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Thus far, we have assumed stationary ARMA models. 

We next consider ARIMA models, which basically consider differences of the
observations to coerce stationarity. We then see how to go about building an 

ARIMA model using techniques we've looked at previously (and some new ones). 

These techniques are namely:

• exploratory data analysis (plots, transformations, identifying potential models), 
• model estimation, 

• model diagnostics, and 
• Model selection.

Motivation



Recall when we discussed exploratory data analysis and smoothing
that we sometimes began with a model such as

𝑋! = 𝜇! + 𝑌!

where  𝜇! was a non-stationary component (trend) and 𝑌! was a
stationary zero-mean process.

Integrated Models for Nonstationary Data

If we assume 𝜇! was of the form 𝛽" + 𝛽#𝑡, then the differencing yields

∇𝑋!= 𝛽# + ∇𝑌!

which is a stationary time series.

In general if 𝜇! is a polynomial in 𝑡, such as  𝜇" + 𝜇#𝑡 + ⋯ + 𝜇$𝑡$ , then

∇$𝑋! = 𝑑! 𝛽$ + ∇$𝑌!



Definition: A process is ARIMA(p, 𝑑, 𝑞) if 

∇$𝑋! = 1 − 𝐵 $𝑋!

is ARMA 𝑝, 𝑞 .

Note: ARIMA models are sometimes called Box-Jenkins models.

Example: Recall the random walk: 𝑋! = 𝑋!%# +𝑊!

𝑋! is not stationary, but 𝑌! = 1 − 𝐵 𝑋! = 𝑊! is a stationary process. In this 
case, it is white, so {𝑋!} is an ARIMA(0,1,0).

Also, if 𝑋! contains a trend component plus a stationary process, its first 
difference is stationary.



If the mean of ∇$𝑋! is zero then we can write the ARIMA model as

𝜙 𝐵 1 − 𝐵 $𝑋! = 𝜃 𝐵 𝑊!

If a mean does exist then we can write

𝜙 𝐵 1 − 𝐵 $𝑋! = 𝛼 + 𝜃 𝐵 𝑊!

where 𝛼 = 𝜇(1 − 𝜙# −⋯− 𝜙&)



We usually use a  first difference to account for a linear trend in the data. A 
second difference may be used to account for a quadratic trend in the data.

Recall that differencing can sometimes introduce more dependence in the 
data. Let's assume that our data has the following model

𝑋! = 𝛽" + 𝛽#𝑡 + 𝑌!

where 𝑌! = 𝜙#𝑌!%# + 𝜙'𝑌!%' +𝑊!

Consider ∇𝑋! = 𝛽# + ∇𝑌!

Denote ∇𝑌! = 𝑍!, we have 

𝑍! = 𝜙#𝑍!%# + 𝜙'𝑍!%' +𝑊! −𝑊!%#

which is ARMA(2,1). Notice that the original noise term 𝑌! is an AR(2).

ARIMA models example



ARIMA models example

Suppose {𝑋!} is an ARIMA(0,1,1): 

𝑋! = 𝑋!%# +𝑊! − 𝜃#𝑊!%#

If 𝜃# < 1, then we can show

𝑋! =A
()#

*

1 − 𝜃# 𝜃#
(%# 𝑋!%( +𝑊!

So, 
B𝑋+,# =A

()#

*

1 − 𝜃# 𝜃#
(%# 𝑋+,#%(

= 1 − 𝜃# 𝑋+ +A
()'

*

1 − 𝜃# 𝜃#
(%# 𝑋+,#%(

= 1 − 𝜃# 𝑋+ + 𝜃# B𝑋+

Exponentially weighted moving average.



q Building ARIMA models

We'll explore some techniques for identifying and estimating non-seasonal 
ARIMA models, as well as how to analyze the residuals after a model is 
estimated. Recall that ARIMA models are specified as ARIMA(𝑝, 𝑑, 𝑞).

1. Exploratory data analysis (Plot the time series and look for 

trends, seasonal components, step changes, outliers.) 
2. Nonlinearly transform data, if necessary. 

3. Identify preliminary values of d, p, and q.
4. Estimate parameters.
5. Use diagnostics to confirm residuals are white/iid/normal.

6. Model selection.

The main steps in building an ARIMA model are



Exploratory Data Analysis

We typically look at

• the time series plot,
• the ACF,

• and the PACF
of the data. This step guides us to our choice for the elements of
the ARIMA model, p; d; q.



We usually check for stationarity in a time series plot. Recall for stationarity, 

the plot should suggest the mean and the variance are constant. What we look 
out for in a time series plot:

• Trend (increasing, decreasing, quadratic).
• Increasing variability.
• Seasonality (discuss next).

• Outliers.

We usually try to stabilize the variance first. If the variance appears to be 
increasing, we can try transforming the data, usually a log transform.

If there's a linear trend, we consider a  first difference. A quadratic trend 
suggests a second difference. We rarely go beyond d = 2, unless there is a 
contextual or scientific reason to do so.

Over-differencing can introduce unnecessary dependency in the model. 
Smoothing techniques may be used, where we analyze the smoothed data 
instead.

Exploratory Data Analysis: Time series plot



For identifying preliminary values of d, a time plot can also help.
Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

Exploratory Data Analysis: ACF and PACF

Trends lead to slowly decaying sample ACF



For identifying p, q, look at sample ACF, PACF of 1 − 𝐵 $𝑋!

The ACF and PACF should be used together. Recall that

• AR(p) models have theoretical PACF with non-zero values for ℎ ≤ 𝑝, and 
zero values for ℎ > 𝑝. The ACF should decay exponentially to zero.

• MA(q) models have theoretical ACF with non-zero values for ℎ ≤ 𝑝, and 
zero values for ℎ > 𝑞. The PACF should decay exponentially to zero.

• ARMA(p,q) models have ACF and PACF that both decay exponentially 

to zero. The order will not be obvious. In such a case, we may just start 
o  with 𝑝; 𝑞 = 1 𝑜𝑟 2, and see what happens during model estimation 

and diagnostics.



• If the ACF and PACF decay slowly (do not decay exponentially), then the 

time series is likely to be not stationary (was differencing performed 
earlier?).

• If all the autocorrelations are insignificant for ℎ ≥ 1, than the series is 
(possibly-shifted) white noise.

• If all the autocorrelations are insignificant for  ℎ ≥ 1 for a  first difference, 

then we may have a random walk. 



Model Estimation

After exploratory data analysis, you should have an idea (or ideas)
about the values of p; d; q. 

We use computer software (e.g. MATLAB , R, Python,) to estimate the 
parameters. Maximum likelihood estimation is usually used.

For the estimated coefficients of the parameters, use the t-statistic to 
show the significance of the estimates. 



Model Diagnostics

For model diagnostics, we usually check the following:

• ACF of residuals.
• Ljung-Box-Pierce statistic.

• Plot of residuals against  fitted values or time series of residuals.

If our model diagnostics are acceptable, we expect our residuals to behave 
like white noise. If something appears unreasonable, you might have to 
revise your thought at what the model might be.

If you have a good model, all estimated ACFs of residuals should
be insignificant. If this isn't the case, you probably need to explore a 
different model.

1. ACF of residuals.



Recall that for white noise, the sample autocorrelations are approximately 
independent and normally distributed with mean 0 and variance #

-
. 

The Ljung-Box-Pierce Q-statistic takes into account the magnitudes of the 
sample autocorrelations as a whole.

The Ljung-Box-Pierce statistic is a function of accumulated sample
autocorrelations, K𝜌(ℎ), up to a specified time lag H. The Ljung-Box-
Pierce Q-statistic is given by 

𝑄 𝐻 = 𝑛 𝑛 + 2 A
.)#

/
K𝜌 ℎ '

𝑛 − ℎ

The choice of H is somewhat arbitrary. E.g. H = 20.

Under the null hypothesis that the model  fits the data adequately,
𝑄 ∼ 𝜒/%&%0' as n large. A large Q-statistic leads to the rejection of the null 
hypothesis, i.e. model is not an adequate  fit for the data.

2. Ljung-Box-Pierce Statistic:



3. Residual Plot

Using either a plot of residuals against  fitted values, or a time series plot 
of the residuals, we check if the variance is constant. If the variance is 
not constant, you may need to transform the data.



Model Selection

Sometimes you may have more than one set of values for 𝑝; 𝑑; 𝑞 from 

exploratory data analysis. To be thorough, you may want to investigate the 
model estimation and diagnostics for more than one model. If model 

diagnostics suggest more than one model works, here are some issues to 
keep in mind when comparing models:

• Simpler model.
• Standard errors of forecasts.

• AIC, AICc, BIC etc. 

Two different ARIMA models can be nearly equivalent when converted to 
an infinite order MA model using the causal representation.



So far, we've avoided seasonal data. The ARIMA models that
we've discussed do not account for seasonality. However, we may
wish to have a model for monthly observations which depends on
both the previous month and the same month one year ago.
SARMA models will allow us to do that.

q Seasonal ARMA models for seasonal time series.

We can write the pure seasonal ARMA model, ARMA(P;Q)s , using 
backshift operators in the following way.

Φ1 𝐵2 𝑋! = Θ3 𝐵2 𝑊!

Φ1 𝐵2 = 1 − Φ#𝐵2 −Φ'𝐵'2 −⋯−Φ1𝐵12 seasonal autoregressive operator

Θ3 𝐵2 = 1 + Θ#𝐵2 + Θ'𝐵'2 +⋯+ Θ3𝐵32 seasonal moving average operator.

where



It is causal iff the roots of Φ1 𝑧2 are outside the unit circle.

It is invertible iff the roots of Θ3 𝑧2 are outside the unit circle

Example: Suppose you have quarterly data and want to think about an
𝐴𝑅𝑀𝐴 1, 1 4. This would be

1 − Φ#𝐵4 𝑋! = 1 + Θ#𝐵4 𝑊!

or 𝑋! = Φ#𝑋!%4 +𝑊! + Θ#𝑊!,4

This is essentially an ARMA model, except lags between zero and four 
are omitted.



Let's consider monthly data and look at a seasonal MA(1). The
model would be written as



ACF and PACF of Pure seasonal ARMA Models

When looking at ACF and PACF plots, we are going to use the same 
criteria as before but look only at the lags that are a multiple of the 
period. 

A pure seasonal MA(1) should have a significant value for the ACF at 
the lag of the period and roughly zero otherwise. A pure seasonal AR(1) 
should tail off exponentially at the lag of the period and be roughly zero 
otherwise.

The PACF of a pure seasonal MA(1) should decay exponentially at
multiples of the period and be zero otherwise. The PACF of a pure
seasonal AR(1) should cut off after the lag of one period and should be 
zero for all other values. 

For 𝐴𝑅𝑀𝐴 𝑃;𝑄 2 , both ACF and PACF tail off exponentially at multiples 
of the period.



The ACF and PACF for a seasonal 𝐴𝑅𝑀𝐴 𝑃, 𝑄 2 are zero for ℎ ≠ 𝑠𝑖. For
ℎ = 𝑠𝑖, they are analogous to the patterns for ARMA(p,q):

ACF and PACF for Seasonal ARMA
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Multiplicative Seasonal ARMA Models

We can also combine the seasonal aspects and the regular ARMA models to 
get multiplicative seasonal autoregressive moving average models denoted 
𝐴𝑅𝑀𝐴 𝑝; 𝑞 × 𝑃;𝑄 2 . We may write the model as 

Φ1 𝐵2 𝜙(𝐵)𝑋! = Θ3 𝐵2 𝜃(𝐵)𝑊!

For the multiplicative models, we should expect to see a mix of patterns 
that we observe in non-seasonal and pure seasonal ARMA models.
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The pure seasonal ARMA model, and the multiplicative seasonal ARMA 
model assumed stationarity. We can also consider non-stationarity and 
apply differencing to the non-seasonal and seasonal components. 

Consider the following time series:

Seasonal Trend

𝑋! = 𝑆! + 𝑌!

where Y! is stationary and 𝑆! is a seasonal trend.

Since 𝑆! is a seasonal trend, we have

where 𝑠 is the length of the period. For example, for monthly data,
a reasonable choice of 𝑠 = 12. For quarterly data, 𝑠 = 4.

𝑆! = 𝑆!%2 = 𝑆!,2

How can we get rid of this trend? In the past, we've done a number of things 
namely regression, smoothing, and differencing.



In many settings with seasonal data, shorter-term components may 
contribute to the model. For example, in monthly sales of ice cream, sales 
in the previous month (or two), together with sales from the same month a 
year ago, may help predict future sales.

If a linear trend is also present in the data (along with seasonality),
we will probably also need a non-seasonal difference. Therefore, a
non-seasonal and seasonal difference will be applied. We end up
analyzing

SARIMA Model

1 − 𝐵#' 1 − 𝐵 𝑋! =



This type of differencing leads us to the definition of the full SARIMA 
model which we denote by

ARIMA(p; d; q) ×(P;D;Q)2

The model is 
Φ1 𝐵2 𝜙 𝐵 ∇25∇$ 𝑋! = 𝛼 + Θ3 𝐵2 𝜃(𝐵)𝑊!

where the seasonal difference operator of order 𝐷 is defined by

∇25 𝑋! = 1 − 𝐵2 5𝑋!

∇$ 𝑋! = 1 − 𝐵 $𝑋!

𝛼 = 𝜇 1 − 𝜙# −⋯− 𝜙& (1 − Φ# −⋯−Φ1)

SARIMA Model



Just like how we built ARIMA models, the main steps in building 

SARIMA models consist of the following:
• Exploratory data analysis.

• Model estimation.
• Model diagnostics.
• Model selection. 

Building SARIMA Models



We typically look at
• the time series plot,
• the ACF,
• and the PACF

of the data. This step guides us to our choice for the elements of
the SARIMA model, 𝑝; 𝑑; 𝑞; 𝑃; 𝐷; 𝑄; 𝑠.

Exploratory data analysis.



• "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer. 

Sections 3.6, 3.7.



https://www.mathworks.com/help/econ/box-jenkins-model-selection.html

Select ARIMA Model for Time Series:

https://www.mathworks.com/help/econ/box-jenkins-model-selection.html

