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Motivation of Spectral Analysis

There are two primary approaches to time series. 

1. One is the time domain approach, which we covered in our previous few 
sections. This approach focuses on the rules for a time series to move 

forward. It considers regression of the present on the past values of the time 
series. The models give an explicit formula for the current observation in 
terms of past observations and past white noise terms.

2. The other approach is the frequency domain approach (spectral analysis). 

This approach tries to understand how differing oscillations can contribute to 
current observations.







Idea of Spectral Analysis: decompose a stationary time series {𝑋!} into a 

combination of sinusoids, with random (and uncorrelated) coefficients. The 
frequency domain approach considers regression on sinusoids.

Just as in Fourier analysis, where we decompose (deterministic) functions
into combinations of sinusoids.

Frequency domain approach model the current observation as a 
combination of waves. Regression of the current time on sines and 
cosines of various frequencies.  In Spectral Analysis, 

Frequency Domain Approach

• Identify dominant frequencies within the data.

• Periodogram: sample variance at different of frequencies.
• Power spectrum: population version of the periodogram.



Consider 𝜇! as a periodic function. For example, 

𝜇! = 𝐴 cos(2𝜋𝜔𝑡 + 𝜙)

where 

• 𝜔: 𝐅requency
• "

#
: Period

Period and frequency are inversely related.

Periodic functions

• 𝐴:𝐀mplitude
• 𝜙: Phase



When ω = 1, the time series makes one cycle per time unit.
When ω = 0.5, the time series makes one cycle every two time units.
When ω = 0.25, the time series makes one cycle every four time units.
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Notice that at the discrete time points 0, 1, 2, 3,…, the two cosine curves have 
identical values. With discrete-time observations, we would not be able to 
distinguish between the two curves. So, the frequencies 1/4 and 3/4 are aliased 
with one another.



Some trigonometric identities

tan 𝜃 =
sin 𝜃
cos 𝜃

sin$ 𝜃 + cos$ 𝜃 = 1

sin(𝑎 + 𝑏) = sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏,

cos(𝑎 + 𝑏) = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏.



Having the 𝜙  inside the cosine function 𝐴 cos(2𝜋𝜔𝑡 + 𝜙) can be 
problematic since if we want to do a regression, the 𝜙  makes this a 
non-linear regression. This issue is worked around using a trig identity

𝐴 cos 2𝜋𝜔𝑡 + 𝜙 = 𝐴 cos𝜙 cos(2𝜋𝜔𝑡) − 𝐴 sin𝜙 sin(2𝜋𝜔𝑡)

= 𝑈" cos(2𝜋𝜔𝑡) + 𝑈$ sin(2𝜋𝜔𝑡)

We assume 𝑈" and 𝑈$ are iid Gaussian with zero mean and fixed variance. 



Periodic Time Series

Consider time series

𝑋! = 𝐴 sin 2𝜋𝜔𝑡 + 𝐵 cos(𝜋𝜔𝑡)

where 𝐴, 𝐵 are uncorrelated, mean zero, variance 𝜎$ and 𝐶$ = 𝐴$ + 𝐵$ and 
tan𝜙 = %

&
.

Then, 𝜇! = 𝐸 𝑋! = 0

𝛾(ℎ) = 𝜎$ cos(2𝜋𝜔ℎ)

So, 𝑋! is stationary.

𝛾(ℎ) = 𝛾 𝑡, 𝑡 + ℎ

= Cov 𝑋! , 𝑋!'(



The autocovariance of the sum of two uncorrelated time series is the sum 
of their autocovariances. Thus, the autocovariance of a sum of random 
sinusoids is a sum of sinusoids with the corresponding frequencies:

𝑋! =M
)*"

+

𝐴) sin 2𝜋𝜔)𝑡 + 𝐵) cos(𝜋𝜔)𝑡)

𝛾 ℎ =M
)*"

+

𝜎)$ cos(2𝜋𝜔ℎ)

where 𝐴) 𝑎𝑛𝑑 𝐵) are uncorrelated, mean zero, variance 𝜎)$ .

Multiple frequencies and amplitudes

A consequence of the representation of 𝑋! is that any stationary time 
series may be thought of, approximately, as the random superposition of 
sines and cosines oscillating at various frequencies.

What is the variance of 𝑋!? 



Computing the Fourier transform of the data is faster than fitting a linear 
regression.

Before we discuss that Fourier transform, we'll discuss the Fourier transform 
the autocovariance function 𝛾 ℎ , which is the “spectral density."

We can represent autovariance 𝛾(ℎ) using a Fourier series. The coefficients 
are the variances of the sinusoidal components.

q Spectral density

Autocovariance is in terms of lags whereas spectral density is in terms of 
cycles.



𝑒,- = cos 𝑥 + 𝑖 sin(𝑥)

Recall Euler’s Formula:

So, 

cos 𝑥 =
𝑒.,- + 𝑒,-

2

sin 𝑥 =
𝑒.,- − 𝑒,-

2

Suppose ∑.// 𝛾 ℎ < ∞, then the spectral density is defined as 

𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#(

for −∞ < 𝜔 < ∞



Motivation Example

Here is an example of a spectral representation of an autocovariance 
function.

Let 𝑋! = 𝐴 sin 2𝜋 "
1
𝑡 + 𝐵 cos 2𝜋 "

1
𝑡

𝛾 ℎ = 𝜎$ cos 2𝜋
1
4 𝑡 = 𝜎$

𝑒.,$0
"
1! + 𝑒,$0

"
1!

2 = X
."$

"
$
𝑒,$0#( 𝑑𝐹(𝜔)

𝐹 𝜔 =

0 𝜔 <
1
4

𝜎$

2 −
1
4 ≤ 𝜔 <

1
4

𝜎$ 𝜔 ≥
1
4

This 𝐹 𝜔 always exists  for all stationary processes.



Proposition: 

Let 𝑋! be stationary with an autocovariance function 𝛾(ℎ). Then there 
exists a unique monotonically increasing function 𝐹(𝜔), called the 
spectral distribution function, that satisfies

• 𝐹 −∞ = 𝐹 − "
$
= 0 𝑓𝑜𝑟 𝜔 ≤ "

$

• 𝐹 ∞ = 𝐹 "
$
= 𝛾 0 𝑓𝑜𝑟 𝜔 ≥ "

$

• 𝛾 ℎ = ∫
.!"

!
" 𝑒,$0#( 𝑑𝐹(𝜔)

Remark: 1. We can split 𝐹 into three components: discrete, continuous, and singular.
2. If 𝛾(ℎ) is absolutely summable, 𝐹 is continuous: 𝑑𝐹(𝜔) = 𝑓(𝜔)𝑑𝜔 .
3. If 𝛾(ℎ is a sum of sinusoids, 𝐹 is discrete.



A periodic time series

𝑋! =M
)*"

+

𝐴) sin 2𝜋𝜔)𝑡 + 𝐵) cos(𝜋𝜔)𝑡)

𝛾 ℎ =M
)*"

+

𝜎)$ cos(2𝜋𝜔ℎ) = X
."$

"
$
𝑒,$0#( 𝑑𝐹(𝜔)

=M
)*"

+

𝐴)$ + 𝐵)$
"/$ sin 2𝜋𝜔)𝑡 + tan."

𝐵)
𝐴)

𝐹) 𝜔 =

0 𝑖𝑓 𝜔 < −𝜔)
1
2 𝑖𝑓 − 𝜔) ≤ 𝜔 ≤ 𝜔)
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where the discrete distribution 𝐹 = 𝜎$(𝐹" +⋯+ 𝐹+)



For ARMA models, we will also have a spectral representation of
the autocovariance function, but the integral will be a smoother
blend without any jumps:

𝛾 ℎ = X
."$

"
$
𝑒,$0#( 𝑑𝐹(𝜔) = X

."$

"
$
𝑒,$0#( 𝑓 𝜔 𝑑𝜔

Suppose ∑.// 𝛾 ℎ < ∞, then the spectral density is  

𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#(

for −1/2 < 𝜔 < 1/2. (f is periodic, with period 1.)

Autocovariance is in terms of lags whereas spectral density is in terms 
of cycles.



Wold’s decomposition

𝑋! =M
)*"

+

𝐴) sin 2𝜋𝜔)𝑡 + 𝐵) cos(𝜋𝜔)𝑡)

Notice that the following is is deterministic (once we’ve seen the past, we 
can predict the future without error).

Wold showed that every stationary process can be represented as

𝑋! = 𝑋!
(4) + 𝑋!

(6)

where 𝑋!
(4) is deterministic and 𝑋!

(6) is nondeterministic

(The decomposition of a spectral distribution function as 𝐹(4) + 𝐹(7).)

Example: 𝑋! = 𝐴 sin(2𝜋𝜆𝑡) + 8(%)
9(%)

𝑊!



• The spectral density provides information about the relative strengths of 

the various frequencies for explaining the variation in the time series.
• The spectral density is also called the power spectrum.

• Remember that 𝛾(ℎ) completely determines the distribution for a 
stationary Gaussian process. So, the spectral density also completely 
determines the distribution for a stationary Gaussian process.

Some Remarks on Spectral density

When ℎ = 0,

𝛾 ℎ = 𝑉𝑎𝑟(𝑋!) = X
."$

"
$
𝑓 𝜔 𝑑𝜔

An interpretation is that the total integrated spectral density equals the 
variance of the time series. Thus the spectral density within a particular 
interval of frequencies can be viewed as the amount of the variance 
explained by those frequencies.



Proposition: 

• 𝑓 𝜔 ≥ 0, because 𝛾(ℎ) is non-negative definite.

• 𝑓 𝜔 is even, i.e. 𝑓 𝜔 = 𝑓 −𝜔

• 𝑓 𝜔 = 𝑓 𝜔 + 1

• 𝑓 𝜔 is periodic, with period 1.  (Since 𝑒.$0,#( periodic with period 1. )

• 𝛾 ℎ = X
."$

"
$
𝑒,$0#( 𝑓 𝜔 𝑑𝜔



Example: Spectral Density of White Noise

This means all frequencies receive equal weight. This is analogous to the 
spectrum of white light, where all colors enter equally in white light. 
(Hence the term white noise.)

For white noise 𝑊! , we have autocovariance 𝛾 0 = 𝜎$ and 
𝛾 ℎ = 0 for ℎ ≠ 0. Thus

𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#( = 𝛾 0 = 𝜎$



Example: Spectral Density of AR(1)

𝑋! = 𝜙𝑋!." +𝑊!

𝛾 ℎ = 𝜎$
𝜙(

1 − 𝜙$

𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#( = ⋯

=
𝜎$

1 − 2𝜙 cos 2𝜋𝜔 + 𝜙$

• If   𝜙 > 0 (positive autocorrelation), spectrum is dominated by low frequency 
components—smooth in the time domain.

• If   𝜙 < 0 (negative autocorrelation), spectrum is dominated by high frequency 
components—rough in the time domain.



𝑓 𝜔

𝜔

𝑓 𝜔

𝜔

Example: Spectral Density of AR(1)

𝑋! = 0.9𝑋!." +𝑊! 𝑋! = −0.9𝑋!." +𝑊!



Example: Spectral Density of MA(1)

𝑋! = 𝑊! + 𝜃𝑊!."

𝛾(ℎ) = n
𝜎$ 1 + 𝜃$

𝜎$𝜃
0

if ℎ = 0

others
if ℎ = 1, 𝑜𝑟 − 1

𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#( = ⋯

= 𝛾 0 + 2𝛾 1 cos(2𝜋𝜔)

= 𝜎$ 1 + 2𝜃$+2𝜃cos 2𝜋𝜔

If 𝜃 > 0 (positive autocorrelation), spectrum is dominated by low frequency 
components—smooth in the time domain.
If 𝜃 < 0 (negative autocorrelation), spectrum is dominated by high frequency 
components—rough in the time domain.



𝑋! = 𝑊! + 0.9𝑊!." 𝑋! = 𝑊! − 0.9𝑊!."

Example: Spectral Density of MA(1)



q Spectral density for causal ARMA processes (or a linear process)

A zero-mean causal ARMA(p,q) process 𝜙(𝐵)𝑋! = 𝜃(𝐵)𝑊! can be written as a 
linear process:

𝑋! =M
)*:

/

𝜓)𝑊!.) = 𝜓 𝐵 𝑊!

The autocovariance function is

𝛾 ℎ = 𝐸 𝑋!𝑋!'( = 𝜎$M
)*:

/

𝜓)𝜓)'(

where 𝜓 𝐵 = 8 %
9(%)

Define the autocovariance generating function as

Γ 𝐵 := M
(*./

/

𝛾 ℎ 𝐵( = M
(*./

/

𝜎$M
)*:

/

𝜓)𝜓)'( 𝐵(



𝑓 𝜔 =M
./

/

𝛾 ℎ 𝑒.$0,#( = Γ 𝑒.$0,#( = 𝜎$𝜓 𝑒.$0,#( 𝜓(𝑒$0,#()

= 𝜎$M
)*:

/

M
+*:

/

𝜓)𝜓+ 𝐵+.) = 𝜎$M
)*:

/

𝜓)𝐵.)M
+*:

/

𝜓+ 𝐵+

= 𝜎$𝜓 𝐵." 𝜓(𝐵)

Lemma:  If Γ 𝐵 = M
(*./

/

𝛾 ℎ 𝐵( ,

= 𝜎$ 𝜓 𝑒$0,#( $

then,



This is also called the rational spectrum of an ARMA(p,q).

𝑓 𝜔 = 𝜎$
𝜃 𝑒.$0,#

𝜙 𝑒.$0,#

$

Recall (Fundamental Theorem of Algebra) that every degree 𝑝
polynomial 𝑔(𝑧) can be factorized as

𝑔 𝑧 = 𝑎 𝑧 − 𝑧" 𝑧 − 𝑧$ ⋯(𝑧 − 𝑧;)

where 𝑧", … , 𝑧; are complex roots.

Proposition: The spectral density for a causal ARMA process can be
expressed as

Spectral density for a causal ARMA process



𝑓 𝜔 = 𝜎$
𝜃 𝑒.$0,#

𝜙 𝑒.$0,#

$
= 𝜎$

𝜃<∏)*"
< 𝑒.$0,# − 𝑧)

𝜙;∏)*"
; (𝑒.$0,# − 𝑝))

$

= 𝜎$
𝜃<$∏)*"

< 𝑒.$0,# − 𝑧)
$

𝜙;$∏)*"
; 𝑒.$0,# − 𝑝)

$

• As 𝜔 varies from 0 to 1/2,  𝑒.$0,# moves clockwise around the unit 
circle from 1 to 𝑒.0, = −1.

• And the value of 𝑓(𝜔) goes up as this point moves closer to (further from) 
the poles 𝑝) (zeros 𝑧) ).

For the MA and AR polynomials,

𝜃 𝑧 = 𝜃< 𝑧 − 𝑧" 𝑧 − 𝑧$ ⋯(𝑧 − 𝑧<)

𝜙 𝑧 = 𝜙; 𝑧 − 𝑝" 𝑧 − 𝑝$ ⋯(𝑧 − 𝑝;)

where 𝑧", . . . , 𝑧< and 𝑝", . . . , 𝑝; are called the zeros and poles.



Recall AR(1): 𝜙(𝑧) = 1 − 𝜙"𝑧. The pole is at 1/𝜙". 

• If 𝜙" > 0, the pole is to the right of 1, so the spectral density 

decreases as 𝜔 moves away from 0.

• If 𝜙" < 0, the pole is to the left of −1, so the spectral density is at 

its maximum when 𝜔 = 0.5.

Recall MA(1): 𝜃(𝑧) = 1 + 𝜃"𝑧. The zero is at −1/𝜃".

• If 𝜃" > 0, the zero is to the left of −1, so the spectral density decreases as 

moves towards −1.

• If 𝜃" < 0, the zero is to the right of 1, so the spectral density is at its 

minimum when 𝜔 = 0.

Remarks on Spectral Density of AR(1) and MA(1)



Suppose we have the following AR(2) model:

The roots (poles) of the AR polynomial  𝜙 𝑧 = 0.9𝑧$ − 𝑧 + 1 are

𝑋! = 𝑋!." − 0.9𝑋!.$ +𝑊! with 𝜎$ = 1

𝑝1, 𝑝2 = 0.555 ± 𝑖 0.8958.

Using the representation, the spectral density is

𝑓 𝜔 =
1

𝜙$$ 𝑒.$0,# − 𝑝" $ 𝑒.$0,# − 𝑝$ $

The peaks of the spectral density for this process occurs when

𝑒.$0,# is near 1.054𝑒.$0, :.">">?

Example: Spectral Density of AR(2)
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Example: Seasonal ARMA

Suppose we have the following Seasonal AR model:

𝑋! = 𝜙"𝑋!."$ +𝑊!

𝜓 𝐵 =
1

1 − 𝜙"𝐵"$

𝑓 𝜔 = 𝜎$
1

(1 − 𝜙"𝑒.$0,"$#)(1 − 𝜙"𝑒$0,"$#)

= 𝜎$
1

1 − 2𝜙"$ cos 24𝜋𝜔 + 𝜙"$$

Notice that 𝑓 𝜔 is periodic with period 1/12





Example: Multiplicative seasonal ARMA

Suppose we have the following Seasonal AR model:

(1 − 𝜙"$𝐵"$)(1 − 𝜙"𝐵)𝑋! = 𝑊!

𝑓 𝜔 = 𝜎$
1

1 − 2𝜙"$ cos 24𝜋𝜔 + 𝜙"$$ (1 − 2𝜙" cos 2𝜋𝜔 + 𝜙"$)

This is a scaled product of the AR(1) spectrum and the (periodic) 𝐴𝑅 1 "$
spectrum.

The 𝐴𝑅 1 "$ poles give peaks when 𝑒.$0,# is at one of the 12th roots of 1;
the AR(1) poles give a peak near 𝑒.$0,# = 1.





q Time-invariant linear filters

A filter is an operator; given a time series {𝑋!}, it maps to a time series {𝑌!}.

For example, we can think of a linear process

𝑋! =M
)*:

/

𝜓)𝑊!.)

as the output of  a causal linear filter with a white noise input.

Definition: A time series 𝑌! is the output of a linear filter 𝐴 = 𝑎!,) with 
input {𝑋!} if   

𝑌! = M
)*./

/

𝑎!,)𝑋!.)

1. If 𝑎!,) is independent of 𝑡, (𝑖. 𝑒. , 𝑎!,) = 𝜓)), then we say that the filter is time-
invariant.
2. If 𝜓) = 0 for 𝑗 < 0, we say the filter 𝜓) is causal.



Examples: 

1. 𝑌! = 𝑋.! is linear, but not time-invariant.

2. 𝑌! =
"
A
𝑋!." + 𝑋! + 𝑋!'" is linear, time-invariant, but not causal:

𝜓) = n
1
3 𝑖𝑓 𝑗 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3. For polynomials 𝜙 𝐵 𝑎𝑛𝑑 𝜃(𝐵) with roots outside the unit circle,
𝜓 𝐵 = 8 %

9 %
is a linear, time-invariant, causal filter.

M
)*./

/

𝜓)𝑋!.)
4. The linear operation 

is called the convolution of 𝑋 with 𝜓



The sequence 𝜓 is also called the impulse response, since the output {𝑌!} of
the linear filter in response to a unit impulse,

𝑋! = }1 𝑖𝑓 𝑡 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is

𝑌! = 𝜓 𝐵 𝑋! = M
)*./

/

𝜓)𝑋!.) = 𝜓!



q Frequency response of a time-invariant linear filter

Suppose 𝑋! has spectral density 𝑓- 𝜔 and 𝜓 is stable, that is, ∑)*.// |𝜓)| < ∞.
Then 𝑌! = 𝜓 𝐵 𝑋! has spectral density

𝑌! = 𝜓 𝐵 𝑋! = M
)*./

/

𝜓)𝑋!.)

Consider a time-invariant linear filter 

𝑓B 𝜔 = 𝜓 𝑒$0,# $𝑓-(𝜔)

The function 𝜔 → 𝜓 𝑒$0,# (the polynomial 𝜓(𝑧) evaluated on the unit circle) is 
known as the frequency response or transfer function of the linear filter.

The squared modulus, 𝜔 → 𝜓 𝑒$0,# $
is known as the power transfer function

of the filter.



When we pass a time series {𝑋!} through a linear filter, the spectral density is 
multiplied, frequency-by-frequency, by the squared modulus of the frequency 
response 𝜔 → 𝜓 𝑒$0,# $

This is a version of the equality 𝑉𝑎𝑟(𝑎𝑋) = 𝑎2𝑉𝑎𝑟(𝑋), but the equality is
true for the component of the variance at every frequency.

This is also the origin of the name ‘filter.’



For example, a linear process is a special case of linear filter

𝑌! =M
)*:

/

𝜓)𝑊!.)

𝑓B 𝜔 = 𝜓 𝑒$0,# $𝑓C(𝜔)

For an ARMA model, 𝜓 𝐵 = 8 %
9 %

, the model 𝑌! has rational spectrum,  

𝑓B 𝜔 = 𝜎$
𝜃 𝑒.$0,#

𝜙 𝑒.$0,#

$

= 𝜎$
𝜃<$∏)*"

< 𝑒.$0,# − 𝑧)
$

𝜙;$∏)*"
; 𝑒.$0,# − 𝑝)

$

where 𝑝) and 𝑧) are the poles and zeros of the rational function 𝑧 → 𝜃(𝑧)/𝜙(𝑧)



Consider the moving average

𝑌! =
1

2𝑘 + 1
M
)*.+

+

𝑋!.)

This is a time invariant linear filter (but it is not causal). Its transfer function
is the Dirichlet kernel

𝜓 𝑒.$0,# = 𝐷+ 2𝜋𝜔 =
1

2𝑘 + 1
M
)*.+

+

𝑒.$0,)#

=

0

sin 2𝜋 𝑘 + 12 𝜔
2𝑘 + 1 sin(𝜋𝜔)

If 𝜔 = 0

otherwise

Example: Moving average





This is a low-pass filter: It preserves low frequencies and diminishes high
frequencies. It is often used to estimate a monotonic trend component of 
a series.



Example: Differencing

Consider the first difference

𝑌! = 1 − 𝐵 𝑋!

This is a time invariant, causal, linear filter. Its transfer function is

𝜓 𝑒.$0,# = 1 − 𝑒.$0,#

So

𝜓 𝑒.$0,# $ = 2 1 − cos 2𝜋𝜔



This is a high-pass filter: It preserves high frequencies and diminishes low
frequencies. It is often used to eliminate a trend component of a series.



• "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer. 

Sections 4.1, 4.2, 4.3


