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Motivation of Spectral Analysis

There are two primary approaches to time series.

1.

One is the time domain approach, which we covered in our previous few
sections. This approach focuses on the rules for a time series to move
forward. It considers regression of the present on the past values of the time
series. The models give an explicit formula for the current observation in

terms of past observations and past white noise terms.

The other approach is the frequency domain approach (spectral analysis).
This approach tries to understand how differing oscillations can contribute to

current observations.
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Frequency Domain Approach

Idea of Spectral Analysis: decompose a stationary time series {X,} into a
combination of sinusoids, with random (and uncorrelated) coefficients. The
frequency domain approach considers regression on sinusoids.

Just as in Fourier analysis, where we decompose (deterministic) functions

into combinations of sinusoids.

Frequency domain approach model the current observation as a
combination of waves. Regression of the current time on sines and
cosines of various frequencies. In Spectral Analysis,

 |dentify dominant frequencies within the data.
» Periodogram: sample variance at different of frequencies.

« Power spectrum: population version of the periodogram.



Periodic functions

Consider u; as a periodic function. For example,

Uy = Acos(2rwt + ¢)

where

A: Amplitude
¢: Phase

w: Frequency
%: Period

Period and frequency are inversely related.



Aliasing

When w = 1, the time series makes one cycle per time unit.
When w = 0.5, the time series makes one cycle every two time units.
When w = 0.25, the time series makes one cycle every four time units.
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Notice that at the discrete time points O, 1, 2, 3,..., the two cosine curves have
identical values. With discrete-time observations, we would not be able to
distinguish between the two curves. So, the frequencies 1/4 and 3/4 are aliased
with one another.



Some trigonometric identities

sin @

tan @ =
cos 6

sin® @ + cos? 6 =1

sin(a + b) = sinacosb + cosasinb,

cos(a + b) = cosacosb — sina sinb.



Having the ¢ inside the cosine function A cos(2rwt + ¢) can be
problematic since if we want to do a regression, the ¢ makes this a
non-linear regression. This issue is worked around using a trig identity

Acos(2nwt + ¢) = A cos ¢ cos(2nwt) — A sin ¢ sin(2rwt)

= U, cos(2rnwt) + U, sin(2rwt)

We assume U; and U, are iid Gaussian with zero mean and fixed variance.



Periodic Time Series

Consider time series

X; = Asin(2nwt) + B cos(nwt)

where A, B are uncorrelated, mean zero, variance o2 and C? = A% + B? and

tan ¢ = %.
Then, u, = E[X,]=0 y(h) =y, t+h)

= Cov(X;, X
y(h) = 0% cos(2mwh) (Xt Xevn)

So, {X,} is stationary.



Multiple frequencies and amplitudes

The autocovariance of the sum of two uncorrelated time series is the sum
of their autocovariances. Thus, the autocovariance of a sum of random
sinusoids is a sum of sinusoids with the corresponding frequencies:

k
X; = Z A; sin(27ra)jt) + Bj cos(mtw;t)
j=1

k

y(h) = z o/ cos(2mwh)

j=1
where A; and B; are uncorrelated, mean zero, variance ajz .

A consequence of the representation of X; is that any stationary time
series may be thought of, approximately, as the random superposition of
sines and cosines oscillating at various frequencies.

What is the variance of X;?



O Spectral density

Computing the Fourier transform of the data is faster than fitting a linear
regression.

Before we discuss that Fourier transform, we'll discuss the Fourier transform
the autocovariance function y(h), which is the “spectral density."

We can represent autovariance y(h) using a Fourier series. The coefficients
are the variances of the sinusoidal components.

Autocovariance is in terms of lags whereas spectral density is in terms of
cycles.



Recall Euler’s Formula:

e* = cos(x) + isin(x)

So, . .
e lx_l_elx

2

COS X =

2

e—zx elx

sinx =

Suppose Y. %, |y(h)| < oo, then the spectral density is defined as

f@) = ) y(e2mion

for—oo < w <



Motivation Example

Here is an example of a spectral representation of an autocovariance
function.

Let X; = A sin (Znit) + B cos (Znit)

1

1 . 1
1 e—lZTL'Zt + elZTL'Zt 5
y(h) = g% cos (ant) = g* 5 = jlelz’wh dF (w)
2
( 0 < 1
)
o2 1 1
Flw)={%_ o2
(w) : 7Sw<y
2 > 1
\0 W=

This F(w) always exists for all stationary processes.



Proposition:

Let X; be stationary with an autocovariance function y(h). Then there
exists a unique monotonically increasing function F(w), called the
spectral distribution function, that satisfies

. F(—00)=F(—%):0 fora)S%

1

¢« F(0)=F (E) =y(0) for w =

N | =

1
© (0 = [%emh dF ()
2

Remark: 1. We can split F into three components: discrete, continuous, and singular.
2. If y(h) is absolutely summable, F is continuous: dF (w) = f(w)dw .
3. If y(h is a sum of sinusoids, F is discrete.



A periodic time series

K
X; = Z A; sin(Zna)jt) + Bj cos(mw;t)

j=1
“ B
— z:(A]2 + B]-Z)l/2 sin <2na)jt + tan~ 1! A_])
j=1 J
k 1
7
y(h) = z o/ cos(2mwh) = j ) el2TOh dF (w)
Jj=1 2

where the discrete distribution F = g2(F; + -+ + F},)

(0 if w < —wj

_J)1
F](a))—<§ if —wj<w<w
\1 otherwise



For ARMA models, we will also have a spectral representation of
the autocovariance function, but the integral will be a smoother

blend without any jumps:

1 1

]/(h) — jil el2nwh dF(a)) — ’[51 el2mwh f(a))da)

Suppose Y. %, |y(h)| < oo, then the spectral density is

f@) =) y(he2mion

for —1/2 < w < 1/2. (fis periodic, with period 1.)

Autocovariance is in terms of lags whereas spectral density is in terms
of cycles.



Wold’s decomposition

Notice that the following is is deterministic (once we’ve seen the past, we
can predict the future without error).

k
X; = Z A; sin(anjt) + Bj cos(mw;t)
j=1

Wold showed that every stationary process can be represented as

X, = XY + x\

where Xt(d) is deterministic and X t(") is nondeterministic

(The decomposition of a spectral distribution function as F(®) + F(©)))

Y= A 6(B)
Example: X; = Asin(2rmAt) + #B) W,



Some Remarks on Spectral density

* The spectral density provides information about the relative strengths of
the various frequencies for explaining the variation in the time series.

« The spectral density is also called the power spectrum.

« Remember that y(h) completely determines the distribution for a
stationary Gaussian process. So, the spectral density also completely

determines the distribution for a stationary Gaussian process.

When h = 0,

2
Y = Var(x) = [, fl@)do
2

An interpretation is that the total integrated spectral density equals the
variance of the time series. Thus the spectral density within a particular
interval of frequencies can be viewed as the amount of the variance
explained by those frequencies.



Proposition:

f(w) = 0, because y(h) is non-negative definite.
f(w)iseven,i.e. f(w) = f(—w)
flw)=flw+1)

f(w) is periodic, with period 1. (Since e~2™®" periodic with period 1.)

1

Y = [ e fw)do

2



Example: Spectral Density of White Noise

For white noise {W,}, we have autocovariance y(0) = ¢ and
y(h) = 0 for h # 0. Thus

f@) = ) y(e 2wk = y(0) = o2

This means all frequencies receive equal weight. This is analogous to the
spectrum of white light, where all colors enter equally in white light.
(Hence the term white noise.)



Example: Spectral Density of AR(1)

Xe = X1 + W

h

1— ¢2

y(h) = o?

f@) =) y(Re 2ot = ..

0.2

T 1- 2¢ cos(2nw) + ¢?

If ¢ > 0 (positive autocorrelation), spectrum is dominated by low frequency

components—smooth in the time domain.
If ¢ <O (negative autocorrelation), spectrum is dominated by high frequency

components—rough in the time domain.



Example: Spectral Density of AR(1)

Xt == O.9Xt_1 + Wt Xt == _O.9Xt_1 + Wt
f(w) f(w)
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Example: Spectral Density of MA(1)

Xt == Wt + QWt—l

o%(1+ 6?%) ifth=0
y(h) = g0 ifh=10r —1
0 others
f(@) =) y(e2mon = ..

= y(0) + 2y(1) cos(2nw)

= ¢%(1 + 26% +20cos(2nw))

If 6 > 0 (positive autocorrelation), spectrum is dominated by low frequency
components—smooth in the time domain.

If 6 <0 (negative autocorrelation), spectrum is dominated by high frequency
components—rough in the time domain.



Example: Spectral Density of MA(1)

Xt == Wt + 0.9Wt_1 Xt == Wt - 0.9Wt_1
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O Spectral density for causal ARMA processes (or a linear process)

A zero-mean causal ARMA(p,q) process ¢(B)X; = 8(B)W, can be written as a
linear process:

0(B)

Xe= Y WWee; = WEW, where (B) = 2
=0

The autocovariance function is

y(h) = EX(Xeip) = o’ z l/’j¢j+h
=0

Define the autocovariance generating function as

rB): = Z y(WB" = Z 2¢,¢]+h3h

h=—o0 h=—o0



= UZZi Yy BT = Jzil/)jB_j ilpk B¥
=0 k=0

Jj=0k=0

= o’Yp(B~ )Y (B)

Lemma: If T(B) = Z y(h)B", then,

h=—o00

f(a)) — zy(h)e—zﬂiwh — F(e—zmwh) — Uzlp(e—zmwh)l/}(ezmwh)

— O.2|l/}(82niwh)|2



Spectral density for a causal ARMA process

Proposition: The spectral density for a causal ARMA process can be
expressed as

2

H(e—Znia))

f(a)) =0’ ¢(e—2m’w)

This is also called the rational spectrum of an ARMA(p,q).

Recall (Fundamental Theorem of Algebra) that every degree p
polynomial g(z) can be factorized as

9gz)=a(z—2z)(z—23) (2 — Zp)

where z, ..., z,, are complex roots.



For the MA and AR polynomials,

0(2) = 0,(z — 2)(z — 2,) (2 — 2)

$(z) = pp(z—p)(z—p2) (2 —Dpp)

where z,,...,2z, and p4, ..., p,, are called the zeros and poles.
1 q P1 Pp P
q iy 2 2 1714 —2miw __ ., |2
, 9(6—271'1:(1)) 2_ 0_2 961 H]=1(8 e — Z]) — 0_2 HCI l_[]=1|e Z]l
w)=o0 —~ = P (,—2miow _ . P |,-2mi 2
—2miw

* As w varies from O to 1/2, e moves clockwise around the unit

circle from 1 to e ™ = —1.
* And the value of f(w) goes up as this point moves closer to (further from)

the poles p; (zeros z; ).



Remarks on Spectral Density of AR(1) and MA(1)

Recall AR(1): ¢(z) =1 — ¢;z. The poleisat 1/¢;.

 If ¢, > 0, the pole is to the right of 1, so the spectral density
decreases as w moves away from O.

 If ¢; < 0, the pole is to the left of —1, so the spectral density is at

1ts maximum when w = 0.5.

Recall MA(1): 6(z) =1+ 6,z. The zero is at —1/0;.

 If 6, >0, the zero is to the left of —1, so the spectral density decreases as
moves towards —1.

 If 6, <O, the zero is to the right of 1, so the spectral density is at its

minimum when o = 0.



Example: Spectral Density of AR(2)
Suppose we have the following AR(2) model:

Xy = X1 —09X,_, + W, witho? =1
The roots (poles) of the AR polynomial ¢(z) = 0.9z2 —z + 1 are
pl,p2 = 0.555+ 1i0.8958.
Using the representation, the spectral density is

1

¢§|3_2mw — p1|?|e2mw —p, |?

flw) =

The peaks of the spectral density for this process occurs when

e—Zma) is near 1.0548—27& 0.16165
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Example: Seasonal ARMA

Suppose we have the following Seasonal AR model:

Xt =1 X212 + W

V() = 1=

1

f(w) =0? (1 _ ¢1e—2ni12w)(1 — ¢1627Ti12w)

1
1 — 2¢p1, cos(24nw) + @2,

— 2

Notice that f(w) is periodic with period 1/12
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Example: Multiplicative seasonal ARMA

Suppose we have the following Seasonal AR model:

(1- ¢12312)(1 — p1B)X, =W,

1

f(w) =0 (1 — 2¢;, cos(24mw) + ¢p2,)(1 — 2¢; cos(2rw) + $2)

This is a scaled product of the AR(1) spectrum and the (periodic) AR(1),,
spectrum.

The AR(1), poles give peaks when e_‘Z”i“’ is at one of the 12th roots of 1;
the AR(1) poles give a peak near e "2™% =1,
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J Time-invariant linear filters

Definition: Atime series {Y;} is the output of a linear filter 4 = {a, ;} with
input {X,} if

(0.0)

Yt: Z at’th_j

j==c0

1.1f a;j isindependent of ¢, (i.e., a;; = ;), then we say that the filter is time-
invariant.
2.1f Y = 0forj < 0, we say the filter Y; is causal.

A filter is an operator; given a time series {X;}, it maps to a time series {Y;}.

For example, we can think of a linear process

Xy = 2 YiWe_;
=0

as the output of a causal linear filter with a white noise input.



Examples:

1. Y, = X_; 1s linear, but not time-invariant.

2.Y, = g(Xt_l + X; + X;,1) is linear, time-invariant, but not causal:

1
;=13 if jl <1

0 otherwise

3. For polynomials ¢ (B) and 0(B) with roots outside the unit circle,

Y(B) = ¢ ( )1s a linear, time-invariant, causal filter.

4.The linear operation
D, Ve

j==oo

is called the convolution of X with ¢



The sequence v is also called the impulse response, since the output {Y;} of
the linear filter in response to a unit impulse,

¥, — 1 ift=0
t 0 otherwise

Ye = ¢Y(B)X, = Z l/)th—j =Y

j=—oo



1 Frequency response of a time-invariant linear filter

Consider a time-invariant linear filter

=B = ) WX

J=—®

Suppose {X;} has spectral density f,(w) and ¥ is stable, that is, 272 _, [1;]| < .
Then Y, = Y(B)X; has spectral density

£, (@) = [p(e2™@)|* £, (w)

The function w — w,b(ezm“’) (the polynomial 1 (z) evaluated on the unit circle) is
known as the frequency response or transfer function of the linear filter.

. 2. .
The squared modulus, w — |l/)(€2mw)| is known as the power transfer function

of the filter.



When we pass a time series {X;} through a linear filter, the spectral density is
multiplied, frequency-by-frequency, by the squared modulus of the frequency

response w — |1,b(62”i“’)|2

This is a version of the equality Var(aX) = a2Var(X), but the equality is
true for the component of the variance at every frequency.

This is also the origin of the name ‘filter.”



For example, a linear process is a special case of linear filter
(0]
Y = 2 YiW:_;
j=0

£y (@) = [p(e?™@)|* £, (w)

6(B)

For an ARMA model, Y(B) = 55)’ the model {Y;} has rational spectrum,
. o 2
, 9(3_2”“") 2 ) 05 H;'I=1|e 2w __ Zj|
fy(w) =0 ¢(e—2niw) = 2 P oo 2
Pp Hj=1|e - pjl

where p; and z; are the poles and zeros of the rational function z - 6(z) /¢ (2)



Example: Moving average

Consider the moving average

This is a time invariant linear filter (but it is not causal). Its transfer function
is the Dirichlet kernel

k
. 1 .
—2TMw) =D, (2 — —2Tljw
Y(e™*™) = De(2mw) =~ Zk ¢
J==

( 0 Ifw =20

= sin (Zn (k + %) a))
| (2k + 1) sin(nw)

otherwise




Transfer function of moving average (k=5)
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Squared modulus of transfer function of moving average (k=5)
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This 1s a low-pass filter: It preserves low frequencies and diminishes high
frequencies. It is often used to estimate a monotonic trend component of



Example: Differencing

Consider the first difference

Y; = (1- B)Xt

This 1s a time invariant, causal, linear filter. Its transfer function is

l/}(e—Znia)) =1 e—Znia)

So
|1/)(e'2”i“’)|2 = 2(1 — cos(2nw))



Transfer function of first difference
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This is a high-pass filter: It preserves high frequencies and diminishes low
frequencies. It is often used to eliminate a trend component of a series.



. "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer.

Sections 4.1, 4.2, 4.3



