
MATH 7339 - Machine Learning and Statistical Learning Theory 2

Section: Continuous Latent Variables

1. Review PCA

2. Kernel PCA

3. Probabilistic PCA

4. Factor Analysis

5. ICA

Data 𝒟 = �⃗� ! , 𝑦 ! | 𝑖 = 1, … , 𝑁 = 𝑋, �⃗�

�⃗� ! ∈ ℝ"

Dimensional Reduction is the process of combining high dimensional
information ℝ" into low dimensional representations ℝ#. Low dimensional
representations can be computationally easier to work with, while hopefully
throwing away only extraneous information.

There are two main techniques in dimensional reduction:
1.projection onto linear subspaces and
2. manifold learning.

Dimensional Reduction

In projection onto linear subspaces, we try to discover the linear combination
of features the provide the clearest coordinate system for the dataset, i.e. the
component factors.

PCA projection: ℝ$ → ℝ%.

In manifold learning, we try to  fit a more complicated manifold to the underlying
data.

(a) The original 3D surface. (b) The data points
sampled from (a). The Euclidean distance
indicated by dash line between the circled points
cannot represent the distance lying on the
potential structure. (c) The distance measured in
the learned low-dimensional can more accurately
model the data.

If we knew lower dimensional surface 𝑆 and could work in it (e.g., regression,
classification, etc.) then possibly avoid curse of dimensionality, i.e., if 𝑘 ≪
𝑑 gives much lower dimension.

Challenges:

(a) Don't know 𝑆
(b) Must learn from finite dataset 𝒟 = �⃗� ! | 𝑖 = 1, …𝑁
(c) �⃗� ! may live "near" but not "on" the subspace or manifold

This section ill discuss:
• PCA / Factor Analysis
• Kernel PCA
• ICA (Independent Component Analysis)

Other (additional topics not discussed)
• ISOMAP (Tenenbaum and Langford, Stanford) [algorithm for manifold finding]
• Local linear embedding (Saul) Work of Beylkin, Nagoya, Donoho
• MDS (multidimensional scaling) linear embeddings under possibly
• non-Eucidean distributions

Ø Review of Principal Component Analysis (PCA)

Data matrix 𝑋, is a 𝑁×𝑑 matrix, with 𝑛 data points and dimension 𝑑. (Suppose the
mean (center) of 𝑋 is zero.)

Goal: find a 𝑁×𝑘 matrix 𝑍 with 𝑛 data points and in dimension 𝑘.

The sample covariance matrix for �⃗� is

𝐶𝑜𝑣 𝑋 =
1

𝑁 − 1𝑋
&𝑋

Denote 𝐴 = 𝑋&𝑋. It is called Gram matrix
Suppose 𝑟𝑎𝑛𝑘 𝐴 = 𝑟𝑎𝑛𝑘 𝑋 = 𝑝, it has the following properites:

• 𝐴 is a 𝑑×𝑑 symmetric matrix.
• 𝐴 is positive semidefinite, with eigenvalues 𝜆' ≥ 𝜆% ≥ ⋯ ≥ 𝜆(> 𝜆()' = ⋯ = 𝜆" = 0
• 𝐴 = 𝑉𝐷𝑉*' = 𝑉𝐷𝑉& orthogonally diagonalizable. (Spectral decomposition)

𝐷 =

𝜆' 0 ⋯ 0
0 𝜆% 0 0
⋮
0

0
0

⋱
0

0
𝜆"

𝑉 = �⃗�' ⋯ �⃗�" is orthogonal matrix

Or 𝐶𝑜𝑣 𝑋 = '
+
𝑋&𝑋

Use estimated means Use known means

q Singular value decomposition of X

𝑋 = 𝑈Σ𝑉& = 𝜎'𝑢'�⃗�'& + 𝜎%𝑢%�⃗�%& +⋯+ 𝜎(𝑢(�⃗�(&

From the spectral decomposition of 𝑋&𝑋 = 𝑉𝐷𝑉& , we can solve the following

𝑁×𝑑 𝑁×𝑑 𝑑×𝑑𝑁×𝑁

𝑉 = �⃗�' ⋯ �⃗�" is orthogonal matrix

Σ =
𝜎' 0 ⋯ 0
0 ⋱ 0 0
⋮
0

0
0

𝜎(
0

0
0 +×"

Here 𝜎! = 𝜆! are called singular values.
So 𝜎' ≥ 𝜎% ≥ ⋯ ≥ 𝜎(

𝑈 = 𝑢'⋯𝑢(𝑢()'⋯𝑢+ is orthogonal matrix

where 𝑢! ≔
𝑋�⃗�!
𝑋�⃗�!

=
𝑋�⃗�!
𝜎!

for 𝑖 = 1, … , 𝑝. And, {𝑢()'⋯𝑢+} basis of im 𝑋 -

𝑋�⃗�! = 0 for 𝑖 = 𝑝 + 1,… , 𝑑

𝑋 = S𝑈TΣ𝑉& = 𝜎'𝑢'�⃗�'& + 𝜎%𝑢%�⃗�%& +⋯+ 𝜎(𝑢(�⃗�(&

Some times, people use a truncated version of SVD:

𝑁×𝑑 𝑑×𝑑 𝑑×𝑑𝑁×𝑑

Here S𝑈 = 𝑢'⋯𝑢" TΣ =
𝜎' 0 ⋯ 0
0 ⋱ 0 0
⋮
0

0
0

𝜎(
0

0
0 "×"

• The 𝒌-th truncation of data matrix 𝑋

𝑋#: = 𝜎'𝑢'�⃗�'& + 𝜎%𝑢%�⃗�%& +⋯+ 𝜎#𝑢#�⃗�#&

for 𝑘 = 1,… , 𝑝.

𝑋 = 𝑈Σ𝑉& = 𝜎'𝑢'�⃗�'& + 𝜎%𝑢%�⃗�%& +⋯+ 𝜎(𝑢(�⃗�(&

Graph Explanation of SVD:

𝑋 =
𝑉&

𝑈 Σ

𝑋 = 𝑈Σ𝑉& = 𝜎'𝑢'�⃗�'& + 𝜎%𝑢%�⃗�%& +⋯+ 𝜎(𝑢(�⃗�(&

𝑋 = +⋯+

q Principal Components

Definition: The unit vectors �⃗�! in matrix 𝑉 is called the 𝒊-th principal components of
the data 𝑋.

• The vectors �⃗�', … , �⃗�" form an orthonormal basis (coordinate system) for the
feature space ℝ".

• Define the new features 𝒛 ∈ ℝ𝒅:

�⃗� = 𝑉𝑧 = 𝑧'�⃗�' +⋯+ 𝑧"�⃗�"𝑧 ≔
𝑧'
⋮
𝑧"

So, 𝑧 is the coordinate of �⃗� under the basis �⃗�', … , �⃗�".

𝑧 = 𝑉*'�⃗� = 𝑉&�⃗�

𝑧! is called the 𝒊-th principal component coordinate.

The map from feature �⃗� ∈ ℝ" to new feature 𝑧 ∈ ℝ" is a linear (orthogonal)
transformation

ℝ" → ℝ"

�⃗� → 𝑧 = 𝑉&�⃗�

4 1. GEOMETRY OF PCA AND MDS

Figure 1. Principal Component Analysis as the best a�ne sub-
space approximation of data.

Plug in the expression of µ̂n and �i

I =
nX

i=1

kxi � µ̂n � UUT (xi � µ̂n)k2(2)

=
nX

i=1

kxi � µ̂n � Pk(xi � µ̂n)k2(3)

=
nX

i=1

kyi � Pk(yi)k
2, yi := xi � µ̂n(4)

(5)

where Pk = UUT is a projection operator satisfying the idempotent property P 2
k =

Pk.
Denote Y = [y1|y2| · · · |yn] 2 Rp⇥n, whence the original problem turns into

min
U

nX

i=1

kyi � Pk(yi)k
2 = min trace[(Y � PkY)T (Y � PkY)]

= min trace[Y T (I � Pk)(I � Pk)Y]

= min trace[Y Y T (I � Pk)
2]

= min trace[Y Y T (I � Pk)]

= min[trace(Y Y T) � trace(Y Y TUUT)]

= min[trace(Y Y T) � trace(UTY Y TU)].

Above we use cyclic property of trace and idempotent property of projection.
Since Y does not depend on U , the problem above is equivalent to

(6) max
UUT=Ik

Var(UTY) = max
UUT=Ik

1

n
trace(UTY Y TU) = max

UUT=Ik
trace(UT ⌃̂nU)

4

1. G
EOM

ETRY
OF

PCA
AND

M
DS

F
ig
u
r
e
1. Principal Component Analysis as the best a�ne sub-

space approximation
of data.

Plug in
the expression

of µ̂
n and

�
i

I
= nX

i=1
kx

i �
µ̂
n

�
UU T

(x
i �

µ̂
n)k 2

(2)

= nX

i=1
kx

i �
µ̂
n

�
P
k (x

i �
µ̂
n)k 2

(3)

= nX

i=1
ky

i �
P
k (y

i)k 2
,

y
i :=

x
i �

µ̂
n

(4)

(5)
where P

k =
UU T

is a projection operator satisfying the idempotent property P 2
k =

P
k .

Denote Y
=

[y
1 |y

2 | · · · |y
n] 2 R p⇥

n
, whence the original problem

turns into

minU
nX

i=1
ky

i �
P
k (y

i)k 2

=
min trace[(Y

�
P
k Y) T

(Y
�

P
k Y)]

=
min trace[Y T

(I
�

P
k)(I

�
P
k)Y]

=
min trace[Y Y T

(I
�

P
k) 2

]

=
min trace[Y Y T

(I
�

P
k)]

=
min[trace(Y Y T

)
�

trace(Y Y T
UU T

)]

=
min[trace(Y Y T

)
�

trace(U T
Y Y T

U)].

Above we use cyclic property of trace and
idempotent property of projection.

Since Y
does not depend

on
U , the problem

above is equivalent to

(6)

max
U
U T

=I
k

Var(U T
Y) =

max
U
U T

=I
k

1
n trace(U T

Y Y T
U) =

max
U
U T

=I
k

trace(U T
⌃̂
nU)

𝑍 = 𝑋𝑉

𝑁×𝑑 𝑁×𝑑 𝑑×𝑑

• Define the new data matrix:

• The sample covariance matrix for 𝑧 is

𝐶𝑜𝑣 𝑍 =
1

𝑁 − 1𝑍
&𝑍 = ⋯ =

1
𝑁 − 1

𝜆' 0 ⋯ 0
0 𝜆% 0 0
⋮
0

0
0

⋱
0

0
𝜆"

Each /!
+*'

is the variance of data in direction �⃗�!.

The new features 𝑧! and 𝑧0 has covariance zero.

𝑋 𝑍
V1

=

Since 𝜆' ≥ 𝜆% ≥ ⋯ ≥ 𝜆(, we can truncate the new data matrix 𝑍 as a 𝑁×𝑘
truncated matrix 𝑍# (which is the first 𝑘 columns of 𝑍) but preserve most of the
variance.

𝑉# = [�⃗�'⋯�⃗�#] is the first 𝑘 columns of 𝑉.

Now, 𝑘 =rank 𝑍# << rank 𝑋 = 𝑝. But data matrix 𝑍# is in dimension 𝑘 feature
space ℝ#, with far fewer parameters.

𝑍# ≔ 𝑋𝑉#

𝑍# 𝑋
𝑉#

=

𝑁×𝑘 𝑁×𝑑 𝑑×𝑘

PCA projection

𝐶𝑜𝑣 𝑍# =
1

𝑁 − 1𝑍#
&𝑍# = ⋯

=
1

𝑁 − 1

𝜆' 0 ⋯ 0
0 𝜆% 0 0
⋮
0

0
0

⋱
0

0
𝜆#

For the truncated feature 𝑧 ∈ ℝ# and the new data matrix 𝑍#

The truncated PCA projection from feature �⃗� ∈ ℝ" to new truncated feature 𝑧 ∈
ℝ# is a linear transformation

ℝ" → ℝ#

�⃗� → 𝑧 =
𝑧'
⋮
𝑧#

PCA projection: ℝ$ → ℝ%.

𝑋 ≈ 𝑍#

𝑉#&

𝑁×𝑑 𝑁×𝑘 𝑘×𝑑

𝑋 ≈ 𝑍#𝑉#&

latent-variables

latent-factors

𝑋 = 𝑍𝑉&

Approximation to the original data:

Reconstruction of 𝑋

Approximation

4 1. GEOMETRY OF PCA AND MDS

Figure 1. Principal Component Analysis as the best a�ne sub-
space approximation of data.

Plug in the expression of µ̂n and �i

I =
nX

i=1

kxi � µ̂n � UUT (xi � µ̂n)k2(2)

=
nX

i=1

kxi � µ̂n � Pk(xi � µ̂n)k2(3)

=
nX

i=1

kyi � Pk(yi)k
2, yi := xi � µ̂n(4)

(5)

where Pk = UUT is a projection operator satisfying the idempotent property P 2
k =

Pk.
Denote Y = [y1|y2| · · · |yn] 2 Rp⇥n, whence the original problem turns into

min
U

nX

i=1

kyi � Pk(yi)k
2 = min trace[(Y � PkY)T (Y � PkY)]

= min trace[Y T (I � Pk)(I � Pk)Y]

= min trace[Y Y T (I � Pk)
2]

= min trace[Y Y T (I � Pk)]

= min[trace(Y Y T) � trace(Y Y TUUT)]

= min[trace(Y Y T) � trace(UTY Y TU)].

Above we use cyclic property of trace and idempotent property of projection.
Since Y does not depend on U , the problem above is equivalent to

(6) max
UUT=Ik

Var(UTY) = max
UUT=Ik

1

n
trace(UTY Y TU) = max

UUT=Ik
trace(UT ⌃̂nU)

4

1. G
EOM

ETRY
OF

PCA
AND

M
DS

F
ig
u
r
e
1. Principal Component Analysis as the best a�ne sub-

space approximation
of data.

Plug in
the expression

of µ̂
n and

�
i

I
= nX

i=1
kx

i �
µ̂
n

�
UU T

(x
i �

µ̂
n)k 2

(2)

= nX

i=1
kx

i �
µ̂
n

�
P
k (x

i �
µ̂
n)k 2

(3)

= nX

i=1
ky

i �
P
k (y

i)k 2
,

y
i :=

x
i �

µ̂
n

(4)

(5)
where P

k =
UU T

is a projection operator satisfying the idempotent property P 2
k =

P
k .

Denote Y
=

[y
1 |y

2 | · · · |y
n] 2 R p⇥

n
, whence the original problem

turns into

minU
nX

i=1
ky

i �
P
k (y

i)k 2

=
min trace[(Y

�
P
k Y) T

(Y
�

P
k Y)]

=
min trace[Y T

(I
�

P
k)(I

�
P
k)Y]

=
min trace[Y Y T

(I
�

P
k) 2

]

=
min trace[Y Y T

(I
�

P
k)]

=
min[trace(Y Y T

)
�

trace(Y Y T
UU T

)]

=
min[trace(Y Y T

)
�

trace(U T
Y Y T

U)].

Above we use cyclic property of trace and
idempotent property of projection.

Since Y
does not depend

on
U , the problem

above is equivalent to

(6)

max
U
U T

=I
k

Var(U T
Y) =

max
U
U T

=I
k

1
n trace(U T

Y Y T
U) =

max
U
U T

=I
k

trace(U T
⌃̂
nU)

1. Choose latent-factors 𝑉 to minimize error.
2. Choose latent-factors 𝑉 to maximize variance

Fix 𝑘, two classical equivalent interpretations/derivations of PCA
projection: ℝ" → ℝ# :

Minimizing the reconstruction error is a clear goal.
The idea of maximize the projected variance is to keep as much of the
data's structure intact as possible. By maximizing the variance we keep the
data spread out, which keeps distinct points distinct.

1. Choose latent-factors 𝑉 to minimize (reconstruction) error.

argmin
2",4"

𝑋 − 𝑍#𝑉#&
% =d

!5'

+

d
05'

"

𝑥0
! − 𝑍#𝑉#& !0

%

2. Choose latent-factors 𝑉 to maximize variance.

argmax
4"

d
!5'

+

𝑧 ! %
=d

!5'

+

𝑉#�⃗� ! %

= argmin
4"

𝑋 − 𝑋𝑉#𝑉#&
%

= argmax
4"

𝑍# %= argmax
4"

𝑋𝑉# % Here, matrix norm is Frobenius norm

Equivalence comes from the Pythagorean Decomposition.

If we look at one data point 𝑥(!) and look at the

(reconstruction) error from �⃗�(!) to 𝑉#𝑧(!)

Variance of 𝑧(!)

�⃗�(!) − 𝑉#𝑉#&�⃗�(!)
%

𝑧(!) % = 𝑉#&�⃗�(!)
% = 𝑉#𝑉#&�⃗�(!)

%

Here, we assume the mean is zero.

𝑉#𝑉#& is the projection matrix, since 𝑉#&𝑉# = 𝐼 �⃗�(!)

0 𝑉#𝑉#&�⃗�(!)

�⃗�(!) % = �⃗�(!) − 𝑉#𝑉#&�⃗�(!)
% + 𝑉#𝑉#&�⃗�(!)

%

Reason for equivalence of the above two optimizations:

An alternative formulation of PCA matrix:

𝑍 = 𝑋𝑉 = 𝑈ΣV1V = 𝑈Σ

Since S𝑈& S𝑈 = 𝐼" , we also have.

𝑍 = 𝑋𝑉 = XV SΣ S𝑈& S𝑈TΣ*' TΣ*' =

1/𝜎' 0 ⋯ 0
0 ⋱ 0 0
⋮
0

0
0

1/𝜎(
0

0
0 "×"

= 𝑋𝑋& S𝑈TΣ*'

Or we can use

𝑍 = 𝑋𝑉 = XVΣ𝑈&𝑈Σ*'

= 𝑋𝑋&𝑈Σ*' Σ*' =

1/𝜎' 0 ⋯ 0
0 ⋱ 0 0
⋮
0

0
0

1/𝜎(
0

0
0 "×+

Here we use pseudo-inverse.

Here 𝑋𝑋& is the kernel matrix.

Ø Kernel PCA.

𝜙: ℝ" → ℝ8

We can consider PCA in the new high dimensional space ℝ8, by a feature map:

𝜙: ℝ% → ℝ$

𝜙 x =
𝑥'
𝑥%

𝑥'% + 𝑥%%

�⃗� → 𝜙 �⃗� =
𝜙'(�⃗�)
⋮

𝜙8(�⃗�)

Again, we will use kernel trick for the computation.

In construction of PCA, we already have the dual formula for the new data
matrix:

𝑍 = 𝑋𝑋&𝑈Σ*'

Kernel Trick

𝑋𝑋& =
⋮

⋯ �⃗� ! &�⃗� 0 ⋯
⋮

𝑋& = �⃗� ' … �⃗� +
𝑋 =

�⃗� ' &

⋮
�⃗� + &

Here,

So, in the new feature space, points are replaced as

𝐾 �⃗� ! , �⃗� 0 = 𝜙 �⃗� ! &
𝜙(�⃗� 0)

For example, we can use our popular kernels:

Gaussian kernel 𝐾 �⃗�, �⃗� ≔ exp − :⃗*; #

%<#

Polynomial Kernel 𝐾 �⃗�, �⃗� : = �⃗�&�⃗� + 𝑐 =

Sigmoid Kernel 𝐾 �⃗�, �⃗� ≔ tanh(𝜂�⃗�&�⃗� + 𝑐)

The kernel PCA projection matrix is

𝑍 = 𝐾𝑈Σ*' where 𝐾>? ≔ 𝐾 �⃗� ! , �⃗� 0

𝑧@
(!) =d

05'

+
1
𝜎@

𝑢0A 𝐾!0

ℝ" ℝ#ℝ8

𝑋

Feature map PCA projection

Kernel PCA 𝑍 = 𝐾𝑈Σ*'

Representation of �⃗� in PCA coordinate system

Similarly, for each point

𝑧 = 𝑉&�⃗� = Σ*'𝑈&𝑈Σ𝑉&�⃗� = Σ*'𝑈&𝑋�⃗� = Σ*'𝑈&
�⃗� ' &

�⃗�
⋮

�⃗� + &
�⃗�

=

1/𝜎' 0 ⋯ 0
0 ⋱ 0 0
⋮
0

0
0

1/𝜎(
0

0
0 "×+

𝑢'1
⋮
𝑢B1

�⃗� ' &
�⃗�

⋮
�⃗� + &

�⃗�

So, each 𝑧@ =d
05'

+
1
𝜎@

𝑢0A �⃗� 0 &�⃗�

After applying Kernel tricks, we have the Kernel PCA coordinates

𝑧@ =d
05'

+
1
𝜎@

𝑢0A 𝐾(�⃗� 0 , �⃗�)𝑧 = Σ*'𝑈&
𝐾(�⃗� ' , �⃗�)

⋮
𝐾(�⃗� + , �⃗�)

1. Start with our original data 𝑋

2. Apply PCA or Kernel PCA, we have our new data matrix 𝑍

3. Using our new data matrix 𝑍, we can do clustering, regression or

classification. (Need labels �⃗�)

4. After the regression, we can replace back to feature �⃗� in our original

feature space.

How to use (Kernel) PCA:

Ø Sparse principal components

argmax
C 5'

𝑋�⃗� % = argmax
C 5'

𝑋�⃗� &𝑋�⃗� = argmax
C 5'

�⃗�&𝑋&𝑋�⃗�

Sparse principal components is a shrinkage method by solving

The first principal component �⃗�

argmax
C 5'; C $EF

�⃗�&𝑋&𝑋�⃗�

This is a lasso type 𝑙' constraint �⃗� ' = ∑05'" |𝑣0| ≤ 𝑡

The constraint forces some of the components to be zero.

The procedure can be done inductively for PCA and for Sparse PCA,

Given 𝑘 − 1 principal component directions �⃗�', … , �⃗�#*' ∈ ℝ" ,
(orthonormal), the 𝑘-th principal component directions �⃗�# ∈ ℝ" is given
by

�⃗�# ≔ argmax
C 5'

�⃗�&𝑋&𝑋�⃗�

�⃗�!�⃗�" = 0
for 𝑗 = 1,… , 𝑘 − 1

The vector 𝑋�⃗�# ∈ ℝ+ is called the kth principal component score of X

𝜎#: = �⃗�#&𝑋&𝑋�⃗�# is the variance explained by �⃗�#

𝑢# ≔
𝑋�⃗�#
𝜎#

is the normalized k-th principal component score

All these coincide with the SVD 𝑋&𝑋 = 𝑈Σ𝑉&

q Summary of PCA

PCA replaces 𝑋 with a lower-dimensional approximation 𝑍.

Matrix 𝑍 has 𝑁 rows, but typically far fewer columns.

PCA is used for:
• Dimensionality reduction: replace 𝑋 with a lower-dimensional 𝑍.

• Outlier detection: if PCA gives poor approximation of 𝑥(!), could be outlier.

• Basis for linear models: use 𝑍 as features in regression model.

• Data visualization: display 𝑧(!) in a scatterplot.

• Factor discovering: discover important hidden “factors underlying data.

Ø Factor Analysis:

Factor Analysis tries to find low dimensional factors that explain higher
dimensional information. The Factor Analysis model is a classical
statistical model and is essentially a probabilistic version of PCA. It is a
continuous latent variable models.

�⃗�(!) = 𝐴𝑧(!) + 𝜖

where ϵ⃗  is a vector of random variables.

In factor analysis, we try to explain some high dimensional observations
�⃗�(!) ∈ ℝ" in in terms of some lower dimensional observed data 𝑧(!) ∈ ℝ# .
Especially, we want to write

Assume our data �⃗� !
!5'
+ has zero-mean again. (Centered data)

Recall for any matrix 𝑋 have singular value decomposition (SVD):

𝑋 = S𝑈TΣ𝑉&

𝑁×𝑑 𝑑×𝑑 𝑑×𝑑𝑁×𝑑

Orthonormal
columns

Orthonormal
columns

We assume 𝑁 ≥ 𝑑.

Define new matrices: 𝑆 ≔ 𝑁S𝑈 𝐴& ≔
TΣ𝑉&

𝑁

So 𝑋 = 𝑆𝐴&

Note that 𝐴 has orthogonal columns since 𝑉 has orthonormal columns.

This is the matrix relationship between dataset �⃗� !
!5'
+

and transformed dataset 𝑠 !
!5'
+

Recall our data matrix

𝑋 =
�⃗� ' &

⋮
�⃗� + &

=

𝑥'' 𝑥'%
𝑥%' 𝑥%% ⋯

𝑥'"
𝑥%"

⋮ ⋱ ⋮
𝑥+' 𝑥+% ⋯ 𝑥+"

=

𝑥'
(') 𝑥%

(')

𝑥'
(%) 𝑥%

(%) ⋯
𝑥"
(')

𝑥"
(%)

⋮ ⋱ ⋮
𝑥'
(+) 𝑥%

(+) ⋯ 𝑥"
(+)

Each feature vector �⃗�(!) =
𝑥!'
⋮
𝑥!"

is a sample from underlying Random Variable

𝑋 =
𝑋'
⋮
𝑋"

The 𝑗-th column of the matrix 𝑋 is an empirical (estimated) probability
distribution of the underlying Random Variable 𝑋0

In 𝑋 = 𝑆𝐴& , write

𝐴 =

𝑎'' 𝑎'% ⋯ 𝑎'"
𝑎%'
⋮
𝑎"'

𝑎%% ⋯ 𝑎%"
⋮ ⋱ ⋮
𝑎"% ⋯ 𝑎""

𝑆 =

𝑠'' 𝑠'% ⋯ 𝑠'"
𝑠%'
⋮
𝑠+'

𝑠%% ⋯ 𝑠%"
⋮ ⋱ ⋮
𝑠+% ⋯ 𝑠+"

𝑋& = 𝐴𝑆&

Now consider 𝐴 fixed,

We have �⃗�(!) = 𝐴𝑠(!) for 𝑖 = 1,2, … , 𝑁

Now view each 'new' feature vector 𝑠(!) as 'old' feature vector �⃗�(!) in new
coordinates.

This empirical relationship is an approximation of an underlying
relationship between underlying feature vectors

𝑋 =
𝑋'
⋮
𝑋"

and 𝑆 =
𝑆'
⋮
𝑆"

of the form in random variables 𝑋 = 𝐴𝑆

The new coordinate system then has coordinate direction vectors which
are the columns �⃗�! of

𝐴 = [�⃗�' �⃗�% … �⃗�"]

The map ℝ" → ℝ" by 𝑋 = 𝐴𝑆 is a linear transformation from new feature 𝑆 ∈
ℝ" to feature 𝑋 ∈ ℝ" .

The relationship 𝑋 = 𝐴𝑆 is give by

𝑋'
⋮
𝑋"

= �⃗�' �⃗�% … �⃗�"
𝑆'
⋮
𝑆"

= S'�⃗�' + S%�⃗�% +⋯+ 𝑆"�⃗�"

𝐴& ≔
TΣ𝑉&

𝑁
is normalized principal components. (Orthogonal columns)

So, �⃗�! is just multiples of the PCA vectors of �⃗�!, i.e., the same coordinate system.

Here,

From PCA we know therefore that the coordinate values 𝑆! (which are
just multiples of PCA coordinates) are uncorrelated.

Thus we have a new coordinate system in the space of the variables 𝑋,
the the new factor analysis coordinates being 𝑆.

Given a feature vector 𝑋, its factor analysis coordinates 𝑆 represent the
values of the fundamental or latent underlying factors in the data set.

Factor analysis: 𝑋 = 𝐴𝑆 =
1
𝑁
𝑉Σ𝑆

PCA : 𝑋 = 𝑉𝑍 = 𝑉Σ𝑈

So,
𝑈 =

1
𝑁
𝑆

i.e. the PCA and factor analysis coordinates are essentially identical up to a
factor '

+

Note that the 𝑎!0 are called factor loadings, while the 𝑆! are latent variables.

𝑆 = 𝑁𝑈

The components 𝑆! are uncorrelated in the dataset.

The sample(empirical) covariance of 𝑆 is the identity matrix

𝐶𝑜𝑣 𝑆 =
1
𝑁 𝑆

&𝑆 = 𝐼

The data matrix have the relation:

Thus assuming the underlying random variables 𝑆 has covariance

𝐶𝑜𝑣 𝑆 = 𝐼

q Non-uniqueness of factor analysis coordinates

So, there are lots of choices of latent variables.

Suppose 𝑅 is any 𝑑×𝑑 orthogonal matrix.

𝑋 = 𝐴𝑆 = 𝐴𝑅& 𝑅𝑆 = 𝐴∗𝑆∗

In addition:

𝐶𝑜𝑣 𝑆∗ = 𝑅𝐶𝑜𝑣 𝑆 𝑅& = 𝐼

𝐴 has orthogonal columns, i.e., 𝐴&𝐴 is a diagonal matrix.

But 𝐴∗ does not have orthogonal columns. So, the new coordinate 𝑆∗ go
with new coordinate axis �⃗�', … , �⃗�" , that generally crooked (non-
orthogonal).

Factor analysis can’t even identify factor directions, because of the
rotation 𝑅.

q Truncation.

Define new matrices: 𝑆# ≔ 𝑁S𝑈# 𝐴& ≔
TΣ#𝑉#&

𝑁

So 𝑋 ≈ 𝑆#𝐴#
& gives optimal approximation just using 𝑘 eigenvalues.

As in the truncated PCA,

𝑋'
⋮
𝑋"

≈ �⃗�' �⃗�% … �⃗�#
𝑆'
⋮
𝑆#

= S'�⃗�' + S%�⃗�% +⋯+ 𝑆#�⃗�#

𝑁×𝑘 𝑘×𝑑

𝑋 ≈ 𝐴# 𝑆#

As before we have a corresponding relationship for the underlying
random variables:

We assume

𝑋' = 𝑎''𝑆' + 𝑎'%𝑆% +⋯+ 𝑎'#𝑆# + 𝜖'

⋮

𝑋" = 𝑎"'𝑆' + 𝑎"%𝑆% +⋯+ 𝑎"#𝑆# + 𝜖"

where we assume the noise 𝜖! are independent. They are also independent from 𝑆0.

So now we have a truncated factor analysis:

Covariance matrix of the random variable 𝑋 is

𝐶𝑜𝑣 𝑋 = 𝐶𝑜𝑣 𝐴# 𝑆# + 𝐶𝑜𝑣 ϵ⃗ = 𝐴#𝐶𝑜𝑣 𝑆# 𝐴#& + 𝐶𝑜𝑣 𝜖

𝑋 = 𝐴# 𝑆# + ϵ⃗ More precise,

= 𝐴#𝐴#& + 𝐷H

𝐶𝑜𝑣 𝑆# = I 𝐶𝑜𝑣 𝜖 = 𝐷H =

𝑉(𝜖') 0 ⋯ 0
0 𝑉(𝜖%) 0 0
⋮
0

0
0

⋱
0

0
𝑉(𝜖")

The columns of 𝐴 are the factor loadings. 𝑆! are still the latent variables.

But the previous non-uniqueness issue is still a problem.

𝐶𝑜𝑣 𝑋 = 𝐴#𝐴#& + 𝐷H

Ø Independent Components Analysis

Independent component analysis (ICA) is a more recent approach (1984).
Under certain assumptions it can identify factors.

As in PCA/FA, ICA is a matrix factorization method,

𝑋 ≈ 𝑆𝐴&

Assume that 𝑋 = 𝑆𝐴& for a true 𝐴 with 𝑘 = 𝑑. (In PCA, we assume 𝑘 < 𝑑.)

There are 3 issues stopping us from finding “true" 𝐴.

1. Label switching. (Multiply a permutation matrix)
2. Scaling (multiply a diagonal matrix)
3. Rotation. (Multiply a orthogonal matrix) 𝑋 = 𝐴𝑆 = 𝐴𝑅& 𝑅𝑆 = 𝐴∗𝑆∗

We only care about the direction. So, only rotation is a big problem.

We now search for independent as opposed to just uncorrelated
components; this will typically give uniqueness. (In several applications,
the the source signals are independent of each other.)

When we found the principal component variables

𝑆 =
𝑆'
⋮
𝑆"

We rotated the original 𝑋 coordinate system such that 𝐶𝑜𝑣 𝑆 = 𝐼, i.e.,
the 𝑆! are uncorrelated, so 𝐸 𝑆!𝑆0 = 𝐸 𝑆! 𝐸(𝑆0) for 𝑖 ≠ 𝑗.

But, they may not be independent, for example, 𝐸 𝑆!%𝑆0% ≠ 𝐸 𝑆!% 𝐸(𝑆0%)

If we have independence of 𝑆0 , that would determine all cross-moment.

But: if the variables are Gaussian then just the second moments (i.e.
just their correlations) determine them. We still have factor analysis
non-uniqueness problem.

Thus typically need to assume (at least hope, for this algorithm)
that 𝑆0 that are independent and non-Gaussian.

Consider a prior that assumes the 𝑆0 are independent,

𝑝 𝑆 =�
05'

#

𝑝 𝑆0

In PCA and FA, we assume that 𝑆0 is 𝑁(0,1).

If 𝑝 𝑆 is rotation-invariant, 𝑝 𝑅𝑆 = 𝑝 𝑆 , then it must be Gaussian. (why?)

The (non-intuitive) magic behind ICA:
If the priors are all non-Gaussian, it isn't rotationally symmetric.

Implication: we can identify factors 𝐴 if at most 1 factor is Gaussian.
Up to permutation/sign/scaling (other rotations change distribution).

q ICA procedure

Assume the random vector 𝑋 has been pre-whitened, i.e.,

𝑋 → 𝐵𝑋

such that 𝐶𝑜𝑣 𝐵𝑋 = 𝐵 𝐶𝑜𝑣 𝑋 𝐵& = 𝐼. This can be done with SVD.

Thus we are assuming we already have moved to uncorrelated
factors like in 𝑆. We also assume that 𝑋 has mean zero.

Now view all in terms of the underlying random variables 𝑋0

So saying 𝑋 has been pre-whitened is saying it has been replaced by
its factor analysis variable 𝑆, which we know is uncorrelated and has
covariance matrix 𝐼.

q Entropy

If 𝑌 is a random variable, we will for simplicity assume it has a density
function 𝑓(𝑦), and then we define its entropy (uncertainty) as

𝐻 𝑌 ≔ −�𝑓 𝑦 ln 𝑓(𝑦) 𝑑𝑦

If 𝑌 is restricted to interval [𝑎, 𝑏], then 𝑌 has maximum entropy if 𝑌 is
uniform on 𝑎, 𝑏 .

𝑌 has smallest entropy if 𝑌 is a point mass at some (i.e., if 𝑃 𝑌 = 𝑐 =
1, then 𝐻 𝑌 = 0)

Note: Gaussian variables are the ones with maximum entropy,
conditioned on having mean 0 and variance 1.

If 𝑌 =
𝑌'
⋮
𝑌"

, then mutual information of the components of

𝐼 𝑌 := d
!5'

"

𝐻 𝑌! − 𝐻(𝑌)

This is the Kullback-Leibler distance between the joint density 𝑝 �⃗� of 𝑌 and
the product of the marginals (independent version)

�
!5'

"

𝑝I!(𝑦!)

Recall we had an underlying random vector 𝑋 =
𝑋'
⋮
𝑋"

which we pre-

whitened to have uncorrelated components.

This is equivalent to extracting (using factor analysis) a random
vector with uncorrelated components via what we did earlier:

𝑋 = 𝐴𝑆

with 𝑆 having uncorrelated components.

So, 𝑆 = 𝐴*'𝑋 ≡ 𝐵𝑋 in above notation. (We assume 𝐴 is invertible.)

So (as stated above) 𝑋 has been replaced by 𝑆 (we still call it 𝑋) and has
uncorrelated components.

Then any orthogonal transformation 𝐴 will keep the components
uncorrelated.

Goal now: Find orthogonal transformation 𝐴 that makes the (new) components
of 𝑌 = 𝐴&𝑋 the most(maximally) independent.

Still can treat 𝐴 as matrix containing loadings as in factor analysis.

To get most independent components of 𝑌 we want to minimize
mutual information:

𝐼 𝑌 := d
!5'

"

𝐻 𝑌! − 𝐻(𝑌)

= d
!5'

"

𝐻 𝑌! − 𝐻 𝑋 − ln |det(𝐴)|

= d
!5'

"

𝐻 𝑌! − 𝐻 𝑋
since 𝐴 is orthogonal

Thus need to minimize sum of entropies of components:

d
!5'

"

𝐻 𝑌!

The idea: We claim that if there exist any (approximately) independent
component 𝑌! of our feature vectors in some new coordinate system (call
it the 'independent’ coordinate system), then the choice of 𝑌! will form be
the most 'non-Gaussian’ components.

Thus to find the 'independent' coordinate system we should choose
it as the one in which the components are 'least' Gaussian.
Note however that if the independent components are already (too
close to) Gaussian, this will not work.

Define negentropy

𝐽 𝑌! ≔ 𝐻 𝑍! − 𝐻(𝑌!)

where 𝑍! is Gaussian with same mean and variance as 𝑌! .

We want to maximize 𝐽 𝑌! to make 𝑌! far from Gaussian. (Maximization of Non-
Gaussianity.)

FastICA - algorithm which approximates

𝐽 𝑌! ≈ 𝐸 𝐺 𝑌! − 𝐸 𝐺 𝑍!
%

with 𝐺 𝑢 ≔ ln cosh 𝑢 Hyperbolic cosine:

cosh 𝑢 ≔
𝑒: + 𝑒*:

2

q Fast ICA –Another way (algorithm) to construct ICA

Note that for actual datasets �⃗� !
!5'
+ the expectations as integrals are

replaced by sums over the datasets.

[Hyvarinen and Oja, 2000] proved above Approximation. (FastICA)

There are other methods/algorithms to perform ICA:

• Infomax-based ICA was described by Bell and Sejnowski, and Nadal
and Parga in 1995.

• Kernel-independent	component	analysis

• Joint Approximation Diagonalization of Eigen-matrices (JADE)

Lots of applications for each algorithm.

Application: Cocktail Party Problem.

Multiple microphones recording multiple sources. Each microphone gets
different mixture of the sources.

Goal is to reconstruct sources (factors) from the measurements.

Data is 𝑁×2 matrix 𝑋.

Goal: Find 𝑋 = 𝑆𝐴& , or �⃗� = 𝐴𝑠 with loading(mixing matrix) 𝐴.

𝑠 is the latent variable (source vector)

�⃗�𝑠 𝑠𝐴 𝐴*'

Independent,
Non-Gaussian

Source signal:

http://research.ics.aalto.fi/ica/icademo/ICA: A Demo

Up to permutation/scaling/sign (Order of people, voice volume), we
want to find unique 𝐴.

We need to prewhite(sphere) the data first. (Zero Center, Identity Coariance)

Then apply an algorithm to perform ICA (i.e., use FastICA)

To find 𝐴 and source data 𝑆

http://research.ics.aalto.fi/ica/icademo/

https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

Example: ICA on Retail Purchase Data

Cash flow from 5 different stores over 3 years:

https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

Factors found using ICA.
1-2 reflect “holiday season”, 3-4 are year-to-year, and 5 is summer dip in sales.

Example: Handwritten digits [Hastie]

Handwritten 3's – dataset �⃗� !
!5'
JKL

of digitized 3's on a 16 by 16 grid, so

�⃗� ! ∈ ℝ%KJ

Identify first 5 principal components (normalized to have same length and
width -- don't get narrower).

Compare to first 5 independent components:

A comparison of the first five ICA components computed using
FastICA (above diagonal) with the first five PCA components(below
diagonal). Each component is standardized to have unit variance.

Each plot is a two-dimensional projection from a 256-dimensional space.

Note ICA departures from Gaussianity in the independent components.

Example: ElectroEncephaloGraphic (EEG) [Hastie]

15 seconds of EEG output from 9 electrodes turned into feature
vectors; single subject. Get a collection �⃗� !

!5'
= time snapshots of the

nine dimensional signal; thus �⃗� ! ∈ ℝM and 𝑛 = 15×1000 (e.g.
assuming 1000 measurements per second).

Find independent components and their time signatures. This is a
single subject over a single 15 second period, with the original
signals above and the ICA components below:

Feature: Fifteen seconds of EEG data at nine (of 100) scalp channels (top
panel), as well as nine ICA components (lower panel). While nearby
electrodes record nearly identical mixtures of brain and non-brain
activity, ICA components are temporally distinct. The colored scalps
represent the ICA unmixing coefficients 𝑎0 as a heatmap, showing brain or
scalp location of the source.

Note that the above 9 dimensional feature vectors giving the EEG
signatures at each time point can be assumed collected 1000 times per
second for 15 seconds, yielding 15000 feature vectors �⃗� ∈ ℝM.

The top 9 time series are these 9 features before ICA transformation;
The bottom 9 time series are the 9 'independent' features after ICA
transformation.

Note that there are loadings as well for ICA -- the heat map in the
diagram indicates the loadings of the independent components.

More applications: see Wikipedia
https://en.wikipedia.org/wiki/Independent_component_analysis

https://en.wikipedia.org/wiki/Independent_component_analysis

The most common technique for factor analysis is Principle Component
Analysis(PCA).

Factor analysis extends PCA, with different noise in each dimension. It is in
fact so common that "factor analysis" usually means "factor analysis that isn't
PCA.”

PCA v.s. Factor Analysis v.s. ICA

ICA: allows identifying non-Gaussian Latent factors.

PCA v.s. ICA

𝑍 𝑆
PCA tries to find a transformation of a matrix 𝑋 to a new set of latent
variables 𝑍 such that the new latent variables are orthogonal.
ICA finds sources 𝑆 which are independent.

Ø Probabilistic PCA (Generative model approach)

With zero-mean (centered data) �⃗� !
!5'
+

, in PCA, we assume that

�⃗�(!) ≈ 𝑉𝑧(!)

We have discussed two equivalent methods of defining PCA. Choose
latent-factors 𝑉 such that data matrix 𝑋 ≈ 𝑋𝑉𝑉& , or features 𝑍 = 𝑉&𝑋

1. minimize reconstruction error, or equivalently,
2. maximize variance

Now, let us formulate PCA as a generative model and thereby glean
some intuition for why the eigenvectors of the empirical covariance
matrix are good principal components.

There was no noise in the reconstruction error formulation; the error only
stemmed from the fact that we had fewer principal components than
dimensions (𝑘 < 𝑑). Hence, in the generative model, �⃗� would be
deterministic given 𝑧(!) and 𝑉.

In probabilistic PCA we can relax this assumption a bit and add isotropic
Gaussian noise, assume that

�⃗�(!)|𝑧(!)~𝑁(𝑉𝑧 ! , 𝜎%𝐼) and 𝑧 ! ~𝑁(0, 𝐼)

(In general, we can actually use any Gaussian density for 𝑧)

It turns out that in the limit of 𝜎% → 0, the MLE estimate 𝑉 and 𝑧(!)
recovers the classical PCA solution. (Show next)

A different perspective is that these models assume

�⃗�(!) = 𝑉𝑧 ! + 𝜖

such that 𝑧 ! ~𝑁(0, 𝐼) and 𝜖~𝑁(0, 𝜎%𝐼)

We can treat 𝑧(!) as nuisance parameters integrate over them in likelihood,
take the Marginal distribution of the joint distribution:

𝑝 �⃗� ! 𝑉 = �
N⃗(!)

𝑝 �⃗� ! , 𝑧(!) 𝑉 𝑑𝑧(!)

Notice: Marginal of Gaussian is Gaussian. We don’t have to calculate the integral.

From the assumptions we have

𝑝 �⃗�, 𝑧 𝑉 = 𝑝(�⃗�|𝑧, 𝑉) 𝑝 𝑧 𝑉

= 𝑝(�⃗�|𝑧, 𝑉) 𝑝(𝑧)

∝ exp −
�⃗� − 𝑉𝑧 &(�⃗� − 𝑉𝑧)

2𝜎% exp −
𝑧&𝑧
2

= exp −
�⃗� − 𝑉𝑧 &(�⃗� − 𝑉𝑧)

2𝜎%
−
𝑧&𝑧
2

Re-write the exponent as a quadratic form,

𝑝 �⃗�, 𝑧 𝑉 ∝ exp −
1
2
�⃗�& 𝑧&

1
𝜎% 𝐼 −

1
𝜎% 𝑉

−
1
𝜎% 𝑉

& 1
𝜎% 𝑉

&𝑉 + 𝐼

�⃗�
𝑧

So, the covariance matrix of �⃗�, 𝑧 𝑉 is Σ such that

Σ*' =

1
𝜎% 𝐼 −

1
𝜎% 𝑉

−
1
𝜎% 𝑉

& 1
𝜎% 𝑉

&𝑉 + 𝐼

So, Σ = 𝑉𝑉& + 𝜎%𝐼 𝑉
𝑉& 𝐼

which gives that solution to integrating over 𝑧 is �⃗� ! 𝑉 ~ 𝑁(0, 𝑉𝑉& + 𝜎%𝐼)

Negative Log Likelihood of the observed data is

− log 𝑝 𝑋 𝑉 =
𝑁
2
𝑇𝑟 𝑆𝐴 −

𝑁
2
log 𝐴 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

where 𝐴 = 𝑉𝑉& + 𝜎%𝐼 *' and 𝑆 = '
+
𝑋&𝑋 is the sample covariance.

In PCA, we also assume that 𝑉 is a 𝑑×𝑘 matrix with orthonormal columns,
i.e., 𝑉&𝑉 = 𝐼# and 𝑉𝑉& is the 𝑑×𝑑 projection matrix.

𝐴 = 𝑉𝑉& + 𝜎%𝐼 *' =
1
𝜎% 𝐼 −

1
𝜎% 𝜎% + 1 𝑉𝑉&

det 𝑉𝑉& + 𝜎%𝐼 = 1 + 𝜎% O 𝜎% +*O = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

MLE is the same as minimize 𝑇𝑟 𝑆𝐴 , which is the same as maximize

𝑇𝑟 𝑉𝑉&𝑋&𝑋 = 𝑇𝑟 𝑉&𝑋&𝑋𝑉 = 𝑋𝑉 % = data variance

(By linear algebra properties)

It turns out that both PCA and FA can be viewed as special cases of the
generative model described above. In factor analysis, however, we have
the following model:

q Probabilistic Factor Analysis

�⃗�(!)|𝑧(!)~𝑁(𝑉𝑧 ! , 𝐷)

𝑧 ! ~𝑁(0, 𝐼)

where 𝐷 is a diagonal matrix.

The difference with PCA is that you can have a noise variance for each
dimension.

Similarly as Probabilistic PCA calculation, we have

�⃗�(!)|𝑉~𝑁 0, 𝑉𝑉& + 𝐷

Factor Analysis has extra degrees of freedom in variance of individual variables.

Given training data, we can write down the

Negative Log Likelihood of the observed data:

−log 𝑝 𝑋 𝑉 = d
!5'

+
1
2 �⃗� ! &

𝑉𝑉& + 𝐷 *'�⃗�(!) + 𝑁 log 𝑉𝑉& + 𝐷 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Minimize the above is not easy.

We can apply EM algorithm to factor analysis.

�⃗�(!) = 𝑉𝑧 ! + �⃗� + 𝜖

In the whole section, we assume our data is centered, i.e., with mean zero. In
general, we assume

such that 𝑧 ! ~𝑁(0, 𝐼) and 𝜖~𝑁 �⃗�, 𝐷

Or, equivalently
�⃗�(!)|𝑧 ! ~𝑁(𝑉𝑧 ! + �⃗�, 𝐷)

General case with mean

In mixture models, we have a discrete latent variable 𝑧! .
In mixture of Gaussians, if you know the cluster 𝑧! then 𝑝 𝑥(!) 𝑧!) is a
Gaussian.

In latent-factor models, we have continuous latent variables 𝑧(!):
In probabilistic PCA, if you know the latent-factors 𝑧(!) then 𝑝 𝑥(!) 𝑧(!)) is a
Gaussian.

Learning: Use EM algorithm to learn the parameters 𝑉 𝑎𝑛𝑑 𝐷, and infer the
latent factor 𝑧

In the E step we update the latent factors given the current weights and
noise matrices, and in the M step we set the weights and noise matrices
to their MAP estimates under the current factors.
One benefit of the EM algorithm is that it is easy to handle missing data.
We simply estimate it during the E step.

References:

[Hastie]: Sec14.5-14.7

MATLAB: https://www.mathworks.com/help/stats/dimensionality-reduction.html

https://github.com/UMD-ISL/Matlab-Toolbox-for-Dimensionality-Reduction

Python: https://scikit-learn.org/stable/modules/decomposition.html

https://scikit-learn.org/stable/modules/manifold.html

https://lvdmaaten.github.io/drtoolbox/

https://www.mathworks.com/help/stats/dimensionality-reduction.html
https://github.com/UMD-ISL/Matlab-Toolbox-for-Dimensionality-Reduction
https://scikit-learn.org/stable/modules/decomposition.html
https://scikit-learn.org/stable/modules/manifold.html
https://lvdmaaten.github.io/drtoolbox/

https://www.mathworks.com/help/stats/analyze-stock-prices-using-factor-analysis.html

MATLAB example: Analyze Stock Prices Using Factor Analysis

https://www.mathworks.com/help/stats/analyze-stock-prices-using-factor-analysis.html

MATLAB: FastICA: http://research.ics.aalto.fi/ica/fastica/

• FastICA in R: https://cran.r-project.org/web/packages/fastICA/
• FastICA in C++ (part of IT++ package)

https://itpp.sourceforge.net/devel/fastica_8cpp.html
• FastICA in Python as part of MDP package https://mdp-

toolkit.sourceforge.net/
• FastICA in Python as part of scikit-learn package https://scikit-

learn.org/dev/auto_examples/decomposition/plot_ica_blind_source
_separation.html

Further: References:
Independent Component Analysis
A. Hyvärinen, J. Karhunen, E. Oja http://research.ics.aalto.fi/ica/book/

FastICA

https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf
Paper: Independent Component Analysis: Algorithms and Applications

Independent Component Analysis A Tutorial
https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

http://research.ics.aalto.fi/ica/fastica/
https://cran.r-project.org/web/packages/fastICA/
https://itpp.sourceforge.net/devel/fastica_8cpp.html
https://mdp-toolkit.sourceforge.net/
https://mdp-toolkit.sourceforge.net/
https://scikit-learn.org/dev/auto_examples/decomposition/plot_ica_blind_source_separation.html
https://scikit-learn.org/dev/auto_examples/decomposition/plot_ica_blind_source_separation.html
https://scikit-learn.org/dev/auto_examples/decomposition/plot_ica_blind_source_separation.html
http://research.ics.aalto.fi/ica/book/
https://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf
https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

