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Ø Review Central Limit Theorem, Hypothesis Tests, and Confidence Interval. 
(Frequentist Point of View)

Central Limit Theorem (CLT): Assume that the distribution of test statistics 
𝑥("), … , 𝑥($) is drawn independently from the same distribution (iid) with fixed 
mean µ and variance σ%, then the sample mean follows normal distribution:

The sample mean of test statistics 𝑥("), … , 𝑥($) is

�̅� =
1
𝑛
*
&'"

$

𝑥(&)

�̅� − 𝜇
𝜎/ 𝑛

𝑁(0,1)𝑛 → ∞

or

�̅� 𝑛 → ∞
𝑁 𝜇,

𝜎%

𝑛



The 1 − 𝛼 confidence interval for any parameter/statistic 𝜃 is a set 𝐼 = [𝑎, 𝑏] such that

𝑃 𝑎 < 𝜃 < 𝑏 = 1 − 𝛼

Suppose we know the distribution for 𝜃.

Confidence Interval

Probability distribution for 𝜃

"There is a 95% probability that 
@𝑎, A𝑏 calculated from a given future 

sample will cover the true value of 
the population parameter.”95%

“Repeated the procedure on numerous samples, the proportion of calculated 
[ @𝑎, A𝑏] that encompassed the true value of the population parameter would tend 
toward 95%.” 

NOT Mean: “For a given realized interval [𝑎, 𝑏], there is a 95% probability 
that the population parameter lies within the interval”



𝐄𝐱𝐚𝐦𝐩𝐥𝐞,

The 𝟏 − 𝜶 confidence interval for 𝜇 is a set 

By CLT, when n is large,   �̅� − 𝜇
𝜎/ 𝑛

~𝑁(0,1)

Usually, 𝜎 is unknown, then, we need to use sample variance and t-distributions. 

Another method of estimation of confidence interval: Bootstrapping.



Hypothesis Tests 𝑯𝟎 v.s. 𝑯𝟏

Null hypothesis 𝑯𝟎:  no difference or no relationship or no effect. (𝝁 = 𝝁𝟎)

Alternative hypothesis 𝑯𝟏: opposite of 𝑯𝟎 (𝝁 > 𝝁𝟎, 𝒐𝒓 𝝁 ≠ 𝝁𝟎 or 𝝁 < 𝝁𝟎) 



Type I and Type II Errors in Hypothesis Testing

When we make the decision, it is possible to have errors.

P(Type I error): 

P(Type II error)





The Rules of Probability

Sum Rule: 𝑝 𝑋 =*
*

𝑝(𝑋, 𝑌)

Product Rule: 𝑝 𝑋, 𝑌 = 𝑃 𝑌 𝑋 𝑃(𝑋)

Bayes’ rule:

p 𝑌 𝑋 = + ,,*
+(,)

= + ,,*
∑!" +(,,*

")
= + ,|* +(*)

∑!" + ,|* +(*")



By Bayes Rule: 

𝑃 𝑌 = 𝑘 𝑋 = �⃗�) =
𝑃 𝑋 = �⃗� 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

𝑃(𝑋 = �⃗�)

Posterior =
Likelihood × Prior

Evidence

𝑃 𝑋 = �⃗� = *
011 &

𝑃 𝑋 = �⃗� 𝑌 = 𝑖)𝑃(𝑌 = 𝑖)Here, 

Bayes Rule using words:

Goal =
known×Guess
constant



Some examples of Bayes’ rule application

1. Covid-19 test.
2. Monty Hall Problem.
3. Bayesian inference example



Example: Testing for Covid-19.

𝐷 = 1 Infected by disease. (𝐷 = 0 not infected.)

𝑌 = 1 Test positive. (Y = 0. Test negative) –binary classification for 𝑌

Test Sensitivity (True-Positive Rate): = 𝑃(𝑌 = 1|𝐷 = 1)

Test Specificity (True-Negative Rate)≔ 𝑃(𝑌 = 0|𝐷 = 0)

Prevalence of the disease = 𝑃 𝐷 = 1

Suppose 𝑃(𝐷 = 1) = 0.01.

𝑃 𝑌 = 1 𝐷 = 1) = 0.875

𝑃 𝑌 = 0 𝐷 = 0 = 0.975



Then suppose a person test positive, what is the chance that the person really infected?  

𝑃 𝐷 = 1 𝑇 = 1) =
𝑃 𝑌 = 1 𝐷 = 1 𝑃(𝐷 = 1)

𝑃 𝑌 = 1 𝐷 = 1 𝑃 𝐷 = 1 + 𝑃 𝑌 = 1 𝐷 = 0 𝑃(𝐷 = 0)

=
0.875 ∗ 0.01

0.875 ∗ 0.01 + 0.025 ∗ 0.99

= 0.26

Similarly, we also know the chance that a person infected given test negative:

𝑃 𝐷 = 1 𝑇 = 0) =
𝑃 𝑌 = 0 𝐷 = 1 𝑃(𝐷 = 1)

𝑃 𝑌 = 0 𝐷 = 1 𝑃 𝐷 = 1 + 𝑃 𝑌 = 0 𝐷 = 0 𝑃(𝐷 = 0)

= 0.0013



Table 1: Ratings of 109 CT images by a single radiologist vs. true disease status

Table 2: Sensitivity and specificity of the radiologist’s ratings according to different
test-positive criteria based on the data in above table

Example



ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of the sensitivity (on the
y-axis) versus (1 – specificity) (on the x-axis) of a screening test, where the different
points on the curve correspond to different cutoff points used to designate test positive.

The area under the ROC curve is a reasonable summary of the overall diagnostic
accuracy of the test.  (AUC means Area Under Curve.)

Each point represents (1 – specificity, sensitivity) for 
different test-positive criteria.

𝑃(𝑌 = 1|𝐷 = 1)

𝑃(𝑌 = 1|𝐷 = 0)

True-Positive Rate

False-Positive Rate



Monty Hall Problem (https://en.wikipedia.org/wiki/Monty_Hall_problem )

In a game show, there are three doors with is a big prize behind only one door. You 
choose one of them, then one of the left is opened and there is no prize behind 
the opened door. You have a chance to switch your choice. Will you switch?

https://en.wikipedia.org/wiki/Monty_Hall_problem


I tell you that I can toss coin such that it always comes up Heads. You are 95% 
certain that I am lying. I tossed a coin 5 times in front of you and comes up Head 
every time. How certain are you now that I am lying

Bayesian Inference

Further examples:
1. Naive Bayes spam filtering https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
2. Bayesian poisoning  https://en.wikipedia.org/wiki/Bayesian_poisoning

https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/Bayesian_poisoning


Suppose we flip the coin 𝑛 times and observe 𝑥 “heads.”

The probability of this observation given the value of 𝜃, comes from binomial  
distribution:  

Suppose there is a coin that may be biased with unknown probability 𝜃 of 
giving a “heads.” 

𝑃 𝑥 𝑛, 𝜃 =
𝑛
𝑥 𝜃2 1 − 𝜃 $32

Classical (Frequentist) method: 

The frequentist approach is to construct an estimator for 𝜃, which in theory can 
be any function of the observed data {𝜃(𝑥, 𝑛) and show that {𝜃 → 𝜃 as 𝑛 → ∞.

The classical estimator in this case is the empirical frequency (use MLE)

{𝜃 =
𝑥
𝑛

Bayesian Method Example-Binomial distribution



Frequentist approach ignores all prior information.

Bayesian approach choose a prior distribution 𝑝(𝜃). A convenient prior in this 
case is the Beta distribution:

𝑝(𝜃 | 𝛼, 𝛽) = ℬ(𝜃; 𝛼, 𝛽) =
Γ 𝛼 + 𝛽
Γ 𝛼 Γ 𝛼 𝜃43" 1 − 𝜃 53"

with Γ 𝑧 = �
6

7
𝑡83"𝑒39𝑑𝑡

𝑂𝑟 𝑤𝑟𝑖𝑡𝑒 ℬ(𝜃; 𝛼, 𝛽) =
1

𝐵(𝛼, 𝛽) 𝜃
43" 1 − 𝜃 53"

with normalizing constant 𝐵 𝛼, 𝛽 = ∫6
" 𝜃43" 1 − 𝜃 53" d𝜃

q Bayesian approach

A prior probability distribution 𝑝(𝜃) to 𝜃, representing your degree of belief 
with respect to 𝜃.



Given our observations 𝐷 = (𝑥, 𝑛), we can now compute the posterior distribution
of 𝜃 by Bayes Theorem:

𝑝(𝜃 | 𝑥, 𝑛, 𝛼, 𝛽) =
𝑃 𝑥 𝑛, 𝜃 𝑝 𝜃 𝛼, 𝛽

𝑃 𝑥 𝑛, 𝛼, 𝛽

=
𝑃 𝑥 𝑛, 𝜃 𝑝 𝜃 𝛼, 𝛽

∫6
"𝑃 𝑥 𝑛, 𝜃 𝑝 𝜃 𝛼, 𝛽 𝑑𝜃

= …

=
1

𝐵(𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥) 𝜃
4:23" 1 − 𝜃 5:$323"

= ℬ(𝜃; 𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥)

Beta distribution Calculator: https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html

If we assign a different prior distribution, then we arrive at a different posterior 
distribution. (𝛼, 𝛽 are hyperparameters.)

https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html


𝑃 �⃗� 𝒟) =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

𝑃(𝒟) =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

∫ 𝑃(𝒟 | �⃗�′) 𝑃(�⃗�′) 𝑑�⃗�′

Bayes’ theorem converts a prior probability into a posterior probability

Summary of Bayesian approach

𝑃(�⃗�):  density associated with the prior distribution. (The degree of belief 
of the distribution before the data.) 

𝑃(𝒟 | �⃗�) : the likelihood for the data. The parameters of interest �⃗� (unknown) 

Posterior distribution 𝑃 �⃗� 𝒟) is the updated degree of belief with respect 
to 𝜃, based on the data 𝒟. The new degree of belief is called the 
posterior probability distribution of θ.



The rather convenient fact that the posterior remains a beta distribution is 
because the beta distribution satisfies a property known as conjugacy with 
the binomial likelihood. 

(𝛼, 𝛽) = (3, 5)

(𝑥, 𝑛) = (5, 6).

𝛼, 𝛽 serve as “pseudocounts,” or fake observations we pretend to have seen 
before seeing the data. They are hyperparameters we need to determine. 

We also get another “test and confidence interval” (credible interval), for example.  

𝑃 𝜃 <
1
2 | 𝑥, 𝑛, 𝛼, 𝛽 = �

6

"/%
𝑝 𝜃 𝑥, 𝑛, 𝛼, 𝛽 𝑑𝜃



Posterior mean

Posterior variance

Once we derive the posterior distribution 𝑝 𝜃 𝒟) using Bayesian approach, 
we can study the posterior mean and posterior variance. 

𝐸 𝜃 𝒟 =
𝛼 + 𝑥

𝛼 + 𝛽 + 𝑛

𝑉𝑎𝑟 𝜃 𝒟

For example, the posterior distribution of the probability 𝜃 of giving head in coin is 

𝐸[𝜃|𝒟]

𝑉𝑎𝑟 𝜃 𝒟 =
(𝛼 + 𝑥)(𝛽 + 𝑛 − 𝑥)

𝛼 + 𝛽 + 𝑛 %(𝛼 + 𝛽 + 𝑛 + 1)

In addition, the Mode

Mode [highest point in density curve]= 4:23"
4:5:$3%



Relation between the prior and posterior mean and variance is give by 
the probability theorems: 

law of iterated expectations: 

law of total variance: 

𝑉𝑎𝑟 𝜃 = 𝐸 𝑉𝑎𝑟 𝜃 𝒟 + 𝑉𝑎𝑟(𝐸(𝜃|𝒟))

𝐸 𝜃 = 𝐸𝒟 𝐸=|𝒟 𝜃 𝒟

Prior mean of 𝜃 = Average posterior mean of 𝜃 over data distribution.

Posterior variance of 𝜃 is, on average, less than prior variance of 𝜃

Prior v.s. Posterior



𝑝 𝜃 𝒟)

Recall that Bayesian approach derive the posterior distribution: 

A interval [𝑎, 𝑏] is called 95% credible interval for 𝜽, if the posterior 
probability 

𝑃 𝜃 ∈ [𝑎, 𝑏]| 𝒟 = �
0

>
𝑝 𝜃 𝒟 𝑑𝜃 = 95%

Ø Credible Interval

Bayesian Hypothesis testing

The hypothesis testing is similarly. Suppose we have a null hypothesis 𝐻6

𝑃 𝜃 ∈ 𝐻6| 𝒟 = �
?#
𝑝 𝜃 𝒟 𝑑𝜃

A hypothesis is simply a subset of the parameter space 𝐻6 ⊆ Θ in the Bayesian 
decision theory.



Example: Coin Flip continue

From our coin flip example, we know that 

𝑝(𝜃 | 𝑥, 𝑛, 𝛼, 𝛽) = ℬ(𝜃; 𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥)

Assume 𝑝(𝜃 | 𝛼, 𝛽) = ℬ(𝜃; 1, 1)

Suppose we flip the coin independently 𝑛 = 50 times and observe 𝑥 = 30 heads. 
After gathering this data, we wish to consider whether the coin is fair 𝐻6: 𝜃 = "

%
?

𝑃 𝜃 ∈ 𝐻6| 𝒟 = 𝑝(𝜃 =
1
2
| 𝑥, 𝑛, 𝛼, 𝛽) = ℬ(𝜃; 31, 21)

Consider a parameterized family of hypotheses of the for

𝐻@ ≔
1
2 − 𝜖 ,

1
2 + 𝜖

This is zero since it is continuous distribution.



𝑃 𝜃 ∈ 𝐻@| 𝒟 = �
"
%3@

"
%:@

𝑝 𝜃 𝒟 𝑑𝜃

The posterior probability of the hypotheses 𝐻@ for 1 < 𝜖 < 1/2



success_prob = 0.3
data =random.binomial(n=1, p=success_prob, size=1000) # sucess is 1, failure is 0.
# Domain θ
theta_range = linspace(0, 1, 1000)

# Prior P(θ)
a = 2
b = 8
theta_range_e = theta_range + 0.0001
prior = beta.cdf(x = theta_range_e, a=a, b=b) - beta.cdf(x = theta_range, a=a, b=b) 

# The sampling dist. aka Likelihood P(X|θ)
likelihood = binom.pmf(k = np.sum(data), n = len(data), p = theta_range)

# Posterior
posterior = likelihood * prior
normalized_posterior = posterior / sum(posterior)

Python/MATLAB/R Code calculating the posterior of the binomial likelihood :



Conjugate prior

For some likelihood functions 𝑃(𝒟 | �⃗�) , if you choose a certain prior 𝑃(�⃗�), the 
posterior 𝑃 �⃗� 𝒟 ends up being in the same distribution as the prior. Such a 
prior then is called a Conjugate Prior of the likelihood function.

𝑃 �⃗� 𝒟 =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

𝑃(𝒟)

For example, the Beta distribution ℬ(𝜃; 𝛼, 𝛽) is the conjugate prior of 
the binomial distribution 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑥; 𝑛, 𝜃).

If the likelihood function belongs to the exponential family, then a conjugate 
prior exists, often also in the exponential family.

The conjugate prior of the normal distribution 𝑁 𝜇, 𝜎% with fixed 𝜎 is also 
normal distribution, but with different parameters. 

https://en.wikipedia.org/wiki/Conjugate_prior
A	Table	of	conjugate	distributions	can	be	found	in	Wikipedia:

https://en.wikipedia.org/wiki/Conjugate_prior


How does the Conjugate Prior help?

When you know that your prior is a conjugate prior, you can skip the computation.

During the modeling phase, we already know the posterior will also be a beta 
distribution.

Therefore, after carrying out more experiments, you can compute the posterior 
simply by adding the number of acceptances and rejections to the existing 
parameters α, β respectively, instead of multiplying the likelihood with the prior 
distribution.

posterior ∝ likelihood * prior



Maximum A Posteriori estimation (MAP) v.s. MLE

Suppose �⃗� are the model parameters, and 𝒟 = (�⃗� & , �⃗� & ) &'"
A the 

observed data.   

𝑃(𝒟 | �⃗�) : the likelihood for the data. 

{⃗𝜃BCD ≔ argmax
=

𝑃(𝒟 | �⃗�) = argmax
=

log 𝑃(𝒟 | �⃗�)

The Maximum Likelihood Estimate (MLE) of is 

Most of the model we have are using MLE, e.g., logistics regression, linear 
regression, generalized linear regression, 



From Bayesian statistics, based on prior 𝑝(�⃗�), we have calculated the 
posterior distribution:

𝑃 �⃗� 𝒟 =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

𝑃(𝒟)

The Maximum A Posteriori estimation (MAP) is 

{⃗𝜃BEF ≔ argmax
=

𝑃 �⃗� 𝒟 = argmax
=

𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

= argmax
=

log 𝑃(𝒟 | �⃗�) + log 𝑃(�⃗�)



Example	(MAP	for	𝝁 in	normal	distribution.)

Suppose we have iid data 𝒟 = {𝑥 " , … , 𝑥 A } observed from normal distribution 
𝑁(𝜇, 𝜎%) with known 𝜎. 

𝑝 𝑥 & |𝜇 =
1
2𝜋 𝜎

exp −
1
2𝜎% 𝑥(&) − 𝜇 %

The MLE for 𝜇 is 

�̂�BCD = argmax
G

log 𝑃(𝒟 |𝜇) = argmax
G

log£
&'"

A
1
2𝜋 𝜎

exp −
1
2𝜎%

𝑥(&) − 𝜇 % =

… =
1
𝑁*

&'"

A

𝑥(&)
Now find the MAP estimate of 𝜇.

The conjugate prior of normal distribution is normal, there is a closed-form 
solution analytically.



�̂�BEF = argmax
G

log 𝑃 𝜇 𝒟) = argmax
G

log 𝑃 𝒟 𝜇 𝑃(𝜇)

�̂�BEF = argmax
G

log 𝑃 𝒟 𝜇 𝑃 𝜇

𝑃(𝜇)𝑃 𝒟 𝜇 =
1
2𝜋 𝜎6

exp −
1
2𝜎6%

𝜇 − 𝜇6 % £
&'"

A
1
2𝜋 𝜎

exp −
1
2𝜎% 𝑥(&) − 𝜇 %

=
𝜎6% ∑&'"A 𝑥 & + 𝜎%𝜇6

𝜎6%𝑁 + 𝜎%

The MAP estimate �̂�BEF is a linear combination between the prior mean 
𝜇6 and the sample mean �̅� weighted by their respective covariances.

�̂�BEF → �̂�BCD when 𝜎6 → ∞

Notice that 

Hence, 

= argm𝑖𝑛
G

*
&'"

A
1
2𝜎6%

𝜇 − 𝜇6 % +
1
2𝜎% 𝑥(&) − 𝜇 %



Extra Example: The Dirichlet-multinomial model

Likelihood: Categorical distribution.

Prior: Dirichlet distribution

Posterior: Dirichlet distribution

See Murphy 1: Sec 4.6.3



Ø Bayesian decision theory

– The simplest risk is the classification error (i.e., costs are equal). 

– Typically, the risk includes the cost associated with different 
decisions.

Design classifiers to recommend decisions that minimize some total expected “risk”. 



q General Decision Problem

1. Parameter space (also called a state space) Θ, with an unknown value 
𝜃 ∈ Θ. These are the underlying state of nature.

2. Sample space 𝒳: potential observations 𝒟 ∈ 𝒳 we could theoretically make.

3. Action space: 𝒜: representing the potential actions we/decision 
maker/agent may select from.

Finally, we will have a likelihood function 𝑝(𝒟 | 𝜃) linking potential 
observations to the parameter space.

After conducting an experiment and observing data 𝒟, we are compelled to select 
an action 𝑎 ∈ 𝒜. 

Decision rule is a function 𝛿:𝒳 → 𝒜 that selects an action 𝑎 given the observations 𝒟



In general, this decision rule can be any arbitrary function. (In Machine 
Learning, we will usually put restrictions on 𝒜 to ensure we have enough 
data to learn them.) 

loss function 𝐿: Θ×𝒜 → ℝ

Loss function 𝐿(𝜃, 𝑎) summarizes “how bad” an action 𝑎 was if the true value 
of the parameter was revealed to be 𝜃. For example, 

Ideally, we would select the action 𝑎 that minimizes this loss 𝐿(𝜃, 𝑎) , but we 
don’t know the exact value of θ. 

Frequentist use likelihood 𝑝(𝒟 | 𝜃) to establish decision theory. (Only from experiments) 

Bayesian use the posterior 𝑝 𝜃 𝒟 establish decision theory, which also includes prior 
belief 𝑝(𝜃).

• Use loss/cost function to select which decision rule to use: 

𝐿(𝜃, 𝑎) = ª01
If 𝑎 𝑥 = 𝜃 (correct decision)
If 𝑎 𝑥 ≠ 𝜃 (incorrect decision)



Given a potential action 𝑎, define the posterior expected loss/risk of 𝑎 by 
averaging the loss function over the unknown parameter 𝜃 :

𝑙 𝑝 𝜃 𝒟 , 𝑎 = 𝐸= 𝐿 𝜃, 𝑎 𝒟 = �
H
𝐿 𝜃, 𝑎 𝑝 𝜃 𝒟 d𝜃

When there is an action minimizing the posterior expected loss, choose 
a Bayes action/estimator:

𝛿∗ 𝒟 = argmin
0∈𝒜

𝑙 𝑝 𝜃 𝒟 , 𝑎

= argmin
0∈𝒜

�
H
𝐿 𝜃, 𝑎 𝑝(𝒟 | 𝜃)𝑝(𝜃)d𝜃

Bayesian decision theory use the posterior 𝑝(𝜃|𝒟), which is the current 
belief about the unknown parameter 𝜃, given the observed data 𝒟.

q Bayesian decision



q Frequentist decision theory (no prior distribution)

Use likelihood 𝑝(𝒟 | 𝜃) on a given parameter 𝜃. 

The frequentist risk(error) (Expected loss) of a decision function 𝛿 is defined by 
the expected loss incurred when repeatedly using the decision rule δ on 
different datasets 𝒟 as a function of the unknown parameter 𝜃:

𝑅 𝜃, 𝛿 = 𝐸𝒟|= 𝐿 𝜃, 𝛿 𝒟 𝜃 = �
𝒳
𝐿(𝜃, 𝛿 𝒟 )𝑝(𝒟| 𝜃) 𝑑𝒟

For two decision rules 𝛿"𝑎𝑛𝑑 𝛿%, we say 𝛿" 𝒅𝒐𝒎𝒊𝒏𝒂𝒕𝒆𝒔 𝛿% if  

𝑅 𝜃, 𝛿" ≤ 𝑅 𝜃, 𝛿% for all 𝜃 ∈ Θ and 

𝑅 𝜃, 𝛿" < 𝑅 𝜃, 𝛿% for at least one 𝜃

If there is a decision rule 𝛿 that is not dominated by any other rule, it is called admissible.



q Bayes risk(error)

𝑟 𝑝 𝜃 , 𝛿 = 𝐸= 𝑅 𝜃, 𝛿 = �
H
�
𝒳
𝐿(𝜃, 𝛿 𝒟 )𝑝(𝒟| 𝜃) 𝑝 𝜃 𝑑𝒟𝑑𝜃

Any decision 𝛿 minimizing Bayes risk is called a Bayes rule/decision.

• Every Bayes rule is admissible

• Every admissible decision rule is a generalized Bayes rule for some 
(possibly improper) prior 𝑝 𝜃 .

Bayes risk of a decision 𝜹

argmin
0

𝑟 𝑝 𝜃 , 𝑎 = argmin
0

�
H
𝐿(𝜃, 𝑎)𝑝 𝜃|𝒟 𝑑𝜃=𝛿∗ 𝒟 Bayes action.

Here, 𝑎 = 𝛿 𝒟



Ø Point Estimation Example

Problem: Estimate the value of a parameter 𝜃. (e.g., unknown bias of a coin.)

Review Bayesian method: 

1.) Select a likelihood function 𝑝(𝒟 | 𝜃), explaining how observed data 𝒟 are 
expected to be generated given the value of 𝜃. 

2.) Select a prior distribution 𝑝(𝜃) reflecting our initial beliefs about 𝜃. 

3.) Conduct an experiment to gather data and use Bayes’ theorem to derive the 
posterior 𝑝(𝜃 |𝒟).

Bayesian inference need to use 𝑝 𝜃 𝒟 to answer some questions. For example, we 
might be compelled to choose a single value {𝜃 to serve as a point estimate of 𝜃. To a 
Bayesian, the selection of {𝜃 is a decision, and in different contexts we might want to 
select different values to report. (Find {𝜃 which has the smallest loss.)



In the example, the action is choosing a parameter, so 𝒜 = Θ. 

The decision rule 𝛿:𝒳 → 𝒜 is written as {𝜃 𝒟 .

1. Selecting a loss function, e.g., 

2. Find the posterior expected loss at every point. 

𝐿 𝜃, {𝜃 : = 𝜃 − {𝜃 %

𝑙 {𝜃 ≔ 𝐸 𝐿 𝜃, {𝜃 𝒟 = �
H
𝐿 𝜃, {𝜃 𝑝 𝜃 𝒟 d𝜃 = �

H
𝜃 − {𝜃 % 𝑝 𝜃 𝒟 d𝜃

= �
H
𝜃% 𝑝 𝜃 𝒟 d𝜃 − 2 {𝜃�

H
𝜃 𝑝 𝜃 𝒟 d𝜃 + {𝜃%�

H
𝑝 𝜃 𝒟 d𝜃

= �
H
𝜃% 𝑝 𝜃 𝒟 d𝜃 − 2 {𝜃E 𝜃 𝒟 + {𝜃%



3. A decision rule {𝜃 that minimizes posterior expected loss for every possible 
set of observations 𝒟 is called a Bayes estimator. 

𝜕𝑙 {𝜃
𝜕 {𝜃

= −2𝐸 𝜃 𝒟 + 2 {𝜃 = 0
By calculus

{𝜃 = 𝐸 𝜃 𝒟 = argmin 𝑙 {𝜃 , since the second derivative positive.

{𝜃(𝒟) = 𝐸 𝜃 𝒟

Bayes estimator in the case of squared loss is the posterior mean:

Recall that 𝜃|𝒟~ℬ(𝜃; 𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥)

𝐸 𝜃 𝒟 =
𝛼 + 𝑥

𝛽 + 𝑛 − 𝑥 Median 𝜃 𝒟 ≈ 4:23"/M
5:$323%/M mode 𝜃 𝒟 =

𝛼 + 𝑥 − 1
𝛽 + 𝑛 − 𝑥 − 2



• The Bayes estimator for the absolute deviation loss 𝐿(𝜃, {𝜃) = |𝜃 − {𝜃| is 
the posterior median.

Similarly,

• The Bayes estimators for a relaxed 0– 1 loss:

𝐿(𝜃, {𝜃) = º
0

1

𝜃 − {𝜃 < 𝜖

𝜃 − {𝜃 ≥ 𝜖

converge to the posterior mode for small 𝜀.

mode: value that appears most often.

More over, we know {𝜃BEF = mode 𝜃 𝒟

{𝜃BCD =
𝑥
𝑛



Example: Classification with 0–1 loss  

Suppose our observations are of the form (𝑥, 𝑦), where 𝑥 is an arbitrary input, and 
𝑦 ∈ {0, 1} is a binary label associated with 𝑥.

Goal: predict the label 𝑦′ associated with a new input 𝑥N.

The Bayesian approach: derive a model giving probability (not conditioned on 𝜃) 

𝑃(𝑦N = 1|𝑥N, 𝒟)

𝑃 𝑦N = 1 𝑥N, 𝒟 = �𝑃 𝑦N = 1, 𝜃 𝑥N, 𝒟 𝑑𝜃 = �𝑃 𝑦N = 1 𝑥N, 𝒟, 𝜃 𝑃 𝜃 𝒟 𝑑𝜃

Use joint distribution with 𝜃, then take marginal:

The prediction of a label is actually a decision.

Action space is 𝒜 = {0, 1}, enumerating the two labels we can predict. 
Parameter space is the same: the only uncertainty we have is the unknown label 𝑦N.



Suppose the 0 − 1 loss function for this problem:

𝐿(𝑦′, 𝑎) = º
0

1

𝑎 = 𝑦′

𝑎 ≠ 𝑦′

We pay a constant loss for every mistake we make. In this case, the expected loss
of each possible action is simple to compute:

𝐸 𝐿 𝑦N, 𝑎 = 1 𝑥N, 𝒟 = 𝑃(𝑦N = 0|𝑥N, 𝒟)

𝐸 𝐿 𝑦N, 𝑎 = 0 𝑥N, 𝒟 = 𝑃(𝑦N = 1|𝑥N, 𝒟)

The Bayes action (classifier) is then to predict the class with the highest probability.

Notice that if we change the loss to have different costs of mistakes (so that 
𝐿 0, 1 ≠ 𝐿(1, 0)), then the Bayes action might compel us to select the less-likely 
class to avoid a potentially high loss for misclassification.

{𝑓 �⃗� = º
1 if 𝑃(𝑦N = 1|𝑥N, 𝒟) > 0.5

0 if 𝑃(𝑦N = 1|𝑥N, 𝒟) < 0.5



Suppose �⃗� are the model parameters, and 𝒟 = (�⃗� & , �⃗� & ) &'"
A

the observed data.   

Ø Bayesian Perspective of Modeling in Machine Learning

Assume �⃗� are also drawn from a distribution.  It is convenient to characterize 
the weighting schemes �⃗� in terms of distributions and their associated 
densities. 

Even though there is some ‘true’ value of " �⃗� (i.e. the values that drive
the data generating mechanism), they are treated as random variables.

𝑃(�⃗�):  density associated with the prior distribution. (The best guess of the 
distribution before the data.) 

𝑃(𝒟 | �⃗�) : the likelihood for the data.



§ Prediction

Once we have computed the posterior over the parameters, we can 
make prediction of Y, 𝑦 given a new input �⃗� by computing the 
posterior predictive distribution

𝑝 𝑦 �⃗�, 𝒟 = �𝑝 𝑦 �⃗�, �⃗� 𝑝 �⃗� 𝒟 𝑑�⃗�

𝑃 �⃗� 𝒟) =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

𝑃(𝒟)
=

𝑃(𝒟 | �⃗�) 𝑃(�⃗�)
∫ 𝑃(𝒟 | �⃗�′) 𝑃(�⃗�′) 𝑑�⃗�′

The denominator 𝑃(𝒟) is the normalization constant. 

Bayes’ theorem converts a prior probability into a posterior probability

posterior ∝ likelihood × prior
In words: 

Notation ∝ means “proportional to”, since we we are ignoring the constant. 

Here, we assume given fixed location �⃗�



If we knew �⃗�, we could base our prediction on the likelihood 𝑝 �⃗� 𝒟

• this is the frequentist approach

• i.e., replace �⃗� with an estimate {⃗𝜃

• uncertainty in ¾𝑦 typically doesn’t account for uncertainty in {⃗𝜃

The Bayesian approach adopts the attitude that, while the true �⃗� is
unknown, one can does have access to the posterior, 𝑝 �⃗� 𝒟 , which
provides relative weight to potential values of �⃗�

The posterior predictive distribution is essentially a weighted average
Likelihood: weight potential 𝑃(𝒟 | �⃗�) according to the posterior distribution 
𝑃 �⃗� 𝒟).

Automatically accounts for uncertainty in the estimation of �⃗�

𝑝 𝑦 �⃗�, 𝒟 is the density for a distribution and, hence, also automatically 
provides a measure of variability for the prediction itself.



Ø The Bayesian Framework for general linear model

For a given parameter �⃗�, suppose the distribution of  a random dataset 
𝒟 = (�⃗� & , 𝑦 & ) &'"

A is the following model:

𝑦(&) = 𝑓 �⃗� & + 𝜖& =*
&'"

+

𝜃OℎO �⃗� & + 𝜖& = ℎP �⃗� & �⃗� + 𝜖&

where 𝜖& are iid 𝑁 0, 𝜎% random variables, and 

ℎP �⃗� = [ℎ" �⃗� ℎ% �⃗� … ℎ+ �⃗� ]

with the right side consisting of the spline basis elements. (When ℎ& �⃗� = 𝑥&, 
we have the linear regression model.)

Thus, given �⃗�, and the fixed location �⃗�, the probability distribution 𝑦(&) is

𝑦 & �⃗�, �⃗� & ~ 𝑁 ℎP �⃗� & �⃗�, 𝜎%



so that 𝑝 𝑦 & �⃗�, �⃗� & =
1
2𝜋 𝜎

exp −
1
2𝜎% 𝑦(&) − ℎP �⃗� & �⃗�

%

Note that conditioning on �⃗� & at the end means only that we are treating the 
�⃗� & as fixed in the calculation.

MLE for linear regression: 

We already know that the Ordinary Least Squares(OLS) method 

We maximize the likelihood 𝑃(𝒟|�⃗�), or equivalently 

{⃗𝜃BCD ≔ argmax
=

𝑃(𝒟 | �⃗�) = arg𝑚𝑖𝑛
=

− log𝑃(𝒟 | �⃗�)

Equivalently, = arg𝑚𝑖𝑛
=

𝑅𝑆𝑆(�⃗�)

= 𝑋P𝑋 3"𝑋P�⃗�



The logic is essentially that we are assuming a model for the unknown 
parameter �⃗� as having a probability distribution.

Before we see any data in the dataset 𝒟 = (�⃗� & , 𝑦 & ) &'"
A only our prior 

knowledge can give us an idea of this distribution 𝑝 �⃗� for 𝜽 , which is 
therefore called the prior distribution.

In this case we give a relatively naïve prior where we do not assume too 
much by assuming that �⃗�~ 𝑁 0, Σ with prior covariance matrix Σ, that is  

𝑝 �⃗� =
1

2𝜋 Q Σ
exp −

1
2 �⃗�

P
Σ3" �⃗�

Bayesian method setup:

Remark: We can also assume �⃗�~ 𝑁 �⃗�, Σ . Calculation is similarly.



Suppose there are two fixed locations �⃗� and �⃗�’.

𝑓 �⃗� =*
&'"

+

𝜃OℎO �⃗� = ℎP �⃗� �⃗� 𝑓 �⃗�′ = *
&'"

+

𝜃OℎO �⃗�N = ℎP �⃗�N �⃗�and

They are linear combinations of independent normal random variables
𝜃& with (non-random) coefficients ℎP �⃗� .

So, the mean 𝐸= 𝑓 �⃗� = 𝐸 ℎP �⃗� �⃗� = ℎP �⃗� 𝐸 �⃗� = 0

Similarly, 𝐸 𝑓 �⃗�′ = 0

So, (prior) covariance 𝐶𝑜𝑣 𝑓 �⃗� , 𝑓 �⃗�′ = 𝐸 𝑓 �⃗� 𝑓 �⃗�′ = 𝐸[ℎP �⃗� �⃗��⃗�Pℎ(�⃗�′)]

= ℎP �⃗� 𝐸[�⃗��⃗�P] ℎ �⃗�N = ℎP �⃗� Σ ℎ �⃗�N

q Prior distributions of 𝒇 𝒙 and 𝒚

A Useful Lemma: If 𝑧 = 𝐴�⃗�, then Cov 𝑧 = 𝐴 Cov �⃗� 𝐴P



Recall that 𝑦(&) = 𝑓 �⃗� & + 𝜖& = ∑&'"
+ 𝜃OℎO �⃗� & + 𝜖& = ℎP �⃗� & �⃗� + 𝜖&

It follows that 
�⃗� = 𝐻�⃗� + 𝜖

where

𝐻 =

ℎP �⃗� "

ℎP �⃗� %

⋮
ℎP �⃗� A

𝜖 =

𝜖"
𝜖%
⋮
𝜖A

So, 𝐸 �⃗� = 0 and 𝐶𝑜𝑣 �⃗� = 𝐻Σ𝐻P + 𝜎%𝐼

Since a sum of independent Gaussians is Gaussian) we know �⃗� is Gaussian

�⃗�~ 𝑁(0, 𝐻Σ𝐻P + 𝜎%𝐼)

Here, �⃗� is fixed and �⃗� is the random variable. 



Our convention 𝑝(𝑥) is density function of random variable 𝑥; 𝑝(𝑥|𝑦) is 
conditional density function of random variable 𝑥 given value of random 
variable 𝑦.

Note that we always view �⃗�(&) &'"
A

as fixed, and for our prior distributions we 
have

�⃗�~ 𝑁 0, Σ

with �⃗�|�⃗� & ~ 𝑁(0, 𝐻Σ𝐻P + 𝜎%𝐼)

Given �⃗�, the probability distribution 𝑦(&) is

𝑦 & �⃗�, �⃗� & ~ 𝑁 ℎP �⃗� & �⃗�, 𝜎%



𝑝 �⃗� 𝒟) =
𝑝(𝒟 | �⃗�) 𝑝(�⃗�)

𝑝(𝒟)

The posterior distribution for �⃗� (i.e., our distribution for �⃗� given the new 
information in 𝒟) is

First, the likelihood 𝑝(𝒟 | �⃗�) can be computed by

𝑝(𝒟 | �⃗�) =£
&'"

A

𝑝 𝑦 & �⃗�, �⃗� & =£
&'"

A
1
2𝜋 𝜎

exp −
1
2𝜎%

𝑦(&) − ℎP �⃗� & �⃗�
%

=
1
2𝜋 𝜎

A

exp −
1
2𝜎% �⃗� − 𝐻�⃗�

%

q Posterior distribution

If we want we can even write down the prior distribution of our dataset 
𝒟 as

𝑝 𝒟 = �𝑝 𝒟 �⃗� 𝑝 �⃗� 𝑑�⃗�

where 𝐻RS = ℎO(𝑥(&))



𝑝 �⃗� 𝒟) =
𝑝(𝒟 | �⃗�) 𝑝(�⃗�)

𝑝(𝒟)

The posterior density for �⃗� (i.e., its new probability density given the new 
information in 𝒟) is

=
1

𝑝(𝒟)
1
2𝜋 𝜎

A
exp −

1
2𝜎% �⃗� − 𝐻�⃗�

% 1

2𝜋 Q Σ
exp −

1
2 �⃗�

P
Σ3" �⃗�

=
1

𝑝(𝒟)
1

2𝜋
A:Q

𝜎A Σ
exp −

1
2𝜎% �⃗� − 𝐻�⃗�

%
−
1
2 �⃗�

P
Σ3" �⃗�

We now rearrange the exponent and rewrite the density as



= Κ exp − �⃗� −
B3"𝐶
2

T

B �⃗� −
B3"𝐶
2

Κ ≔
1

𝑝(𝒟)
1

2𝜋
A:Q

𝜎A Σ
exp −𝐴 +

𝐵3"𝐶 P𝐵 𝐵3"𝐶
4

where Κ is the Normalization constant (no dependence on �⃗�)

Here: 𝐴 = U$U
%V%

, 𝐵 = ?$?
%V%

+ W&'

%
and 𝐶P = U$?

V%

�⃗�|𝒟 is also a normal distribution with mean

𝐸 �⃗�|𝒟 =
B3"𝐶
2 = 𝐻P𝐻 + Σ3"𝜎% 3"𝐻P�⃗�

The covariance matrix is 

𝐶𝑜𝑣 �⃗�|𝒟 = 2𝐵 3" = 𝐻P𝐻 + 𝜎%Σ3" 3"𝜎%



Posterior distribution of 𝒇(𝒙) for fixed 𝒙 (For prediction)

Now fixing �⃗� and recalling from that

𝑓 �⃗� = ℎP �⃗� �⃗�

with fixed basis functions vector ℎP �⃗� . 

So, 𝑓 �⃗� |𝒟 is a multivariate normal with mean  

𝐸 𝑓 �⃗� 𝒟 = ℎP �⃗� 𝐸 �⃗� 𝒟 = ℎP �⃗� 𝐻P𝐻 + Σ3"𝜎% 3"𝐻P�⃗�

And covariance matrix

𝐶𝑜𝑣 𝑓 �⃗� 𝒟 = ℎP �⃗� 𝐻P𝐻 + 𝜎%Σ3" 3"𝜎%ℎ �⃗�



Q: How to choose covariance matrix 𝚺 for the prior distribution of 𝜽?

This is a big question in Bayesian inference. We can take the prior covariance to 
be 𝜏Σ, for correlation Σ, e.g., 𝜏𝐼

�⃗�|𝒟 has mean

𝐸 �⃗�|𝒟 =
B3"𝐶
2 = 𝐻P𝐻 +

1
𝜏 Σ

3"𝜎%
3"

𝐻P�⃗�

The covariance matrix is 

𝐶𝑜𝑣 �⃗�|𝒟 = 2𝐵 3" = 𝐻P𝐻 +
1
𝜏 𝜎

%Σ3"
3"
𝜎%

Notice that as 𝜏 → ∞, this becomes a constant prior and in turn reduces
to the linear regression. We again see that Bayesian reasoning leads to
ridge regression, and in turn that another way to understand the 𝜆 of
ridge regression is as an inverse variance in the parameters.

q Connection to ridge regression

Actually, if we use Maximum a Posteriori estimator, it is equivalent minimize ridge loss. 



Summary of the Bayesian Method

There are four main steps to the Bayesian approach to probabilistic inference:

1. Likelihood. First, we construct the likelihood (or model), 𝑝 𝒟 �⃗�). This 
serves to describe the mechanism giving rise our observations D given a 
particular value of the parameter of interest �⃗�. 

4. Inference. We now use the posterior distribution to draw further conclusions 
as required. (open-end)

3. Posterior. Given some observations 𝒟, we obtain the posterior distribution 
𝑝(�⃗�|𝒟) using Bayes’ theorem.

2. Prior. Next, we summarize our prior beliefs about the parameters �⃗�, which we 
encode via a probability distribution 𝑝(�⃗�). 



Ø Bayesian Logistic Regression/The Laplace Approximation

Consider the GLM for independent Bernoulli observations 𝑦(&)~𝐵𝑒𝑟 𝜇 &

for 𝑖 = 1, … , 𝑁

𝜇 =: 𝐸(𝑌|𝑋) = 𝑃 𝑌 = 1 𝑋 = 𝜎 �⃗�P𝑋

Recall Binary Classification Model Assumption

𝜇(�⃗�) =
1

1 + 𝑒32⃗$5
Logistics Model:

Probit model 𝜇(�⃗�) =
1
2𝜋

�
37

5$2⃗
exp −

𝑢%

2
𝑑𝑢

when 𝜎 𝑢 = "
":Y&(

when 𝜎 𝑢 is cdf of normal.

Traditional approach to logistic regression: MLE

{⃗𝜃 = argmax
=

𝑃 �⃗� 𝑋, �⃗� = arg𝑚𝑖𝑛
=

−log𝑃 �⃗� 𝑋, �⃗�



Ø Bayesian logistic regression

Select a prior distribution for the parameter �⃗�

Assuming that �⃗�~ 𝑁 0, Σ with prior covariance matrix Σ, that is  

𝑝 �⃗� =
1

2𝜋 Q Σ
exp −

1
2 �⃗�

P
Σ3" �⃗�

𝑝 �⃗� 𝒟) =
𝑝(𝒟 | �⃗�) 𝑝(�⃗�)

𝑝(𝒟) =
𝑃(𝒟 | �⃗�) 𝑃(�⃗�)

∫ 𝑃(𝒟 | �⃗�′) 𝑃(�⃗�′) 𝑑�⃗�′

Derive the posterior distribution for �⃗� by Bayes’ theorem

Unfortunately, the product of the Gaussian prior on �⃗� and the likelihood (for either 
choice of sigmoid) does not result in a posterior distribution in a nice parametric family 
that we know. The normalization constant (the evidence) 𝑝 𝒟 = 𝑝(�⃗� | 𝑋) is 
intractable as well.



• Derive an algorithm to draw samples from the posterior distribution, which we 
may use to, for example, make Monte Carlo estimates to expectations. 

Two main approaches: 

• Use a deterministic method to find an approximation to the posterior (that 
will typically live inside a chosen parametric family). E.g., Laplace
approximation.



q Laplace Approximation to the Posterior

Suppose we have an arbitrary parameter prior 𝑝(�⃗�) and an arbitrary likelihood 
𝑝 𝒟 �⃗�), and wish to approximate the posterior

𝑝 �⃗� 𝒟) =
1
𝑍 𝑝 𝒟 �⃗�)𝑝(�⃗�),

where 𝑍 is the unknown normalization constant. Define

𝜙 �⃗� := log 𝑝(𝒟|�⃗�) + log 𝑝(�⃗�)

The Laplace approximation is based on a Taylor expansion to 𝜙 �⃗� around its 
maximum {𝜃.

𝜙 �⃗� ≈ 𝜙 {𝜃 −
1
2 �⃗� − {𝜃

P
𝐻(�⃗� − {𝜃)

where 𝐻 is the Hessian matrix of 𝜙(�⃗�) at {𝜃.  



Find maximum a posteriori (MAP), use gradient ∇𝜙 �⃗� =0

{𝜃 = argmax
=

𝜙 �⃗� = argmax
=

𝑝 �⃗� 𝒟)

“optimization is easier than integration”.

Then we have 

𝑝 �⃗� 𝒟) ∝ exp𝜙 {𝜃 exp −
1
2 �⃗� − {𝜃

P
𝐻 �⃗� − {𝜃

Proportional to Gaussian distribution!

So, 𝑝(�⃗�| 𝐷) ≈ 𝑁 ( {𝜃, 𝐻3" ).

So we also have the normalizing constant 𝑍,

𝑍 = exp 𝜙 {𝜃 2𝜋 Q|𝐻3"| = exp 𝜙 {𝜃
2𝜋 Q

|𝐻|



q Making Predictions

Suppose we already have 𝑝 �⃗� 𝒟), e.g., by Laplace ≈ 𝑁 ( {𝜃, 𝐻3" ).

Given a test input �⃗�∗, in the Bayesian approach, we marginalize the unknown 
parameters to find the the predictive distribution:

𝑃 𝑦∗ = 1 �⃗�∗, 𝒟) = �𝑃 𝑦∗ = 1 �⃗�∗, 𝒟, �⃗�) 𝑝 �⃗� 𝒟 𝑑�⃗�

= �𝜎(�⃗�∗P �⃗�)𝑝 �⃗� 𝒟 𝑑�⃗�

When 𝜎 is logistic function, the integral can not be evaluated. 
When 𝜎(𝑢) = 𝑔(𝑢) is cdf normal function, the integral can be evaluated

𝑃 𝑦∗ = 1 �⃗�∗, 𝒟) = �𝑔(�⃗�∗P �⃗�)𝑝 �⃗� 𝒟 𝑑�⃗�

= �
37

7
𝑔(𝑎)𝑝 𝑎 𝒟 𝑑𝑎

𝑎 ≔ �⃗�∗P �⃗�

From ℝQ to ℝ



𝑝 𝑎 𝒟 = 𝑁(�⃗�∗P
{⃗𝜃, �⃗�∗P𝐻3"�⃗�∗P)

𝑃 𝑦∗ = 1 �⃗�∗, 𝒟) = 𝐸 𝑔 𝑎 = 𝑔
�⃗�∗P

{⃗𝜃
1 + �⃗�∗P𝐻3"�⃗�∗P



The Bayesian Information Criterion (BIC)

Given a set of models {ℳ&}, and observed data 𝒟 with 𝑁 data points , we 
compute the following statistic for each: 

𝐵𝐼𝐶& ∶= log 𝑝 𝒟 ×𝜃&) −
𝑑
2 log𝑁

log true predicted goodness = log 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

From Laplace Approximation to the posterior distribution

log 𝑝 𝒟 ℳ&) = log 𝑍 ≈ log 𝑝 𝒟 ×𝜃&) + log 𝑝 ×𝜃& +
𝑑
2 log 2𝜋 −

1
2 log |𝐻|

𝑝 �⃗� 𝒟,ℳ) =
1
𝑍 𝑝 𝒟 �⃗�,ℳ)𝑝 �⃗�|ℳ Implies  𝑍 = 𝑝 𝒟|ℳ

Reason for BIC: 

Here, ×𝜃& is the maximum a posteriori (MAP) estimate.  

BIC penalizes model complexity more heavily than AIC. (− Q
A

) 

Very roughly 
approximate



Ø Bayesian Model Comparison/Selection

Given a finite set of models ℳ& &'"
C , and observed data 𝒟. A model ℳ& is 

probability distributions with parameters �⃗�& . Suppose the data 𝒟 is generated 
from one of these models but we don’t know which.

𝑃 ℳ& 𝒟) =
𝑝(𝒟 |ℳ&) 𝑝(ℳ&)

𝑝(𝒟) =
𝑝(𝒟 |ℳ&) 𝑃(ℳ&)

∑O 𝑝(𝒟 |ℳO) 𝑃(ℳO)

𝑝 𝒟 ℳ& : likelihood.  (model evidence)

𝑃(ℳO) : Prior distribution over models that we have selected. E.g., uniform 
distribution. That is assume all models are given equal prior probability. 

𝑝 𝒟 ℳ& = �𝑝 𝒟 �⃗�& ,ℳ& 𝑝(�⃗�&|ℳ&) 𝑑�⃗�&

Averaging over all possible parameters. (joint distribution with �⃗�&, then marginalize. )

Give a data 𝒟, we wish to evaluate the posterior:  



Suppose now that we have exactly two models for the observed data that we 
wish to compare: ℳ" and ℳ%.

𝑃 ℳ" 𝒟)
𝑃 ℳ% 𝒟)

=
𝑝(𝒟 |ℳ") 𝑝(ℳ")
𝑝(𝒟 |ℳ%) 𝑝(ℳ%)

Model Selection:

𝑝(𝒟 |ℳ")
𝑝(𝒟 |ℳ%)

If we assume all models are given equal prior probability, then posterior odds
Is the same as Bayes factor:  

posterior odds



Example: Coin head ratio  

Suppose I am presented with a coin and want to compare two models for explaining 
its behavior.

ℳ": 𝑃 ℎ𝑒𝑎𝑑 = "
% No parameter in this model. 

ℳ%: Assume the heads probability is fixed to an unknown value 𝜃 ∈ (0, 1), with a 
uniform prior on 𝜃: 𝑝(𝜃 |ℳ%) = 1 (this is equivalent to a Beta prior on 𝜃 𝑤𝑖𝑡ℎ 𝛼 =
𝛽 = 1).

For simplicity, we choose a uniform model prior: 𝑃(ℳ") = 𝑃(ℳ") =
"
%
.

https://en.wikipedia.org/wiki/Bayes_factor#Example

Suppose we flip the coin 𝑛 = 200 times and observe 𝑥 = 115 heads. 

Which model should we prefer in light of this data?

https://en.wikipedia.org/wiki/Bayes_factor


The model evidence for ℳ" is quite straightforward, as it has no parameters:

𝑝 𝒟 ℳ" = Binomial 𝑛, 𝑥,
1
2

= 200
115

1
2

%66
≈ 0.005956

The model evidence for ℳ% :

𝑝 𝒟 ℳ% = �𝑝 𝒟 �⃗� ,ℳ% 𝑝(�⃗� |ℳ%) 𝑑�⃗�

= �
6

" 200
115 𝜃 ""Z 1 − 𝜃 [Z𝑑𝜃 =

1
201 ≈ 0.004975

The Bayes factor in favor of ℳ" is approximately 1.2, so the data give very weak 
evidence in favor of the simpler model ℳ" .



An interesting aside here is that a frequentist hypothesis test would reject the null 
hypothesis 𝜃 = "

%
𝑎𝑡 𝑡ℎ𝑒 𝛼 = 0.05 𝑙𝑒𝑣𝑒𝑙. 

The probability of generating at least 115 heads under model ℳ" is approximately 
𝑃 𝑥 ≥ 115 ℳ") ≈ 0.02

(similarly, the probability of generating at least 115 tails is also 0.02), so a two-
sided test would give a p-value of approximately 4%.

However, that a non-uniform prior (for example one that reflects the fact 
that you expect the number of success and failures to be of the same 
order of magnitude) could result in a Bayes factor that is more in 
agreement with the frequentist hypothesis test. 

One spin on Bayesian decision theory is that it automatically gives a preference 
towards simpler models, in line with Occam’s razor: "entities should not be 
multiplied beyond necessity". Consider 𝑝 𝒟 ℳ , more complex models can 
explain more datasets, so the support of this distribution is wider in the sample 
space. But note that the distribution must normalize over the sample space as 
well, so we pay a price for generality. 



q Model selection for Bayesian linear regression

Suppose ℳ[]]corresponds to order s −polynomial regression. 

Again, however, the simpler model will be preferred due the Occam’s razor effect.

𝑝 𝒟 ℳ& = 𝑝 �⃗� 𝑋, 𝜎%,ℳ& = 𝑁 𝐻�⃗�, 𝐻Σ𝐻P + 𝜎%𝐼 ,

From Bayesian linear regression, assume prior �⃗�~ 𝑁 �⃗�, Σ we have 

𝑦(&) = ℎ]
P
�⃗� & �⃗� + 𝜖& where 𝜖& are iid 𝑁 0, 𝜎% random variables, and 

ℎ]
P
�⃗� = [ℎ" �⃗� ℎ% �⃗� … ℎ+(]) �⃗� ]

Assume

where ℎ& �⃗� give the degree 𝑖 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑠



q Bayesian Model Averaging

When making predictions, we should theoretically use the sum rule to 
marginalize the unknown model ℳ&, e.g. Bayesian model averaging:

𝑝 𝑦∗ �⃗�∗, 𝒟 =*
&

𝑝 𝑦∗ �⃗�∗, 𝒟,ℳ& 𝑃 ℳ& 𝒟

Both model averaging  and model selection are used in practice. 

https://www.stat.colostate.edu/~jah/papers/statsci.pdf

https://arxiv.org/pdf/1509.08864.pdf

https://www.mathworks.com/matlabcentral/fileexchange/29326-bms-toolbox-for-matlab-bayesian-
model-averaging-bma

https://www.kaggle.com/code/billbasener/bayesian-model-averaging-regression-
tutorial/notebook

MATLAB: 

Python: 

Papers: 

https://www.kaggle.com/code/billbasener/bayesian-model-averaging-logistic-regression

https://www.stat.colostate.edu/~jah/papers/statsci.pdf
https://arxiv.org/pdf/1509.08864.pdf
https://www.mathworks.com/matlabcentral/fileexchange/29326-bms-toolbox-for-matlab-bayesian-model-averaging-bma
https://www.kaggle.com/code/billbasener/bayesian-model-averaging-regression-tutorial/notebook
https://www.kaggle.com/code/billbasener/bayesian-model-averaging-logistic-regression


Bayesian Statistics v.s. Frequentist Statistics

Frequentist: The parameter �⃗� is not a random variable.
Bayesian: The parameter is a random variable.

Frequentist	statistics	never	uses	or	calculates	the	probability	of	the	
hypothesis.	𝑝 �⃗�

Bayesian	uses	probabilities	of	data	and	probabilities	of	both	hypothesis.

Frequentist	methods	do	not	demand	construction	of	a	prior	and	depend	
on	the	probabilities	of	observed	and	unobserved	data.	

On	the	other	hand,	Bayesian	methods	depend	on	a	prior	and	on	the	
probability	of	the	observed	data





https://xkcd.com/1132/

https://www.explainxkcd.com/
wiki/index.php/1132:_Frequen
tists_vs._Bayesians

https://xkcd.com/1132/
https://www.explainxkcd.com/wiki/index.php/1132:_Frequentists_vs._Bayesians
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• Textbooks:
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ü Murphy 1: Sec 2.3,  4.1-4.6,  5.1-5.4

ü Osvaldo Martin: <Bayesian analysis with python>

ü Bayesian Reasoning and Machine Learning by David Barber. Geared 

ü Gaussian Processes for Machine Learning by Carl Rasmussen and Christopher Williams.

ü Information Theory, Inference, and Learning Algorithms by David J. C. Mackay.
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A PhD thesis: Bayesian Methods and Machine Learning for Processing Text and 
Image Data 
https://dc.uwm.edu/cgi/viewcontent.cgi?article=2638&context=etd

https://dc.uwm.edu/cgi/viewcontent.cgi?article=2638&context=etd


Limitations of Bayesian Methods

The challenges of specifying an appropriate model and prior and of 
performing the required Bayesian computations are not always easy to meet. 
Here are some currently di cult situations for Bayesian methods:

Problems requiring specific priors in vague situations.
An example: We have a sample of points that we know come from a
convex polyhedron, whose volume we wish to estimate. A Bayesian
method will need a prior over possible polyhedral| which could be
done, but probably requires a lot of thought. But a simple non-Bayesian
estimate based on cross validation is (usually) available.

Problems where the likelihood has an intractable normalizing constant.
Boltzmann machines are an example even maximum likelihood is
hard, and Bayesian inference seems out of the question at the moment.

Problems with complex, unknown error distributions.
We can try to model the error, but it may be difficult. A bad model may
lead to “overfitting” data where the model thinks the error is less than it
is. A cross-validation approach to regularization can sometimes work
better in such situations.



Misguided “Bayesian” Methods
Some attempts at Bayesian inference are just mis-guided | either falling prey to
various problems, or failing from the start because they don't take the Bayesian
framework seriously. Here are some commonly observed errors:

Improper posterior distributions: Priors that are “improper” e.g., uniform over
(−∞,∞)  can sometimes be convenient, but not if the posterior ends up improper.

Ridiculous priors: Surprisingly many people use a gamma(0.001,0.001) prior for 
inverse variances, even though it's absurd.

Relying on MAP estimation: Using the mode of the posterior (MAP estimate) can be 
a crude but useful approximation. But if a method “works” only because of this 
approximation, it's not Bayesian.

Meaningless marginal likelihoods: Often based on priors that aren't well considered, 
or computed using hopelessly inaccurate methods.

Fear of unidentifiability: Irrationally worried that some transformations of the model 
(e.g, permutations of hidden units) leave the probability of the data unchanged, some 
people impose constraints that destroy interpretability, introduce arbitrary asymmetries in 
the prior, and hinder MCMC convergence.



Successes of Bayesian Methodology

Bayesian neural network models and Gaussian process models have been
applied to many practical problems, with excellent results. See Lampinen and
Vehtari (2001) for examples.
Bayesian neural networks produced winning results in the NIPS*2003 feature
selection challenge (http://www.nipsfsc.ecs.soton.ac.uk), with some help
from Dirichlet diffusion tree models.

Dirichlet process mixture models are widely used in the statistical
literature, and they and their hierarchical extensions are becoming popular as
models of documents for information retrieval.
Bayesian methods have increased in popularity in statistics since MCMC
methods were popularized around 1990. Complex hierarchical models, with
many layers of parameters are often used, and are the only viable approach to
some problems. 



Further references: 

• J. M. Bernardo, A. F. M. Smith (1994) Bayesian Theory, Wiley.
• A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin (2003) Bayesian Data Analysis, 2nd

edition, Chapman&Hall/CRC.
• J. S. Liu (2001) Monte Carlo Strategies in Scienti c Computing, Springer-Verlag.
• R. M. Neal (1993) Probabilistic Inference Using Markov Chain Monte Carlo Methods. 

http://www.cs.utoronto.ca/~radford/review.abstract.html
• R. M. Neal (1996) Bayesian Learning for Neural Networks, Springer-Verlag.
• D. J. C. MacKay (2003) Information Theory, Inference, and Learning Algorithms. 

http://wol.ra.phy.cam.ac.uk/mackay/itila/book.html

• Tom Griffiths' reading list: http://www-psych.stanford.edu/~gruffydd/bayes.html
• MCMC Preprint Service: http://www.statslab.cam.ac.uk/~mcmc
• The BUGS software for MCMC: http://www.mrc-bsu.cam.ac.uk/bugs
• Software for flexible Bayesian modeling:
• http://www.cs.toronto.edu/~radford/fbm.software.html
• The new on-line journal Bayesian Analysis: http://ba.stat.cmu.edu

Bayesian Modeling and Computation in Python, By Osvaldo A. Martin, Ravin Kumar, 
Junpeng Lao https://bayesiancomputationbook.com/welcome.html
Code: 
https://github.com/BayesianModelingandComputationInPython/BookCode_Edition1

http://www.cs.utoronto.ca/~radford/review.abstract.html
http://wol.ra.phy.cam.ac.uk/mackay/itila/book.html
http://www-psych.stanford.edu/~gruffydd/bayes.html
http://www.statslab.cam.ac.uk/~mcmc
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.cs.toronto.edu/~radford/fbm.software.html
http://ba.stat.cmu.edu/
https://bayesiancomputationbook.com/welcome.html
https://github.com/BayesianModelingandComputationInPython/BookCode_Edition1

