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Ø Strictly Stationarity

The Times Series {𝑋!} is strictly stationary if

𝑃 𝑋!! ≤ 𝑥", … , 𝑋!" ≤ 𝑥# = 𝑃 𝑋!!$% ≤ 𝑥", … , 𝑋!"$% ≤ 𝑥#

i.e., shifting the time axis does not affect the distribution.

We shall consider second-order moments properties only.

That is, for all 𝑘, 𝑡", … , 𝑡# , 𝑥", … , 𝑥# and ℎ,

𝑋!! , … , 𝑋!" and 𝑋!!$% , … , 𝑋!"$%

have the same joint distribution for every 𝑘, 𝑡", … , 𝑡# , and ℎ

Location does not matter-ONLY the window size. 



q Mean, Autocovariance and Autocorrelation

Suppose that {𝑋!} is a time series with 𝐸 𝑋!& < ∞

• The mean function of {𝑋!} is 𝜇! ≔ 𝐸 𝑋!

• Its autocovariance function of {𝑋!} is

𝛾' 𝑠, 𝑡 ≔ Cov 𝑋(, 𝑋! = 𝐸 𝑋( − 𝜇( 𝑋! − 𝜇!

• The autocorrelation function (ACF) of {𝑋!} is defined as

𝜌' 𝑠, 𝑡 ≔ Corr 𝑋(, 𝑋! =
𝛾' 𝑠, 𝑡

𝛾' 𝑠, 𝑠 𝛾' 𝑡, 𝑡



A common feature of time series is that the observations are dependent.

The autocovariance function is simply the covariance between 𝑥( and 
𝑥! evaluated at all combinations.

Covariance measures the strength of the linear dependence
between random variables. 

A covariance that is small for 𝑠, 𝑡 close together generally implies random 
variables that are closer to white noise. Smoother series tend to have a 
large autocovariance even for s and t which are far apart. 



Weak Stationarity

We say that {𝑋!} is (weakly) stationary if

1. The mean function 𝜇! is independent of 𝑡, (constant) and

2.  For each ℎ, 𝛾'(𝑡 + ℎ, 𝑡) is independent of 𝑡. (only depending on ℎ)

In that case, we write 𝛾' ℎ = 𝛾'(ℎ, 0)

When we say stationary, we'll mean weakly stationary.

All strongly stationary time series are also weakly stationary, but the reverse 
may not be the case. 

Most of the time we are going to be working with Gaussian time series, and 
in this case the two concepts coincide.



A time series is stationary when it is “stable”



Definition: The autocorrelation function (ACF) of stationary {𝑋!} is defined as

𝜌' ℎ ≔
𝛾' ℎ
𝛾' 0 =

Cov 𝑋!$% , 𝑋!
Cov 𝑋! , 𝑋!

= Corr(𝑋!$% , 𝑋!)

Example: (IID noise)

𝐸 𝑋! = 0, Var 𝑋! = 𝜎&，

𝛾' 𝑡 + ℎ, 𝑡 ≔ Cov 𝑋!$% , 𝑋! = C𝜎
&

0
if ℎ = 0
otherwise

1. 𝜇! = 0 is independent of 𝑡.
2. 𝛾' 𝑡 + ℎ, 𝑡 = 𝛾' ℎ, 0 for all 𝑡.

So, {𝑋!} is stationary.

Similarly for any white noise (uncorrelated, zero mean).
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ACF for White Noise

A technical results states that when the true model is white noise, E𝜌(h) is 
approximately normally distributed with zero mean and standard deviation of 
1/ 𝑛.

This is very useful for conducting tests concerning hypothesis about the true 
autocorrelation function.



Example: (Random Walk)

𝑆! =J
)*"

!

𝑋) where 𝑋) is the iid noise.

So, 𝐸 𝑆! = 0, Var 𝑆! = 𝑡𝜎&，

𝛾' 𝑡 + ℎ, 𝑡 = Cov 𝑆!$% , 𝑆! = Cov 𝑆! +J
(*"

%

𝑋!$( , 𝑆! = Cov 𝑆! , 𝑆! = 𝑡𝜎&

1. 𝜇! = 0 is independent of 𝑡.
2. 𝛾' 𝑡 + ℎ, 𝑡 is depending on t.

So, {𝑆!} is NOT stationary.



Example: MA(1) process (Moving Average):

𝑋! = 𝑊! + 𝜃𝑊!+" where 𝑊!~𝑊𝑁(0, 𝜎&)

So, 𝐸 𝑋! = 0

𝛾' 𝑡 + ℎ, 𝑡 = Cov 𝑋!$% , 𝑋!

= E 𝑋!$%𝑋!

= E (𝑊!$% + 𝜃𝑊!$%+")(𝑊! + 𝜃𝑊!+")

= P
𝜎& 1 + 𝜃&

𝜎&𝜃
0

if ℎ = 0

others
if ℎ = 1, 𝑜𝑟 − 1

So, {𝑋!} is stationary.



ACF of the MA(1) process



Example: AR(1) process (AutoRegressive):

𝑋! = 𝜙𝑋!+" +𝑊! where 𝑊!~𝑊𝑁(0, 𝜎&)

Assume that 𝑋! is stationary and 𝜙 < 1, then

𝐸 𝑋! = 𝜙𝐸 𝑋!+" = 0

𝐸 𝑋!& = 𝜙&𝐸 𝑋!+"& + 𝜎& =
𝜎&

1 − 𝜙&

𝛾' ℎ = Cov 𝑋!$% , 𝑋! = Cov 𝜙𝑋!$%+" +𝑊!$% , 𝑋!

= 𝜙Cov 𝑋!$%+" +𝑊!$% , 𝑋! = 𝜙Cov 𝑋!$%+", 𝑋!

= 𝜙𝛾' ℎ − 1 = 𝜙|%|𝛾' 0

=
𝜙|%|𝜎&

1 − 𝜙&

Check for ℎ > 0 and ℎ < 0

𝑋! =J
-*.

/

𝜙-𝑊!+-



ACF of the AR(1) process

The ACF should show a geometric decline{but never truly go to zero. However, 
after a number of lags the series will be essentially zero. An ACF that does not 
fall off quickly but where the series does not appear stationary -may not be 
indicative of an AR model.



Time Series Plot of AR(1), phi=0.5

Time

x

0 50 100 150 200

−3
−2

−1
0

1
2

0 5 10 15 20
−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACF Plot of AR(1), phi=0.5Stationary AR(1)

https://demonstrations.wolfram.com/AutocorrelationAndPartialAutocorrelationFunctionsOfAR1Proces/

https://demonstrations.wolfram.com/AutocorrelationAndPartialAutocorrelationFunctionsOfAR1Proces/


Time Series Plot of AR(1), phi=1.1
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ACF Plot of AR(1), phi=1.1

Explosive AR(1)



import numpy as np
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.arima_process import ArmaProcess

Python Code:

# Set phi value
phi = 1.1

# Define AR(1) process
ar1 = ArmaProcess(ar=[1, -phi])

# Generate time series
np.random.seed(123)
x = ar1.generate_sample(nsample=100)

# Plot ACF
plot_acf(x)
plt.show()



# Generate AR(1) time series with phi=1.1
set.seed(123)
x <- arima.sim(n = 100, list(ar = 1.1), sd = 1)

# Create ACF plot
acf(x)

% Set phi value
phi = 1.1;

% Define AR(1) process
ar1 = arima('AR', [1, -phi], 'Variance', 1);

% Generate time series
rng(123);
x = simulate(ar1, 100);

% Plot ACF
autocorr(x)

R code:

MATLAB code:



Linear Processes

An important class of stationary time series:

where 𝑊!~𝑊𝑁 0, 𝜎& , 𝜇, 𝑎𝑛𝑑 𝜓- are parameters sa^sfying

𝑋! = 𝜇 + J
-*+/

/

𝜓-𝑊!+-

J
-*+/

/

|𝜓-| < ∞

𝐸 𝑋! = 𝜇So,

𝛾' ℎ = Cov 𝑋!$% , 𝑋! = 𝜎& J
-*+/

/

𝜓-𝜓%$-

§ Examples of Linear Processes: White noise

Choose 𝜇 and 𝜓. = 1 𝑎𝑛𝑑 𝜓- = 0 for 𝑗 ≠ 0.

Then 𝑋! = 𝜇 +𝑊!~𝑊𝑁 𝜇, 𝜎&



𝑋! = 𝜇 + J
-*+/

/

𝜓-𝑊!+-

§ Examples of Linear Processes: MA(1)

Choose 𝜇 = 0 𝑎𝑛𝑑 𝜓- = P
1 𝑖𝑓 𝑗 = 0
𝜃 𝑖𝑓 𝑗 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑠

Then 𝑋! = 𝑊! + 𝜃𝑊!+"

§ Examples of Linear Processes: AR(1)

Choose 𝜇 = 0 𝑎𝑛𝑑 𝜓- = P
𝜙- 𝑖𝑓 𝑗 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑠

We have 𝑋! = 𝜙𝑋!+" +𝑊! . 𝑋! =J
-*.

/

𝜙-𝑊!+-For 𝜙 < 1,



Ø Estimating the ACF: Sample ACF

Suppose that 𝑋! is a stationary time series. Recall

• The mean function of {𝑋!} is 𝜇! ≔ 𝐸 𝑋!

• The autocovariance function of of {𝑋!} is

𝛾' ℎ ≔ Cov 𝑋!$% , 𝑋! = 𝐸 𝑋!$% − 𝜇 𝑋! − 𝜇

• The autocorrelation function (ACF) of {𝑋!} is   

𝜌' ℎ ≔
𝛾' ℎ
𝛾' 0

For observations 𝑥", 𝑥&, … , 𝑥0 of a time series, the sample mean

�̅� =
1
𝑛J
!*"

0

𝑥!



• The sample autocovariance function is

• The sample autocorrelation (ACF) function is

E𝛾 ℎ =
1
𝑛 J

!*"

0+|%|

𝑥!$ % − �̅� (𝑥! − �̅�) for −𝑛 < ℎ < 𝑛

𝜌 ℎ ≔
E𝛾 ℎ
E𝛾 0

Sample autocovariance function ≈ the sample covariance of (𝑥", 𝑥%$"), … , (𝑥0+% , 𝑥0)

Except:
• we normalize by 𝑛 instead of 𝑛 − ℎ, and
• we subtract the full sample mean.



Sample ACF  𝜌 ℎ for white Gaussian (hence i.i.d.) noise

Red line: conhidence interval



Sample ACF

We can recognize the sample autocorrelation functions of many non-white
(even non-stationary) time series.

Time Series:

White

Trend

Periodic

MA(q)

AR(p)

Sample ACF:

Zero

Slow decay

Periodic

Zero for ℎ > 𝑞

Decays to zero exponentially



Sample ACF: Trend Sample ACF: Periodic



Sample ACF: MA(1) Sample ACF: AR(1)



ACF and prediction



ACF of a MA(1) process



Properties of the autocovariance function of a stationary time series:

In particular, from positive semidefinite, we have 𝛾 0 ≥ 0 and 𝛾 ℎ ≤ 𝛾(0)

1. 𝛾 ℎ = 𝛾(−ℎ)
2. 𝛾 is positive semidefinite.

A function 𝑓: ℤ → ℝ is positive semidefinite if for all 𝑛, the matrix 𝐹0,
with entries 𝐹0 )- ≔ 𝑓(𝑖 − 𝑗), is positive semidefinite.

Furthermore, any function 𝑓: ℤ → ℝ that satisfies above two properties is the 
autocovariance of some stationary time series (in particular, a Gaussian
process).



q ACF and least squares prediction

Best least squares estimate of 𝒀 is 𝐸[𝑌] with minimum value 𝑉𝑎𝑟 𝑌 .

𝐸 𝑌 = argmin
1

𝐸 𝑌 − 𝑐 &

Best least squares estimate of 𝑌|𝑋 is 𝐸[𝑌|𝑋]

Proved in section 1.

𝐸 𝑌|𝑋 = argmin
2

𝐸 𝐸 𝑌 − 𝑓 𝑋 &|𝑋

The minimum value is 𝑉𝑎𝑟(𝑌|𝑋)

Similarly, the best least squares estimate of 𝑿𝒏$𝒉 given 𝑿𝒏 is

𝑓 𝑋0 = 𝐸 𝑋0$% 𝑋0



Suppose 𝑋 = 𝑋", … , 𝑋0$% is the Gaussian distribution: 

𝑋~Normal(�⃗�, Σ)

Then the joint distribution of 𝑋0, 𝑋0$% is normal

𝑋0, 𝑋0$% ~ Normal
𝜇0
𝜇0$% ,

𝜎0& 𝜌𝜎0𝜎0$%
𝜌𝜎0𝜎0$% 𝜎0$%&

Here, 𝜌 = 𝐶𝑜𝑟 𝑋0, 𝑋0$% is the autocorrelation.

The conditional distribution of 𝑋0$% given 𝑋0 is normal with  

Mean: 𝜇0$% + 𝜌
5#$%
5#

𝑥0 − 𝜇0

Variance: 𝜎0$%& 1 − 𝜌&

Example: (stationary Gaussian)



So, for stationary Gaussian, the best estimate of 𝑋0$% given 𝑋0 = 𝑥0 is

𝑓 𝑥0 = 𝐸 𝑋0$% 𝑋0 = 𝑥0 = 𝜇 + 𝜌 ℎ 𝑥0 − 𝜇

The mean square error is 

𝑉𝑎𝑟 𝑋0$% 𝑋0 = 𝑥0 = 𝜎& 1 − 𝜌 ℎ &

Note: 1. Prediction accuracy improves as 𝜌 ℎ → 1

2. Predictor is linear: 𝑓 𝑥 = 𝜇 1 − 𝜌 ℎ + 𝜌 ℎ 𝑥



Ø ACF and least squares linear prediction

Consider a linear predictor of 𝑋0$% given 𝑋0 = 𝑥0, with 𝑓 𝑥0 = 𝑎𝑥0

Assume that {𝑋!} is stationary with 𝐸 𝑋! = 0.

The best linear predictor minimizes

𝐸 𝑋0$% − 𝑓 𝑋0
& = 𝐸 𝑋0$% − 𝑎𝑋0 &

= 𝐸 𝑋0$%& ) − 𝐸(2𝑎𝑋0𝑋0$% + 𝐸(𝑎&𝑋0&)

= 𝜎& − 2𝑎𝜌 ℎ + 𝑎&𝜎&

So, 𝜌 ℎ = argmin
6

𝐸 𝑋0$% − 𝑓 𝑋0
&

That is, the optimal linear predictor is 𝑓 𝑥0 = 𝜌 ℎ 𝑥0

The mean square error is 𝐸 𝑋0$% − 𝑓 𝑋0
& = 𝜎& 1 − 𝜌 ℎ &



Consider a linear predictor of 𝑋0$% given 𝑋0 = 𝑥0, with 𝑓 𝑥0 = 𝑎(𝑥0−𝜇) + 𝑏

Assume that {𝑋!} is stationary with 𝐸 𝑋! = 𝜇.

The best linear predictor minimizes

𝐸 𝑋0$% − 𝑓 𝑋0
& = 𝐸 𝑋0$% − 𝑎(𝑋0−𝜇) − 𝑏 &

is the optimal linear predictor is 𝑓 𝑥0 = 𝜌 ℎ 𝑥0 − 𝜇 + 𝜇

The mean square error is 𝐸 𝑋0$% − 𝑓 𝑋0
& = 𝜎& 1 − 𝜌 ℎ &

Note: 

• If {𝑋!} is stationary, 𝑓 is the optimal linear predictor.
• If {𝑋!} is also Gaussian, 𝑓 is the optimal predictor. Linear prediction is 

optimal for Gaussian time series.
• Over all stationary processes with that value of 𝜌 ℎ and 𝜎&, the optimal
• mean squared error is maximized by the Gaussian process.
• Linear prediction needs only second order statistics.


