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Section.  Complexity of models

1. Degree of Freedom 

2. Applications of DF 

3. Vapnik–Chervonenkis (VC) Dimension



Motivation

How to select a "good" model?

Best model is one expected to do well on future data, i.e. to generalize well.

With sufficient data: we can divide the data into:

• Full training set to form our final model. (Fit )

• Test set to test the model, and compute its 
generalizability. (Report quality of final model)

• Validation set, in which we can pre-test the model before 
we test it 'formally' on the set Test. (predict test quality)



Instead use predicted error estimates of an error prediction method based 

on the training data themselves.

Analytic predictors of test error from data within the training set:
• AIC [Akaike information criterion]
• BIC [Bayesian information criterion]

• MDL [minimal description length]
• VC [Vapnik-Chernovenkis dimension

Numerical predictors of test error:
• CV [cross-validation]
• Bootstrap

Often the above full modeling protocol is not feasible (too few data). 



As we move between methods of estimating the underlying regression 
function for a learning problem, we want to compare estimates of test error 
between different methods/models. 

For example, what does it mean to pick Ridge Regression with  𝜆 = 150
over the linear regression on three variables? Or K-nearest neighbors for
K = 5? We would like some sort of measure of the relative complexity
between estimators.

We can use cross validation to split our training set into a training and test 
set, but in practice comparing cross validation curves between methods 
isn't straight forward.

The notions  of degrees of freedom and VC-dimension are often used to 
provide an abstraction of the numbers of “effective” parameters used to  fit a 
model.

Motivation:



Roughly speaking, the degrees of freedom (df) of a model (fitting 
procedure) is the number of “effective” free parameters 𝜃! that are to 
be determined (i.e., to be fit) by a training set 𝒟 = 𝑥⃗ ! , 𝑦 !

!"#
$
.

Ø Degrees of freedom (informal definition) 

It provides a quantitative measure of estimator/model complexity. 

Degrees of freedom represent the number of points of control of a system, 
model, or calculation. (The Effective Number of Parameters)

Degrees of freedom = number of independent values – number of statistics

• In statistics, degrees of freedom is the number of free observations used 
to calculate a statistic.

• In machine learning, degrees of freedom is the free number of parameters 
of a model. (We will focus in this section. )



-𝑦 = .ℎ% 𝑥⃗ = 𝑥⃗&𝜃⃗ = 𝜃#𝑥# +⋯+ 𝜃'𝑥'

Assume also that data 𝒟 = (𝑋, 𝑦⃗) here are centered, i.e., mean is zero.

For Ridge regression, 

5⃗𝜃(!')* = argmin 𝐽(!')*(𝜃⃗ ) = 𝑋&𝑋 + λ𝐼 +#𝑋&𝑦⃗
𝜃⃗

In particular, if 𝜆 = 0, then 5⃗𝜃(!')* is the OLS optimizer 5⃗𝜃,-.

Review of OLS and Ridge Regressions:



Consider the singular value decomposition (SVD) of 𝑋

𝑋 = 𝑈𝐷𝑉&

Here, 

U is an 𝑁×𝑑 orthogonal matrix.  (𝑈&𝑈 = 𝐼') 

V is a 𝑑×𝑑 orthogonal matrix.

D is a 𝑑×𝑑 diagonal matrix, with diagonal entries 𝜎!, 
called the singular values of 𝑋.

Furthermore, the image spaces im 𝑈 = im 𝑋.

𝑋&𝑋 = 𝑉𝐷𝑉&

𝑢! =
/0!
/0!

for 𝑖 = 1, … , 𝑑.



Then have for ordinary least squares prediction vector

𝑦⃗,-. = Proj12(4)y = 𝐻𝑦⃗ = 𝑋(𝑋&𝑋)+#𝑋&𝑦⃗

Replace 𝑋 by 𝑋 = 𝑈𝐷𝑉&

We have
𝑦⃗,-. = ⋯ = 𝑈𝑈&𝑦⃗ = N

6"#

'

𝑢6𝑢6&𝑦⃗ Sum of projections onto
orthonormal vectors 𝑢6.



Thus, the degrees of freedom above OLS regression is 𝑑 since we are 
estimating 𝜃#, … , 𝜃'.

But note we can also get the degrees of freedom from from taking the 
sum of the coefficients of the projections

𝑦⃗,-. = 𝐻𝑦⃗ = 𝑈𝑈&𝑦⃗ = N
6"#

'

𝑢6𝑢6&𝑦⃗

The degree of freedom df=d is also the dimension of the span of the 
columns of 𝑋, i.e., df = dim(im(𝑋)).

Example: Ordinary Least Squares

Finally, it is easy to show we also have here

df = Tr 𝐻 = Tr UU7 = Tr (UU7)= Tr I8 = 𝑑

In addition, 𝐻 = 𝑈𝑈&



Now for ridge regression recall

𝑦⃗(!')* = 𝑋(𝑋&𝑋 + 𝜆𝐼)+#𝑋&𝑦⃗ = 𝐻𝑦⃗

Replace 𝑋 by 𝑋 = 𝑈𝐷𝑉&

𝑦⃗(!')* = ⋯ = 𝑈𝐷 𝐷9 + 𝜆𝐼 +#𝐷𝑈&𝑦⃗

= N
6"#

'

𝑢6
𝜎69

𝜎69 + 𝜆
𝑢6&𝑦⃗ ≡ 𝐻:𝑦⃗

Note that the effective degrees of freedom can now be “thought” of 
as

df = Tr(H) = Tr(H:) =N
6"#

' 𝜎69

𝜎69 + 𝜆
< 𝑑



Note also that as 𝜆 → 0, we have 

5⃗𝜃(!')* →
5⃗𝜃,-. and 𝑑𝑓 → 𝑑

While as 𝜆 → ∞, we have 

5⃗𝜃(!')* → 0 and 𝑑𝑓 → 0

We can generally choose the best - for ridge regression by cross-
validation (i.e. try different values and see which works best).

That is the number of effective free parameters is smaller than before, i.e., 
we have 'less' degrees of freedom if we 'force’ the 𝜃6 to be small.



Effective degrees of freedom

With regard to the effective degrees of freedom (df), we can say that 
when 𝜆 > 0 above, we are still keeping all 𝑑 predictors in the model --
there is no variable selection.

However, we are restricting the predictors [𝜃! by shrinking them, i.e., 
establishing defector constraints on them, equivalent to removing the 
freedom in choosing the 𝜃!.

Thus even though the degrees of freedom (number of parameters [𝜃!) 
is still 𝑑, the effective degrees of freedom have been reduced below 
𝑑 when 𝜆 > 0.



Ø Degrees of freedom (Mathematical Definition) 

Suppose the training data is generated by 𝑦 = ℎ 𝑥⃗ + 𝜖, with E[𝜖] = 0, and 
Var 𝜖 = 𝜎9

Definition: The number of degrees of freedom of [𝒉 is

df .ℎ :=
1
𝜎9N

!"#

$

Cov -𝑦 (!), 𝑦(!)

Suppose we fit some model -𝑦 = .ℎ(𝑥⃗) to the training data.

Even though the concept it represents is quite broad, degrees of freedom 
has a rigorous mathematical definition.

Suppose 𝜖! are uncorrelated. (i.i.d. training data is a stronger assumption.) 

Equivalent, 𝑦(!) = ℎ 𝑥⃗(!) + 𝜖! , for 𝑖 = 1, … , 𝑁.



This covariance treats only 𝑦(!) as random (but not 𝑥(!)) for 𝑖 = 1, … , 𝑁

The definition of degrees of freedom looks at the amount of covariance 
between each point 𝑦(!) and its corresponding fitted values -𝑦(!). We add 
these up over 𝑖 = 1, … , 𝑛, and divide the result by 𝜎9 (dividing by 𝜎9 gets 
rid of the dependence of the sum on the marginal error variance)

.⃗𝑦 =
.ℎ 𝑥⃗(#)
⋮

ℎ 𝑥⃗ $

df .ℎ =
1
𝜎9 Trace(Cov

.⃗𝑦 , 𝑦⃗ )

where 

Matrix Notation for Degrees of Freedom.



Example (mean predictor) 

For one degree of freedom, we would expect a predictor with a single 
parameter, i.e., the constant predictor. 

For example, we would expect the mean predictor .ℎ(𝑥) = g𝑦

𝑦 =
1
𝑁 𝑦 # +⋯+ 𝑦 $

to have a single degree of freedom. df 𝑦 = 1.

.ℎ(𝑥) = 𝜃; = g𝑦



Indeed, since 𝜖! are uncorrelated, the mean predictor

-𝑦 = .ℎ 𝑥 =
1
𝑁 𝑦 # +⋯+ 𝑦 $

has degrees of freedom: 

df .ℎ =
1
𝜎9N

!"#

$

Cov -𝑦 (!), 𝑦(!)

=
1
𝑁𝜎9N

!"#

$

Cov 𝑦 # +⋯+ 𝑦 $ , 𝑦(!)

=
1
𝑁𝜎9

N
!"#

$

Cov 𝑦 ! , 𝑦(!) = 1

Here, 𝑦(!) = ℎ 𝑥⃗(!) + 𝜖! and recall that 𝑥⃗(!) is not treated as random variable.  

Recall that Cov 𝑦 ! , 𝑦(!) = Var 𝑦 ! = 𝜎9



Example (identity predictors) 

On the other hand, an identity estimator -𝑦 (!) = 𝑓 𝑥 ! = 𝑦(!) has 𝑵
degrees of freedom:

df .ℎ =
1
𝜎9N

!"#

$

Cov -𝑦 (!), 𝑦(!) =
1
𝜎9N

!"#

$

Cov 𝑦 (!), 𝑦(!) = 𝑁



This notion of degrees of freedom gives a continuous measurement for 
the number of points we correctly guess, normalized by the number of 
standard deviations from the mean.

Again, this intuitively makes sense: we would need at least N parameters
to consistently make such a fit.



Example (OLS) 

Assume also that data 𝒟 = (𝑋, 𝑦⃗) here are centered. So, the data 
matrix 𝑋 is an 𝑁×𝑑 matrix.   

df .ℎ =
1
𝜎9 T𝑟 Cov .⃗𝑦 , 𝑦⃗

.⃗𝑦 = 𝑋 5⃗𝜃 = 𝑋(𝑋&𝑋)+#𝑋&𝑦⃗

Let us use the Trace (Tr) formula for the calculation:

=
1
𝜎9 Tr Cov 𝑋(𝑋&𝑋)+#𝑋&𝑦⃗ , 𝑦⃗

=
1
𝜎9 Tr 𝑋(𝑋&𝑋)+#𝑋&Cov 𝑦⃗ , 𝑦⃗

= Tr 𝑋(𝑋&𝑋)+#𝑋&

= Tr (𝑋&𝑋)+#𝑋&𝑋 = 𝑇𝑟 𝐼' = 𝑑Since Tr(AB)=Tr(BA),



Suppose a linear prediction has the form

.⃗𝑦 =
.ℎ 𝑥⃗(#)
⋮

ℎ 𝑥⃗ $
= 𝐻𝑦⃗, where 𝐻 is not depending on 𝑦⃗. 

Then, 

df .ℎ =
1
𝜎9 T𝑟 Cov .⃗𝑦 , 𝑦⃗ =

1
𝜎9 T𝑟 𝐻 Cov 𝑦⃗, 𝑦⃗ = 𝑇𝑟(𝐻)

For example, in particular, this verifies that the ridge regression has degrees of 
freedom

df =N
6"#

' 𝜎69

𝜎69 + 𝜆
< 𝑑

Proposition:



This also allows us to properly chart the test error vs the degrees of freedom.
Here we see the test error.

Test error v.s. Degrees of freedom



Example: Linear smoothers

Suppose a model (called linear smooth) has the form

5𝑓 𝑥⃗ = N
6"#

$

𝑤 𝑥⃗, 𝑥⃗ 6 ⋅ 𝑦(6) for some function w( , )

Then, 5𝑓 𝑥⃗! =N
6"#

$

𝑤 𝑥⃗(!), 𝑥⃗ 6 ⋅ 𝑦(6)

Hence 
.⃗𝑦 =

5𝑓 𝑥⃗(#)
⋮

𝑓 𝑥⃗ $
= 𝑊𝑦⃗

where matrix 𝑊 is defined as 𝑊!6 = 𝑤 𝑥⃗(!), 𝑥⃗ 6

Hence, 
df .⃗𝑦 = Tr 𝑊 =N

!"#

$

𝑤 𝑥⃗(!), 𝑥⃗ !



Example. K-Nearest Neighbors (K-NN) 

Consider k-nearest-neighbors regression with 
some  fixed value of 𝐾 ≥ 1. Recall that here

5𝑓 𝑥⃗ =
1
𝑘 N
=⃗(#)∈𝒩%

𝑦(6) =N
6"#

$

𝑤 𝑥⃗, 𝑥⃗ 6 ⋅ 𝑦(6)

where 
𝑤 𝑥⃗, 𝑥⃗ 6 = q

1
𝑘

0

if 𝑥⃗(6) ∈ 𝒩;

if 𝑥⃗(6) ∉ 𝒩;

So, 𝑤 𝑥⃗ ! , 𝑥⃗ ! = #
@

Hence

Question: what happens for small k? Large k?

df .⃗𝑦 = Tr 𝑊 =
N
k



Ø Estimate degrees of freedom: 

Above, we have some good examples that we can calculate the degrees 
of freedom by a closed formula. However, in some models,  degrees of 
freedom can't always be calculated analytically, i.e., subset selection, 
Neural Network. 

However, our definition df .ℎ = #
A&
∑!"#$ Cov -𝑦 (!), 𝑦(!) is still well-defined. 

We can estimate of the  degrees of freedom, we can estimate the 
covariance terms Cov -𝑦 (!), 𝑦(!) by simulation.

A naive approach would be to use the bootstrap and calculate sample 
covariance. 

SCov 𝑥⃗, 𝑧 ≔
∑!"#B (𝑥! − 𝑥̅)(𝑧! − ̅𝑧)

𝐵 − 1



s9 =
𝑅𝑆𝑆

𝑁 − 𝑑 − 1 =
𝑋 5⃗𝜃 − 𝑦⃗

9

𝑁 − 𝑑 − 1 =
∑!"#$ 𝑥⃗ ! ' 5⃗𝜃 − 𝑦(!)

9

𝑁 − 𝑑 − 1

For 𝑏 = 1 to 𝐵 (say 𝐵 = 1000), we repeat the following steps:

1. Draw Bootstrap Samples 𝑥⃗C
! , 𝑦C

! , for 𝑖 = 1, … , 𝑁

2. Compute .⃗𝑦C =

.ℎ 𝑥⃗C
#

⋮
.ℎ 𝑥⃗C

$
Denote 𝑦⃗C =

𝑦C
#

⋮
𝑦C
$

Then, we can estimate for degrees of freedom

df .ℎ ≈
1
𝐵𝜎9

N
!"#

$

N
C"#

B

SCov .⃗𝑦C , 𝑦⃗C

For simplicity, we assume that 𝜎9 is known; otherwise, we'd have to estimate 
it too. For example, in OLR linear model, the variance 𝜎9 is estimated by 

Another better approach for estimating degrees of freedom is to use the residual bootstrap.



Training Error and Test Error

Training data 𝒟 = 𝑥⃗ ! , 𝑦 ! , 𝑖 = 1, … , 𝑁 ⊂ ℝ'×ℝ.

Model: prediction function: 𝑓 𝑥⃗ : ℝ' → ℝ

Loss Function: 𝐿 𝑦, 𝑓 𝑥⃗ measuring error/distance of prediction 𝑓 𝑥⃗ .

Building a prediction model for we find which has the smallest loss. 

Definition: The sample (training) error is average error of our model 5𝑓(𝑥⃗)
on its own training points 𝒟: 

𝑒𝑟𝑟𝒟 =
1
𝑁N

!"#

$

𝐿 𝑦(!), 5𝑓 𝑥⃗(!)



Definition: The (overall) expected test error is expected error on future data 
points (𝑋, 𝑌) based on the current (fixed) training set 𝒟

𝐸𝑟𝑟𝒟 = 𝐸 𝐿 𝑌, 5𝑓 𝑋

This is an expectation of true future error over all randomness. 

If we also average over possible 𝒟 the average error is just called Err. 

Definition:  Another predicted test error measure is the in-sample 
prediction error

𝐸𝑟𝑟!E =
1
𝑁N

!"#

$

𝐸F()* 𝐿 𝑌E*G
(!) , 5𝑓 𝑥⃗(!)

𝐸𝑟𝑟!E = expected error based on same predicted function 5𝑓 𝑥⃗ ! from 
original training set 𝒟 with same 𝑥⃗ ! . But with new 𝑌E*G

(!) from the 
same distributions. 



(1) Set up precise types of error measures (e.g. Errin vs. err)

(2) Review various error estimates and their relations to error analysis 
formulas mentioned above, e.g. G:, AIC, etc. as test error predictors 
from within the training set.

Next, we will

Generally, 𝑒𝑟𝑟𝒟 is too optimistic as predictor for the (true) 𝐸𝑟𝑟𝒟 or 
𝐸𝑟𝑟!E.



Ø Using degrees of freedom for Test error estimation

The difference between expected test and training errors, the optimism of the 
estimator .ℎ, which directly related to Degrees of freedom. 

Optimism≡ 𝐸𝑟𝑟!E − 𝑒𝑟𝑟𝒟

=
1
𝑁
N
!"#

$

𝐸F()* 𝐿 𝑌E*G
(!) , 5𝑓 𝑥⃗(!) −

1
𝑁
N
!"#

$

𝐿 𝑦(!), 5𝑓 𝑥⃗(!)

This is still conditional on fixed data 𝒟 and over the same training points 𝑥⃗(!).

Average over 𝑦(!) in 𝒟, then we have the following result:

𝐸H Optimism =
2
𝑁N

!"#

$

Cov -𝑦 (!), 𝑦(!) =
2𝜎9

𝑁 df 5𝑓Theorem:



In particular, for Mean Squares Error,  

𝐸
1
𝑁
N
!"#

$

𝑦I ! − -𝑦 !
9
− 𝐸

1
𝑁
N
!"#

$

𝑦 ! − -𝑦 ! 9
=
2𝜎9

𝑁
df 5𝑓

Here the test points 𝑦I(!) = 𝑓 𝑥⃗ ! + 𝜖 ! with 𝐸 𝜖 ! = 0 and 𝑉𝑎𝑟 𝜖 ! = 𝜎9.

Hence: 
𝐸H 𝐸𝑟𝑟!E − 𝑒𝑟𝑟𝒟 =

2𝜎9

𝑁 df 5𝑓



Test Error Estimation

𝑇:=
1
𝑁N

!"#

$

𝑦 ! − -𝑦 ! 9
+
2𝜎9

𝑁 df .h

Then, by the theorem of Optimism: 

𝐸 𝑇 = 𝐸
1
𝑁N

!"#

$

𝑦I ! − -𝑦 !
9

So, T is an unbiased estimate for the expected test error.

From above, a very natural estimate for the expected (Mean Square) test 
error is 

Hence if we knew an estimator’s degrees of of freedom, then we could 
use T to approximate its test error. 

note that this is a computationally efficient alternative to cross-validation 
(no extra computation really needed, beyond the training error)



Ø Model selection

Suppose our estimate 5𝑓 = 𝑓depends on a tuning parameter 𝜆; also write 
-𝑦: for the fitted values at 𝜆. Then over a grid of values, say 𝜆 ∈ {𝜆#, … , 𝜆J}, 
we compute the Test error estimate

𝑇:: =
1
𝑁N

!"#

$

𝑦 ! − -𝑦:
! 9

+
2𝜎9

𝑁 df 5𝑓

This may look familiar to you if we consider the case of linear regression 
on any number of predictor variables between 1 and d. Here,  𝜆 indexes the 
number of predictors used in a linear regression, and simply to make things 
look more familiar, we will rewrite this parameter as k. Hence df 𝑓@ =k.

Hence 𝑘 ∈ {1, … , 𝑑}, and the above model selection criterion becomes

.𝑘 = argmin
𝑘

1
𝑁N

!"#

$

𝑦 ! − -𝑦@
! 9

+
2𝜎9

𝑁 𝑘

You may recall this as the 𝑪𝒑 information criterion for model selection in 
linear regression (related to AIC, and then there's BIC, and RIC, ...)



Optimism is is increasing in 𝑘 (dimension of model) and decreasing in 
N (size of training set)

“model complexity"

⇔ "too many parameters 𝑑 fitting too small a size N of dataset 𝒟”
⇔ "overfitting"

⇔ "optimism"
⇔ "unrealistically small error within training set 𝒟”

In general:



Akaike information criterion (AIC) for log-likelihood models

Similarly, as 𝐶L information criterion, the AIC is also the Test error estimate. 

But more generally, we use AIC for log-likelihood models.

−2𝐸F ln 𝑃% 𝑌 = −
2
NEM log lik +

2d
N

True predicted goodness of fit in test set=

−2𝐸F(Log likelihood)= − 9
N
𝐸F(in training log likelihood)+ AIC difference 

log 𝑙𝑖𝑘 = −
2
𝑁N

!"#

$

ln 𝑃%(𝑦(!))Here, 

𝐴𝐼𝐶:= −
2
𝑁
𝐥𝐨𝐠 𝐥𝐢𝐤 +

2𝑑
𝑁



Classification Model: 𝑌 has some discrete probability distribution given 𝑋.

Assume there is an unknown parameter vector 𝜃⃗ in the joint 
distribution of  (𝑋, 𝑌)

We want to compute or estimate distribution of 𝑌 given test point 𝑋:

𝑃% 𝑌 𝑋 = formula in 𝑋, 𝑌 and unknown parameter 𝜃⃗.

Example: (logistics regression) 𝑌 = 0,1 with probability

𝑃% 𝑌 = 1 𝑋 =
e+%'/

1 + e+%'/

𝑃% 𝑌 = 0 𝑋 = 1 − 𝑃% 𝑌 = 1 𝑋 =
1

1 + e+%'/



If we use maximum likelihood to estimate 5⃗𝜃 (like in logistic regression) then 
(within training set (𝑥⃗(!), 𝑦(!))) the cross-entropy loss function to be 
minimized is

log 𝑙𝑖𝑘 = −
2
𝑁
N
!"#

$

ln 𝑃%(𝑦(!))

𝐴𝐼𝐶 = −
2
𝑁 𝐥𝐨𝐠 𝐥𝐢𝐤 +

2𝑑
𝑁

Similar calculation to previous one gives:

log 𝐥𝐢𝐤 is the maximized log-likelihood



These 𝐶L and AIC formulas give approximate unbiased estimators of 𝐸𝑟𝑟!E
for fixed (unchanging) "bases" (e.g., splines with fixed knots). We can't 
choose the bases adaptively in most cases (like in smoothing splines 
where knots are adaptively chosen from data).

This is because the following formula is only for basis fixed (e.g. fixed 
knots) beforehand.

2
𝑁N

!"#

$

Cov -𝑦 (!), 𝑦(!) =
2𝜎9

𝑁 𝑑

Linear and logistics. 



• BIC (Bayes information criterion, this is the model with largest difference 

from err), 
• MDL (minimal description length), 

• DIC (deviance information criterion), 
• VC (Vapnik-Chernovenkis) error bound formula.

There are additional methods: 



Consider dataset 𝒟 = 𝑥⃗ ! , 𝑦 ! , 𝑖 = 1, … , 𝑁 based on underlying 
probability distribution

𝑋, 𝑌 ~𝑃(𝑥⃗, 𝑦)

We want to find estimate 5𝑓(𝑥⃗) for regression function 

𝑓 𝑥⃗ = 𝐸(𝑌|𝑋 = 𝑥⃗)

Ø Vapnik–Chervonenkis (VC) Dimension 

So far: we are trying to find estimates for 𝑬𝒓𝒓𝐢𝐧 = 𝐸F 𝐿 𝑌, 5𝑓 𝑋
(generalization error with same 𝑥⃗(!)) in terms of 𝒆𝒓𝒓 (training set error) by 
adding a correction term (e.g. 9A

&

$
𝑑 )

We really want estimate of full generalization error, allowing for new overall 
training points  i.e.,

𝐸𝑟𝑟 = 𝐸F,/ 𝐿 𝑌, 5𝑓 𝑋



For Least Squares Error, 

𝐿 𝑌, 5𝑓 𝑋 :=N
!"#

$

𝑦 ! − 5𝑓 𝑥⃗ !
9

VC theory has an upper bound on Err if we choose 𝑓 from any class of 
functions (not just linear functions or functions in a reproducing kernel 
Hilbert space(RKHS)).

Consider a class ℱ of functions 𝑓(𝑥⃗) we allow ourselves to use for 
classification.



We define VC dimension of ℱ first for families ℱ of indicator functions 
like

𝑓 𝑥⃗ = 𝕀R 𝑥⃗ = £
1

0

where, 𝐴 is a subset of ℝ'. 

if 𝑥⃗ ∈ 𝐴

otherwise

An inductive definition of VC dimension (indicator functions first) 

Example. (Indicator functions 𝕀[T,C] 𝑥 on ℝ, for any 𝑎, 𝑏 ∈ ℝ)

Example. (Indicator functions 𝕀 T,C ×[W,'] 𝑥⃗ on ℝ9, for any 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ)



Definition: A family ℱ of indicator functions 𝑓 𝑥⃗ = 𝕀R 𝑥⃗ on ℝ' shatters a 
fixed finite collection of points 𝐶 if following holds:
For every subset 𝐶# ⊂ 𝐶, there is a function 𝕀R 𝑥⃗ in the family that has 
value 1 on 𝐶# and 0 on 𝐶 − 𝐶#

Example. (interval classifier: Indicator functions 𝕀[T,C] 𝑥 on ℝ, for any 𝑎, 𝑏 ∈ ℝ)

Example. (Indicator functions 𝕀 T,C ×[W,'] 𝑥⃗ on ℝ9, for any 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ)



Definition:  We say that this family ℱ of indicator functions has VC dimension 
𝑛 if 𝑛 is the largest number of points that ℱ can always shatter.

Example. (Indicator functions 𝕀[T,C] 𝑥 on ℝ)

The class ℱ can clearly shatter a single point. 
It can also shatter a two point set. 
But an interval classifier cannot produce every labeling on the three-point set. 
So, the VC-dimension is 2.

Example. (Indicator functions 𝕀 T,C ×[W,'] 𝑥⃗ on ℝ9)

Note: It means that at least one set of size 𝑛 that ℱ can shatter



Question: What is the VC-dimension of the hypothesis class of indicator
functions on the circles of radius 𝑟 ∈ ℝX centered at (0, 0)?

Question: How about 3-dimensional balls of radius 𝑟 ∈ ℝX centered at 0?

Question: How about indicator functions on the circles of radius 𝑟 ∈ ℝX
centered at (a, b) for any 𝑎, 𝑏 ∈ ℝ?



Definition: A family ℱ of general (non-indicator) functions 𝑓 𝑥⃗ has VC 
dimension 𝑛 if the collection of indicator functions {𝕀 =⃗ Y(=⃗)ZT}| 𝑓 ∈ ℱ, 𝑎 ∈
ℝ} has VC dimension 𝑛 as defined above. 

Then we can define VC dimension of more general classes of functions. 
Note that then we can do linear classification using functions like

𝕀R 𝑥⃗ = 𝕀 =⃗ %'=⃗Z;}(𝑥⃗)



The VC dimension is another way of measuring the complexity of a class 
of functions by assessing how wiggly its members can be. For example, 
the VC dimension is a measure of complexity like 𝑑 = # features or # of 
basis functions earlier.

Ø Direct definition of VC Dimension 

The VC dimension of the class {𝒇(𝒙, 𝜶)} is defined to be the largest number 
of points (in some configuration) that can be shattered by members of 
{𝑓(𝑥⃗, 𝛼⃗)} .

Definition: Suppose we have a class of functions {𝑓(𝑥⃗, 𝛼⃗)} indexed by a 
parameter vector 𝛼⃗ , with 𝑥⃗ ∈ ℝ'.



Estimate of full generalization error

We really want to use VC dimension to construct an estimate of (extra sample) 
prediction

𝐸𝑟𝑟 = 𝐸F,/ 𝐿 𝑌, 5𝑓 𝑋

Theorem: If we fit 𝑁 training points using a class of functions {𝑓(𝑥, 𝛼)} having 
VC dimension ℎ, then with probability at least 1 − 𝜂 over training. Denote 

Then, for regression: 
𝐸𝑟𝑟 ≤

𝑒𝑟𝑟
1 − 𝜖 X

For binary classification, we have 

𝐸𝑟𝑟 ≤ 𝑒𝑟𝑟 +
𝜖
2 (1 + 1 +

4 ⋅ 𝑒𝑟𝑟
𝜖 )



Example: Linear functions

Consider a class of linear functions ℱ = 𝑓 𝑥⃗, 𝜃⃗ = 𝜃; + 𝜃#𝑥# + 𝜃9𝑥9
indexed by a parameter vector 𝜃⃗ , with 𝑥⃗ ∈ ℝ9.

𝕀R 𝑥⃗ = 𝕀 =⃗ %%X%+=+X%&=&Z;}(𝑥⃗)

Even this 𝐶 is not shattered by ℱ. 

4 points impossible3 points shattered



In general, the VC-dimension of the set of oriented hyperplanes in ℝE is 𝑛 + 1.

This is from the next linear algebra result: 

Proposition: Consider some set of 𝑚 points in ℝE. Choose any one of 
the points as origin. Then the 𝑚 points can be shattered by oriented 
hyperplanes if and only if the position vectors of the remaining points are 
linearly independent.



Question: What is the VC-Dimension of K-nearest neighbors?

Decision Boundaries 

The nearest neighbor algorithm does not explicitly compute decision 
boundaries.  However, the decision boundaries form a subset of the Voronoi 
diagram for the training data.

Infinite capacity does not guarantee poor performance



The VC Dimension of kernel SVMs

Theorem: Let K be a kernel which corresponds to a minimal embedding space H. 
Then the VC dimension of the corresponding support vector machine (where the 
error penalty C is allowed to take all values) is dim(𝑯) + 𝟏.

H



SVM with Gaussian Kernel  has VC dimension ∞

Question: Is it true that learning machines with many parameters would 
have high VC dimension, while learning machines with few parameters 
would have low VC dimension?



VC dimension doesn't directly measure the number of parameters, but
instead some “effective” number of parameters. For example, the classifier

depends on only 1 parameter, but has infinite VC dimension.

VC-Dimension and the number of parameters

𝑓 𝑥, 𝑎 ≔ ceil[sin(𝑎𝑥)]
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