 0



1. The 𝑧0 are real and distinct.

2. The 𝑧0 are complex and distinct.

3. Some 𝑧0 are repeated.

Three cases:

1. The 𝒛𝒊 are real and distinct.

𝑥! = 𝑐"𝑧"#! + 𝑐%𝑧%#! +⋯+ 𝑐.𝑧.#!

𝑥! = 𝑐"𝑧"#! + 𝑐%𝑧%#!

𝑧" = 1.2, 𝑧% = −1.3

Example: 



2. The 𝒛𝒊 are complex and distinct.

𝑥! = 𝑐"𝑧"#! + 𝑐%𝑧%#! +⋯+ 𝑐.𝑧.#!

Suppose 𝑧", then there is a complex conjugate root 𝑧( = c𝑧"

For example, 

𝑥! = 𝑐"𝑧"#! + 𝑐"𝑧"
#! = 2𝑟 𝑧" #! cos(𝜔𝑡 − 𝛼)

Here 𝑧" = 𝑧" 𝑒0: and 𝑐" = 𝑟𝑒0;



𝑧" = 1 + 0.1𝑖, 𝑧% = 1 − 0.1𝑖 𝑧" = 1.2 + 𝑖, 𝑧% = 1.2 − 𝑖

Examples: 𝑥! = 𝑐"𝑧"#! + 𝑐"𝑧"
#!



3. Some 𝒛𝒊 are repeated.

𝐵 − 𝑧" <𝑥! = 0

Check 𝑐" + 𝑐%𝑡 + ⋯+ 𝑐<#"𝑡<#" 𝑧"#! is a solution

Example 𝑧" = 𝑧% = 1.5.

𝑐" + 𝑐%𝑡 𝑧"#!



Find Autocovariance functions of ARMA processes

1 + 0.25𝐵% 𝑋! = 1 + 0.2𝐵 𝑊! ⟺ 𝑋! = 𝜓 𝐵 𝑊!





We determine 𝑐", 𝜃 from the initial conditions:



One way to remove linear connections is through linear regression.

Let i𝑥!67 denote the regression of 𝑥!67 on {𝑥!67#", 𝑥!67#%, … , 𝑥!6"}

i𝑥!67 = 𝛽"𝑥!67#" + 𝛽%𝑥!67#% +⋯+ 𝛽7#"𝑥!6"

Here we do not include the intercept assuming the mean of 𝑥! is zero. 
Otherwise, replace 𝑥! with 𝑥! − 𝜇=.

Let i𝑥! denote the regression of 𝑥! on {𝑥!6", 𝑥!6%, … , 𝑥!67#"}

i𝑥! = 𝛽"𝑥!6" + 𝛽%𝑥!6% +⋯+ 𝛽7#"𝑥!67#"

Use OLS to estimate the parameters.

Notations: 

𝑋! , 𝑋!6", 𝑋!6%, … , 𝑋!67#", 𝑋!67,



Ø partial autocorrelation function (PACF)

The Partial AutoCorrelation Function (PACF) of a stationary time series 
{𝑋!} is

𝜙77 = 𝐶𝑜𝑜𝑟 𝑋!67 − m𝑋!67 , 𝑋! − m𝑋! for ℎ = 2,3,4, …

𝜙"" = 𝐶𝑜𝑜𝑟 𝑋!6", 𝑋! = 𝜌(1)

This 𝜙77 is the correlation between 𝑋* and 𝑋7, which removes the linear effects 
of 𝑋", … , 𝑋7#"

… , 𝑋#", 𝑋*, 𝑋", 𝑋%, … , 𝑋7#", 𝑋7, 𝑋76", …

ACF provides considerable information for MA(q). But for AR(p) and ARMA, 
ACF tells us little information. We will pursuing a similar function like ACF next. 



𝑋! = 𝜙"𝑋!#" +𝑊!

AR(1) model:

Autocorrelation Function (ACF) of AR(1)

𝛾 1 = 𝐶𝑜𝑣 𝑋*, 𝑋" = 𝜙"𝛾(0)

𝛾 2 = 𝐶𝑜𝑣 𝑋*, 𝑋%

= 𝐶𝑜𝑣 𝑋*, 𝜙"𝑋" +𝑊%

= 𝐶𝑜𝑣 𝑋*, 𝜙"%𝑋* + 𝜙"𝑊" +𝑊%

= 𝜙"%𝛾(0)

Clearly, 𝑋* and 𝑋% are correlated through 𝑋".

In the PACF, we remove this dependence by considering the covariance of
the prediction errors of 𝑋%" and 𝑋*"



Partial Autocorrelation Function: AR(1)

Calculate the PACF of a causal AR(1) model: 𝑋! = 𝜙𝑋!#" +𝑊!, with 𝜙 < 1

𝜙"" = 𝑐𝑜𝑟𝑟 𝑋", 𝑋* = 𝜌 1 = 𝜙

𝜙%% = 𝐶𝑜𝑣 𝑋!6% − m𝑋!6% , 𝑋! − m𝑋! = 0

Suppose regression m𝑋!6% = 𝛽𝑋!6"

We choose 𝛽 to minimize 

𝐸 𝑋!6% − 𝛽𝑋!6" % = 𝛾' 0 − 2𝛽𝛾' 1 + 𝛽%𝛾' 0

So, 𝛽 = 𝜙. Similarly for the regression m𝑋! = 𝛼𝑋!6"

Then



In general, for a causal AR(p) model

𝑋7 = 𝜙"𝑋7#" +⋯+ 𝜙$𝑋7#$ +𝑊7

Thus, when ℎ > 𝑝, by causality,

𝜙77 = 𝐶𝑜𝑜𝑟 𝑋7 − m𝑋7 , 𝑋* − m𝑋* = p
𝜙7 𝑖𝑓 1 ≤ ℎ ≤ 𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The regression of 𝑋7 on 𝑋7#", … , 𝑋" is   

m𝑋7 = 𝜙"𝑋7#" +⋯+ 𝜙$𝑋7#$

Partial Autocorrelation Function: AR(p)



ACF and PACF of AR(1)
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PACF of an invertible MA(q)

𝑋! = 𝑊! + 𝜃"𝑊!#" +⋯+ 𝜃&𝑊!#& = 𝜃 𝐵 𝑊!

𝑋! = −@
0)"

+

𝜋0𝑋!#0 +𝑊!

m𝑋86" = 𝑃 𝑋86" 𝑋", … , 𝑋8)

= 𝑃 −@
0)"

+

𝜋0𝑋86"#0 +𝑊86" | 𝑋", … , 𝑋8

= −@
0)"

+

𝜋0 𝑃(𝑋86"#0 𝑋", … , 𝑋8

= −@
0)"

8

𝜋0𝑋86"#0 − @
0)86"

+

𝜋0 𝑃(𝑋86"#0 𝑋", … , 𝑋8

In general, 𝜙77 ≠ 0



ACF and PACF of MA(1)

ACF PACF
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Sample PACF

For a realization 𝑥", . . . , 𝑥8 of a time series, the sample PACF is defined by

m𝜙** = 1

m𝜙77 = 𝑙𝑎𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 m𝜙7

where m𝜙7 = mΓ7#" i𝛾7



• The ACF of MA(q) model cuts off after lag q. The PACF of an AR(p) 

model cuts off after lag p.
• Identification of an MA(q) model is best done with ACF; identification of 

an AR(p) model is best done with PACF.
• The PACF between 𝑥! and  𝑥!#7 is the correlation between 𝑥! − i𝑥! and  
𝑥!#7 − ix?#@. Think of it as taking the correlation between the residuals 

from two regression models. The dependence on all intermediate 
variables is removed.

Summary



ACF and PACF of Causal AR and Invertible MA

Fish Population Example. This time series contains data on fish population in 
the central Pacific Ocean. The numbers represent the number of new fish in the 
years 1950-1987. 

Question: Based on the ACF and PACF plots, what process do you think is most
likely to describe this time series?
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• "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer. 

Sections 3.1-3.3



https://www.mathworks.com/help/econ/box-jenkins-model-selection.html

Select ARIMA Model for Time Series:

https://www.mathworks.com/help/econ/box-jenkins-model-selection.html

