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• Piecewise smoothing cuts the domain into regions and models each 
region separately.

• Basis smoothing attempts to write the data as a weighted sum of basis 
functions. This will be a unifying theme throughout this lecture.

• Kernel smoothing passes a window over over the data, taking a 
weighted average of data values near a point. Note: this usage of kernel 
is not the same as in the kernel method from before.

• Dimensional reduction/expansion attempts to smooth data by 
passing through a compression or dimensional reduction filter and then 
projects it back upwards.

There are four main views on smoothing mechanisms:

We will assume unless otherwise stated that 𝑥 is one dimensional first. 

Ø Smoothing Procedures



We often use a linear predictor function

𝑓 𝑥⃗ = 𝑥⃗!𝜃⃗ = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

Consider a test vector 𝑥⃗ = 𝑥#, … , 𝑥$ ∈ ℝ$

We want to predict a random variable  𝑌 ∈ ℝ or 0,1 from knowing 𝑥⃗.

For example, assume the model is linear 

Recall Linear Models: 

𝐸 𝑌 𝑋 = 𝑓 𝑥⃗ for linear regression

Or log
𝑃(𝑌 = 1|𝑋 = 𝑥⃗)
𝑃(𝑌 = 0|𝑋 = 𝑥⃗)

=𝑓 𝑥⃗ for logistics regression.

Or LDA, SVM, etc. 



Linear machinery quite appealing! It is convenient, and sometimes a 
necessary, approximation.

Get richer space of possible functions, and can still use familiar algorithms.

Build more general models: Impose linearity on functions of the 
original inputs.

However, in regression problems, 𝑓(𝑋) = 𝐸(𝑌 |𝑋) will typically be 
nonlinear and nonadditive in 𝑋. Then a linear model often too crude.

linear model is easy to interpret, and is the first-order Taylor approximation
to h(𝑋). Sometimes necessary, because with data size 𝒏 small and/or 
number of features 𝑑 large, a linear model might be all we are able to fit to 
the data without overfitting. 

Related to more general transformations of original variables 𝑥%

Beyond Linear Models:



Higher order polynomial interpola-on is a bad idea. (N=5,10,15,20 equal spaced 
sample points .)

Example: The Runge function

h"ps://demonstra/ons.wolfram.com/RungesPhenomenon/

https://demonstrations.wolfram.com/RungesPhenomenon/


A better strategy – piece-wise polynomial or spline interpolation (overview)

𝑆 𝑥 =

𝑠" 𝑥 = 𝑎"𝑥& + 𝑏"𝑥' + 𝑐"𝑥 + 𝑑" for 𝑡" ≤ 𝑥 ≤ 𝑡#
⋮

𝑠()# 𝑥 = 𝑎()#𝑥& + 𝑏()#𝑥' + 𝑐()#𝑥 + 𝑑()# for 𝑡()# ≤ 𝑥 ≤ 𝑡(

Cubic Example: 

We want 𝑆(𝑥) to be continuous, i.e., 𝑠%)# 𝑥% = 𝑠% 𝑥% for all 𝑖 = 1,2, … , 𝑛 − 1

continuous 1st derivative, i.e., 𝑠′%)# 𝑥% = 𝑠′% 𝑥% for all 𝑖 = 1,2, … , 𝑛 − 1

con-nuous 2ed deriva-ve, i.e., 𝑠′′%)# 𝑥% = 𝑠′′% 𝑥% for all 𝑖 = 1,2, … , 𝑛 − 1



Another notation for piece-wise polynomial is

𝑆 𝑥 = 𝑠" 𝑥 𝕀 𝑡" ≤ 𝑥 ≤ 𝑡# + 𝑠#(𝑥)𝕀 𝑡# ≤ 𝑥 ≤ 𝑡' + … + 𝑠()#(𝑥)𝕀 𝑡()# ≤ 𝑥 ≤ 𝑡(

Here, 𝕀(𝑧) is the indicator function.

𝕀 𝑧 = K
1

0

If z is true.

If z is false.

= (𝑎"𝑥& + 𝑏"𝑥' + 𝑐"𝑥 + 𝑑") 𝕀 𝑡" ≤ 𝑥 ≤ 𝑡#

+(𝑎#𝑥& + 𝑏#𝑥' + 𝑐#𝑥 + 𝑑#)𝕀 𝑡# ≤ 𝑥 ≤ 𝑡' +⋯

+ 𝑎()#𝑥& + 𝑏()#𝑥' + 𝑐()#𝑥 + 𝑑()# 𝕀 𝑡()# ≤ 𝑥 ≤ 𝑡(

Furthermore, each piece 𝑠̃* 𝑥 = 𝑎*(𝑥 − 𝑡*)& + 𝑏* 𝑥 − 𝑡*
' + 𝑐*(𝑥 − 𝑡*) + 𝑑* is widely 

used for computaKon. In this case, 𝑑* = 𝑠̃* 𝑡*



Ø Basis function methods.

M𝑦 = 𝑓 𝑥⃗ = O
+,#

-

𝛽+ ⋅ ℎ+(𝑥⃗)

where ℎ+ 𝑥⃗ : ℝ$ → ℝ are (fixed) basis functions. Note here the 
𝛽+ are pre-determined and do not depend on 𝑥⃗.

Instead of assuming that 𝑓 𝑥⃗ =O
%,#

$

𝜃% ⋅ 𝑥%

Replace each coordinate 𝑥% by a more general function of 𝑥⃗ (i.e., 
not just directly projecting 𝑥⃗ onto a coordinate 𝑥.).

Assume a linear basis expansion in 𝑥⃗



Question 1: What is the choice of basis ℎ+ 𝑥⃗ ? 

•ℎ𝑚(𝑥⃗) = 𝑥𝑚, 𝑚 = 1,… , 𝑝 recovers the original linear model.

•ℎ𝑚(𝑥⃗) = 𝑥𝑗2 𝑜𝑟 ℎ𝑚(𝑥⃗) = 𝑥!𝑥" gives the polynomial model.

•ℎ𝑚(𝑥⃗) = log 𝑥⃗ , or 𝑥⃗ , or sin𝑚𝜋𝑥 , 𝑜𝑟 …

•ℎ𝑚(𝑥⃗) = 𝕀(𝐿𝑚£𝑥𝑘 £𝑈#), where 𝕀 is the indicator function.

For example, here the ℎ𝑚’s might be:

More generally, ℎ𝑚(𝑥⃗) can be piecewise polynomials/splines, 
reproducing kernel functions, wavelets, Fourier bases.)

Some questions about basis functions:



Question 4: What is the selection of the basis elements; how 
do we estimate the 𝛽+?

Question 2: How "rich" should this class be? 

Use lots of different functions ℎ𝑚(𝑥⃗)

Question 3: Which functions ℎ𝑚(𝑥⃗) to be used and which 
skipped (feature selection)?

May need to restrict choices of ℎ𝑚(𝑥⃗), or may want "complexity
penalization" for using too many different functions ℎ𝑚(𝑥⃗). (risk of 
overfitting)]

Polynomials are natural choices for ℎ𝑚(𝑥⃗) but can be too rigid -
may need more flexibility. Also, for higher order polynomials we 
have excessive oscillations.

Similar as linear regression. E.g., polynomial regression. 



Ø Review some concepts of vector spaces of functions

• Vector spaces of functions

• Linear combination 
• Span

• Linearly Independent
• Basis



Piecewise Polynomials

Assume in one-dimension only, with 𝒙 ∈ 𝒂, 𝒃 , a fixed interval.

ℎ#(𝑥) = 𝕀(𝑥 < 𝜉#),   

Assume the model is 𝑓 𝑥 =O
%,#

3

𝜃% ⋅ ℎ%(𝑥 )

Example 1. piecewise constant

ℎ'(𝑥) = 𝕀(𝜉# ≤ 𝑥 < 𝜉'), 

ℎ&(𝑥) = 𝕀(𝜉' ≤ 𝑥)

There are three basis functions here.

where 𝕀 is the indicator function.

Model: 𝑓 𝑥 = 𝜃#ℎ#(𝑥 ) + 𝜃'ℎ'(𝑥 ) + 𝜃&ℎ&(𝑥 )



Example 2. Piecewise linear

ℎ4 𝑥 = 𝕀 𝑥 < 𝜉# ⋅ 𝑥,   

ℎ5(𝑥) = 𝕀 𝜉# ≤ 𝑥 < 𝜉' ⋅ 𝑥, 

ℎ6(𝑥) = 𝕀 𝜉' ≤ 𝑥 ⋅ 𝑥

The blue curve represents the true function, from which the data were 
generated with Gaussian noise.

three more basis functions. 
(6 functions in total now.)

Model: 𝑓 𝑥 = 𝜃#ℎ#(𝑥 ) + 𝜃'ℎ'(𝑥 ) + ⋯𝜃6ℎ6(𝑥 )



Example 3. Continuous Piecewise Linear

Piecewise linear, but restricted to be 
continuous at the two knots.

“knots”

These continuity restrictions lead to linear 
constraints on the parameters. 

𝑓 𝜉#) = 𝑓 𝜉#7

𝑓 𝜉') = 𝑓 𝜉'7

𝜃# + 𝜉#𝜃4 = 𝜃' + 𝜉#𝜃5

𝜃' + 𝜉#𝜃5 = 𝜃& + 𝜉#𝜃6

Number of free parameters = ⋯ = 4

(3 regions) X (2 parameters per region)− (2 knots X 1 constraint per knot)



ℎ#(𝑥) = 1

ℎ'(𝑥) = 𝑥

ℎ&(𝑥) = 𝑥 − 𝜉# 7

A more direct way to use a basis

ℎ4(𝑥) = 𝑥 − 𝜉' 7

Here, 𝑧 7 = max(𝑧, 0) denotes the positive part of 𝑧. Same as the ReLU function.



Fitting Piecewise Linear Basis (algorithm)

• Fit the linear function  𝜃" + 𝜃#𝑥 to the whole dataset.

• Construct the features 𝑥87# = 𝑥 − 𝜉8 7 − 𝜃" − 𝜃#𝑥.

• Fit the model 𝑓 𝑥 = ∑8,'9 𝜃8 𝑥8 using linear methods.

To  fit a piecewise linear basis:



Example: Piecewise Cubic Polynomials

We often prefer smoother functions, which can be achieved by increasing the 
order of the local polynomial.

For example, piecewise-cubic polynomials

𝑓 𝜉%) = 𝑓 𝜉%7 for i=1,2



cubic 
spline

Moving beyond linear functions, we can enforce continuity on the higher 
order derivatives. One the left we see a cubic  fit with continuous  first
derivatives and on the right we also impose continuous second 
derivatives.

Ø Cubic spline

A piecewise cubic with continuous second derivatives at the endpoints 
𝜉 is called a cubic spline.

𝑓: 𝜉%) = 𝑓: 𝜉%7 for i=1,2 𝑓:: 𝜉%) = 𝑓:: 𝜉%7 for i=1,2



Example. Cubic spline.

ℎ#(𝑥) = 1

ℎ'(𝑥) = 𝑥

ℎ5(𝑥) = 𝑥 − 𝜉# &
7

ℎ6(𝑥) = 𝑥 − 𝜉' &
7

The function in the lower right panel is continuous 𝑓 𝜉%) = 𝑓 𝜉%7 , 
and has continuous first derivatives 𝑓: 𝜉%) = 𝑓: 𝜉%7 and second 
derivatives 𝑓:: 𝜉%) = 𝑓:: 𝜉%7 at the knots 𝜉# …  𝜉9 .

A basis for cubic spline with knots at 𝜉# and 𝜉' are 

ℎ&(𝑥) = 𝑥'

ℎ4(𝑥) = 𝑥&

(3 regions)×(4 parameters per region) − (2 knots)×(3 constraints per knot) = 6.

Number of free parameters for the model =



Idea behind splines: 

1. Use lower order polynomials to connect subsets of data points

2. Make connecKons between adjacent splines smooth

3. Lower order polynomials avoid oscillaKons and overfiTng.

The Runge function



Ø Spline functions

More generally, Fix M∈ ℕ (natural number) and allow only functions that 
are piecewise polynomials of some order𝑀 − 1. We assume
continuous derivatives to order 𝑀 − 2, even at knots (joining points of 
different polynomials).



Definition: The spline space 𝓢 of order 𝑀 − 1 on an interval 𝑎, 𝑏 ∈ ℝ is 

the set of all functions 𝑓 𝑥 on [𝑎, 𝑏], 

• with 𝑀 − 2 continuous derivatives everywhere, 𝑓(-)') 𝑥) = 𝑓(-)') 𝑥7

• and that are piecewise polynomial of order 𝑀 − 1 in all spline intervals 
defined by the mesh {𝜉#, … , 𝜉9}.

o Such functions 𝑓 𝑥 are called splines of order 𝑀 − 1.

o One of the above intervals with endpoints in the set 
𝑎, 𝜉#, … , 𝜉9 , 𝑏 is called a spline interval, (i.e., 𝑅8 = [𝜉8)#, 𝜉8]). 

o The joining points 𝜉% are called knots.

Some terminologies: 

For example, A cubic spline is an order 𝑀 = 4 spline.

Spline Space



Theorem: Then for fixed 𝑀, a basis for the spline space of functions is 
given by the following 𝑀 + 𝐾 functions: 

ℎ-7= 𝑥 = 𝑥 − 𝜉= -)#
7 , for 𝑙 = 1, … , 𝐾.

ℎ*(𝑥) = 𝑥*)#, for 𝑗 = 1, … ,𝑀

Thus, we have 𝑴+𝑲 degrees of freedom (free coefficients of above 
basis functions) to specify our approximation functions. (i.e., the 
number of free coefficients 𝜃% of these functions )

𝑓 𝑥 = O
%,#

-79

𝜃% ⋅ ℎ%(𝑥 ) =O
*,#

-

𝜃% ⋅ ℎ%(𝑥 ) +O
=,#

9

𝜃-7= ⋅ ℎ-7=(𝑥 )

Theorem: For any fixed M, the spline space of functions is a vector space.

Basis for spline space



For simplicity, we assume 𝑎, 𝑏 = [0,1]

Case 𝑀 = 4: basis functions for cubic splines



Ø Four variations of use splines:

1. (Standard) regression splines: Knot points 𝜉#, … , 𝜉9 fixed beforehand, 
and use OLS (ordinary least squares) to fit a function of the form 

𝑓 𝑥 = O
%,#

-79

𝜃% ⋅ ℎ%(𝑥 )

We can find 𝜃% with standard least squares again.

3. Natural cubic splines.

4. Smoothing splines: can also vary knot locations 𝜉#, … , 𝜉9 use ridge 
regression to regularize and 'shrink' the 𝜃%.



Ø Natural Cubic Spline (𝑴 = 𝟒)

The cubic spline basis we've described should only be trusted over the
regions 𝑅8 , since outside these regions the boundary cubic polynomials 
quickly go to infinity.

• Regression splines usually have high variance at the outer range of the 
predictor (the tails).

• The confidence intervals at the tails are wiggly (especially for small 
sample sizes)



Adds a further Natural constraint that the fitted function is linear
beyond the boundary knots 𝜉# 𝑎𝑛𝑑 𝜉9, or on end regions  𝑎, 𝜉# and 
[𝜉9 , 𝑏]. 

They are like standard cubic splines with fixed (i.e., predetermined) 
knots at 𝜉#, … , 𝜉9.

Natural cubic splines are quite popular to solve the above problems. 



Natural cubic splines controls variance, at cost of more bias near the 
endpoints than cubic splines.

Standard (regression) cubic splines have high variance at end regions 
𝑎, 𝜉# and [𝜉9 , 𝑏], and this is reduced by the linearity constraints in 

natural cubic spline.



Figure from [HasKe], p. 145: for each of the 4 models pick an 𝑓(𝑥) that saKsfies 
the model (e.g. green curve is a cubic spline 𝑓(𝑥) with given fixed knots at 0.33 
and 0.66) adding random error 𝜖% of fixed variance 𝜎. So 𝑦(%) = 𝑓 𝑥 % + 𝜖%. Then 

vary the training set 𝒟 = (𝑥 % , 𝑦 % ) %,#
5"

by fixing 𝑥 % and varying the 𝜖%. The 
graph plots the variaKon at each training point of the esKmate M𝑦(%) = s𝑓 𝑥 % as 
𝒟 varies. 



Each of these basis functions has zero 2nd and 3rd derivative outside the 
boundary knots.

Basis for space of Natural Cubic Spline

𝑁# 𝑥 = 1

𝑁' 𝑥 = 𝑥

𝑁87' 𝑥 = 𝑑8 𝑥 − 𝑑9)#(𝑥)

where,
𝑑8 𝑥 =

𝑥 − 𝜉8 7
& − 𝑥 − 𝜉9 7

&

𝜉9 − 𝜉8

for 𝑘 = 1,… , 𝐾 − 2

Theorem: A natural cubic spline model with K knots is represented by K
basis functions:

Note that, 

The dimension for natural cubic spline space is 𝑲. The dimension is 
𝑲+ 𝟒 for cubic spline space.



Example



Figure: 7.7 from ISLR. Natural cubic splines are very nicely behaved at the 
tails of the data. Polynomial regression shows erratic behavior. (14 
degrees of freedom used for both)



The function 𝑑8 𝑥 are not linear for 𝑥 > 𝜉9 , but 𝑑8 𝑥 − 𝑑8)#(𝑥) are linear. 

These functions 𝑁8(𝑥) are all linear for 𝑥 > 𝜉9 and 𝑥 < 𝜉#. 

Cubic splines are a decent smoothing basis and there is seldom a 
good reason to go to higher order. However, for a large number of 
regions it can become computationally inefficient. In this case, there 
are other spline bases such as B-splines which use the Harr basis to 
define more computationally efficient spline  fittings.

Standard (regression) cubic splines have high variance at end 
regions, i.e., 𝑎, 𝜉# and [𝜉9 , 1], and this is reduced by the linearity
constraint.

Controls variance, at cost of more bias near the endpoints.

Some remarks:



Ø Regression using cubic splines(dim=d)

In practice, assume input predictor variables 𝑋 = 𝑋#, … , 𝑋$ ∈ ℝ$, 
and want to predict output 𝑌. 

Notice as usual (𝑋, 𝑌) initially random variables.

As usual, our model requires we use a predictor function (to predict 𝑦)

𝑦 ≈ 𝑓 𝑥⃗ = 𝐸 𝑌 𝑋 = 𝑥⃗

In our cubic spline model, will assume

𝑓 𝑥⃗ = 𝐸 𝑌 𝑋 = 𝑥⃗ = O
*,#

$

O
+,#

-

𝜃*+ ⋅ ℎ+ 𝑥* + 𝜃"

Note 𝑓 𝑥⃗ is still modeled as sum of finite of 𝑥*, but not linear ones.



𝑓 𝑥⃗ = O
*,#

$

𝜃⃗*! ℎ 𝑥* + 𝜃"

So, we can use vector notation

Here

𝜃⃗* =

𝜃*#
𝜃*'
⋮
𝜃*-

ℎ(𝑥*) =

ℎ#(𝑥*)
ℎ'(𝑥*)
⋮

ℎ-(𝑥*)

Here, ℎ 𝑥* is more than just 𝑥* by itself as in linear regression.

But we will use the usual OLS (ordinary least squares) tools for 
computation



𝑓 𝑥⃗ = O
*,#

$

O
+,#

-

𝜃*+ ⋅ ℎ+ 𝑥* + 𝜃" = O
*,#

$

𝜃⃗*! ℎ 𝑥* + 𝜃" = 𝑯𝜣

Use matrix notation

Here, 

𝑯 =

1
1
⋮

ℎ#(𝑥#) … ℎ-(𝑥#)
ℎ#(𝑥') … ℎ-(𝑥')
⋮ ⋱ ⋮

1 ℎ#(𝑥$) … ℎ-(𝑥$)
𝜣 =

𝜃"/𝑑
𝜃"/𝑑
⋮

𝜃## … 𝜃#-
𝜃'# … 𝜃'-
⋮ ⋱ ⋮

𝜃"/𝑑 𝜃$# … 𝜃$-

The matrix product 𝐇𝚯 is denotes a sum over all pairwise
products of entries in 𝐇 and 𝚯.



Question: How many knots and where?

In principle, why not choose from among all 𝑓 with any number of 
knots at any location (instead of fixed knots at pre-defined points
𝜉#, … , 𝜉9)?

Up to now, we fix the knot points 𝜉#, … , 𝜉9. 

More questions about Splines:

Options:

(1) Specify slightly over-rich set with variable knot locations 𝜉8 and use 
traditional variable selection tools to reduce too many degrees of 
freedom (df). 

(2) Perform regression with standard fixed knot locations (less rich 
set, so less df and less chance to over-fit)



Ø Smoothing Splines (with shrinkage)

Consider the one-dimension problem: among all functions 𝑓(𝑥) with  
continuous second derivatives, find the one that minimizes the penalized 
residual sum of squares.

𝑅𝑆𝑆 𝑓, 𝜆 =O
%,#

>

𝑦 % − 𝑓 𝑥 %
'
+ 𝜆�

?

@
𝑓:: 𝑡 '𝑑𝑡

Here 𝜆 is a fixed smoothing parameter.

𝑓 𝑥 =O
*,#

>

𝜃* ⋅ ℎ*(𝑥 )

Based on the spline basis method to estimate 𝑦 = 𝑓 𝑥 + 𝜖:

That is, find 

9𝑓$ 𝑥 = argmin 𝑅𝑆𝑆 𝑓, 𝜆
𝑓 ∈ 𝒮[𝑎, 𝑏]



Two special cases are:

• 𝜆 = 0 ∶ 𝑓 can be any function that interpolates the data.
• 𝜆 = ∞ ∶ 𝑓 is the simple least squares line fit, since no second 

derivative can be tolerated.

• 𝜆 ∈ 0,∞ : 𝑓 is something in between. 

To make the 𝑅𝑆𝑆 𝑓, 𝜆 well-defined, we need to consider only the (Sobolev) 
space 𝒮[𝑎, 𝑏] of functions 𝑓: 𝑎, 𝑏 → ℝ with finite ∫?

@ 𝑓:: 𝑡 '𝑑𝑡 .

𝒮 𝑎, 𝑏 : = 𝑓: 𝑎, 𝑏 → ℝ | 𝑓::continuous and �
?

@
𝑓:: 𝑡 '𝑑𝑡 is �inite



Theorem: The optimization question

9𝑓$ 𝑥 = argmin 𝑅𝑆𝑆 𝑓, 𝜆
𝑓 ∈ 𝒮[𝑎, 𝑏]

has a unique,  finite-dimensional minimizer given by a natural cubic splines

with knots at the datapoints 𝑥 % . The penalty 𝜆 becomes a dampening of 
the coefficients, which reduces the potential over fitting.

𝑓 𝑥 =O
*,#

(

𝜃* ⋅ 𝑁*(𝑥 )

Suppose the training data set is 𝒟 = 𝑥 % , 𝑦 %
%)#
(



Writing

Ω*8 = �
?

@
𝑁*:: 𝑡 𝑁8:: 𝑡 𝑑𝑡

The penalized residual sum of squares

𝑅𝑆𝑆 𝑓, 𝜆 =O
%,#

(

𝑦 % − 𝑓 𝑥 %
'
+ 𝜆�

?

@
𝑓:: 𝑡 '𝑑𝑡

= 𝑦⃗ − 𝑁𝜃⃗
!
𝑦⃗ − 𝑁𝜃⃗ + 𝜆𝜃⃗!Ω𝜃⃗

It can then be solved for

A⃗𝜃 = 𝑁%𝑁 + 𝜆Ω &'𝑁𝑦⃗

This is just a generalized ridge regression problem.

𝑁 %* = 𝑁*(𝑥 % )



For example, we see the smoothing spline fit to the data from 
before for different values of  𝜆. In this case, relatively close lambda 
values actually give a significantly different interpolation.

Example: Non-Mixed Features



Ø Degrees of Freedom for Smoothing Splines

As a function of 𝜆, a smoothing spline is a linear smoother since the
parameters are linear functions of 𝑦(%). Indeed, after fitting

A⃗𝜃 = 𝑁%𝑁 + 𝜆Ω &'𝑁𝑦⃗

�𝑓 𝑥 =O
*,#

(

s𝜃* ⋅ 𝑁*(𝑥 )

Denote s𝐟 the 𝑛-vector of fitted values �𝑓 𝑥(%) , then,   

s𝐟 = 𝑁 𝑁!𝑁 + 𝜆Ω )#𝑁! 𝑦⃗ = 𝑆A 𝑦⃗

where 𝑆A is a linear operator known as the smoother matrix.

Here, 𝑁 is an 𝑛×𝑛 matrix. (𝑁!𝑁 + 𝜆Ω) is almost always invertible. 



In particular, if we consider the case 𝜆 = 0 without penalty.

s𝐟 = 𝐵 𝐵!𝐵 )#𝐵! 𝑦⃗ = 𝐻 𝑦⃗

We need to assume that n > 𝑚, i.e., no more free parameters 𝑚 than data 
points 𝑛. Here 𝑚 is the total number of spline basis functions. 

Here 𝐵 is an 𝑛×𝑚 matrix with rank 𝐵 = 𝑚 (assumption to make sure 𝐵!𝐵 is 
invertible.) 

Both 𝑆A and 𝐻 are symmetric and positive definite.

𝐻 is is idempotent, i.e.,  𝐻' = 𝐻. This implies Tr 𝐻 = rank 𝐻 = 𝑀



Degrees of Freedom of cubic splines is 𝑑𝑓 = Tr 𝐻 = 𝑀 = rank 𝐻

Degrees of Freedom of smoothing cubic splines is

𝑑𝑓 = Tr 𝑆A =O
*,#

>

eigB 𝑆A

Degrees of Freedom

Denote 𝐾 = 𝑁! )#Ω𝑁, then, the matrix 𝑆A can be wri_en as,

𝑆A = 𝑁 𝑁!𝑁 + 𝜆Ω )#𝑁! = 1 + 𝜆𝐾 )#

Suppose 𝐾 has eigenvalues 𝑑8, then, 𝑆A has eigenvalues   
1

1 + 𝜆𝑑8

𝑑𝑓 = Tr 𝑆A =O
C,#

-
1

1 + 𝜆𝑑8



log
𝑃 𝑌 = 1 𝑋 = 𝑥)
𝑃 𝑌 = 0 𝑋 = 𝑥) = 𝑓 𝑥 = O

%,#

-79

𝜃% ⋅ ℎ%(𝑥 )

Nonparametric Logistic Regression. For categorical  fitting, we can use 
smoothing methods to fit the probability discriminant for each category. Consider 
logistic regression with one-dimension 𝑥:

Ø Classification using cubic splines

That means

𝑃 𝑌 = 1 𝑋 = 𝑥) =
𝑒D(E)

1 + 𝑒D(E)
=

1
1 + 𝑒)D(E)

Fitting 𝑓(𝑥) in a smooth fashion leads to a smooth estimate of the conditional
probability 𝑃(𝑌 = 1|𝑥), which can be used for classification or risk scoring.



We can also construct a penalized log-likelihood criterion:

𝑙 𝑓, 𝜆 =O
%,#

>

𝑦 % log 𝑝(𝑥(%)) + 1 − 𝑦 % log 1 − 𝑝 𝑥 % −
1
2 𝜆�?

@
𝑓:: 𝑡 '𝑑𝑡

=O
%,#

>

𝑦 % 𝑓 𝑥 % + log 1 + 𝑒D E ! −
1
2 𝜆

�
?

@
𝑓:: 𝑡 '𝑑𝑡

The op'mal f is a natural spline with knots at the datapoint. we can proceed 
to fit it using Newton’s method as we did for the linear logis'c model.

Here, 𝑝 𝑥 % = 𝑃(𝑌 = 1|𝑥)



We can also use standard linear methods like backward subset selection,
dropping basis elements according to some metric. In the above, features
have been dropped to jointly minimize the training error and the number
of degrees of freedom.

Example: Non-Mixed Features



Other Bases

1. Fourier Basis: The canonical basis for wavelike data, separates 

waves into sums of frequencies.
2. Wavelet Bases: Any of a family of bases that consist of waves of a 

finite length. Unlike the Fourier basis this gives them both frequency 
and locality.

3. Haar Basis: A computationally efficient wavelet basis composed of 

piecewise step functions that cover a partition of the domain.
4. B-Spline Basis: Polynomial combinations of the Haar basis functions 

that provide a differenitable spline basis. The Bspline basis is what is 
typically used in actual spline computation.

There are a few other bases we should mention.



The Fourier basis transforms repeating waves into sums of sine and cosine
functions at different frequencies:

𝑓 𝑥 = O
(,"

F

𝑎( sin
2𝜋𝑛
𝑇 +𝑏( cos

2𝜋𝑛
𝑇

It is important to note that the Fourier basis truncated to a  finite number
of terms is inherently non-local.

1. Fourier Basis



A wavelet basis is a basis of functions that try to capture both frequency
and location. There are many adapted to various theoretical and practical
uses, and are particularly used in image processing and storage.

2. Wavelet Basis



3. Haar Basis

One of the building blocks of computationally efficient wavelet computations 
is the Haar basis. We construct the basis recursively, starting with a constant 
function ℎ"(𝑥) on a bounded domain, for example 𝑅 = 0, 1 . Then,

ℎ" and ℎ# are orthogonal. We continue cutting each domain in half.

ℎ# 𝑥 =
1 for 𝑥 <

1
2

−1 for 𝑥 ≥
1
2



4. B-Spline Basis

B-splines are defined recursively from a Haar like basis. Let 𝐵%,8 𝑥 = 𝕀H"(𝑥), the 
order 𝑚 spline is

The recursive nature of the construction allows for much faster smoothing by B-
splines of order 4 than by normal cubic splines. 

For a large number N of regions, fitting by cubic splines can be shown to be 
𝑂(𝑁&) while under mild sparsity conditions fitting by B-splines is of order 𝑂(𝑁).



Definition: 

The support of a function 𝑓(𝑥⃗) on 𝑥⃗ ∈ ℝ$ is the smallest closed set 𝐴
containing the points where 𝑓 𝑥⃗ ≠ 0.

A function 𝑓(𝑥⃗) on 𝑥⃗ ∈ ℝ$ has compact support if its support is a 
bounded set (i.e., contained in some ball in ℝ$ .)

B-spline: A basis function for the vector space 𝒮 of splines with fixed
knots at 𝜉#, … , 𝜉9 supported on the smallest number of spline intervals.

• Thus B-spline is function with 𝑀 − 2 derivatives (including at the 
pre-assigned knots. 

• It is a polynomial of order 𝑀 − 1 in each spline interval, and is 0
outside of M intervals. 

• It cannot have support over less than M spline intervals.  



An illustration for 𝑀 = 4 (cubic B-spline) below:

Note we have 1 df (degree of freedom, i.e. free parameter) to choose in 
first interval above.



Reason:

Cubic polynomial 𝑓 𝑥 = 𝑎" + 𝑎#𝑥 + 𝑎'𝑥' + 𝑎&𝑥& has 4 free parameters. 
However, we need 3 conditions: 

𝑓 𝜉" = 𝑓: 𝜉" = 𝑓:: 𝜉" = 0

in order to have 𝑀 − 2 = 2 continuous derivatives just at 𝜉"

Thus have 4 − 1 − 1 − 1 = 4 − 3 = 1 free parameters in first interval.

Also have
1 more df in second piece,
1 more df in third piece,
1 more df in fourth piece,
and again −1 − 1 − 1 = −3 df at end of fourth piece.

Thus, a total of 1 + 1 + 1 + 1 − 3 = 1 df.

Thus, there is only one free parameter in the above function (i.e. a 
free multiplicative constant determining the overall height).



The interpolaKon funcKon One segment depending on the 4 control points A,B,C,D, 
is given by the polynomial:

thus the point at 𝑡 = 0 is given by 𝐴/6 + 4𝐵/6 + 𝐶/6,
and the point at 𝑡 = 1 is given by 𝐵/6 + 4𝐶/6 + 𝐷/6.

𝑄 =
𝐴 1 − 3I + 3𝑡' − 𝑡&

6 +
𝐵 4 − 6𝑡' + 3𝑡&

6 +
𝐶 1 + 3𝑡 + 3𝑡' − 3𝑡&

6 +
𝐷 𝑡&

6



Ø Multidimensional Splines (2D)

The multivariate case follows directly from the one variable case. For
example, in ℝ', if ℎ#% is a spline basis for 𝑥#, and ℎ'* form a spline basis
for 𝑥', we can form the tensor product basis

𝑔%* 𝑥⃗ = ℎ#%(𝑥#)ℎ'*(𝑥')

We can then fit

𝑔 𝑥⃗ =O
%,#

-#

O
*,#

-$

𝑔%* 𝑥⃗ 𝜃%* = GJΘ

All the rest are the same as one dimensional.

For example, consider ℎ#% 𝑥# = 𝑥#% and ℎ'* 𝑥' = 𝑥'
* for 𝑖, 𝑗 = 1,2,3. Then, we 

have 𝑔%* 𝑥⃗ given by 1, 𝑥#, 𝑥', 𝑥#', 𝑥#𝑥', 𝑥'', 𝑥#&, 𝑥#'𝑥', 𝑥#𝑥'', 𝑥'&.



In practice, the only difficulty is picking the lattice. For a maximum number
of degrees of freedom M, one can separate the domain into a lattice of
M points and then throw away all points outside the convex hull of the
dataset.



Mul-dimensional Smoothing Splines ((2D))

For smoothing splines, we now need to minimize a function of the form

The solutions are smooth 2D surfaces known as thin plate splines, 

As before, for 𝜆 = 0 the solution approaches an interpolating function
and for 𝜆 → ∞, the solution approaches the least squares plane.

ℎ% 𝑥⃗ = 𝑥⃗ − 𝑥⃗ % '
log 𝑥⃗ − 𝑥⃗ %

And take the form of radial basis functions

𝑓 𝑥⃗ = 𝜃" + 𝜃⃗!𝑥⃗ +O
*,#

>

𝛼*ℎ*(𝑥⃗)

𝑅𝑆𝑆 𝜃⃗ =O
%,#

>

𝑦 % − 𝑓 𝑥⃗ %
'
+ 𝜆¥

ℝ$

𝜕
𝜕𝑥#

+
𝜕
𝜕𝑥'

'

𝑓 𝑥⃗
'

𝑑𝑥#𝑑𝑥'





Textbooks:

Hastie: Chapter 5. 

Kernel Smoothing: Principles, Methods and Applications
https://www.wiley.com/en-
us/Kernel+Smoothing:+Principles,+Methods+and+Applications-p-
9781118456057

Clarke: Principles and Theory for data mining and machine learning. Chapter 3.

Semiparametric Regression

https://bookdown.org/ssjackson300/Machine-Learning-Lecture-
Notes/generalised-additive-models.html

https://www.wiley.com/en-us/Kernel+Smoothing:+Principles,+Methods+and+Applications-p-9781118456057
https://bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/generalised-additive-models.html


https://www.mathworks.com/help/curvefit/construction.html

https://docs.scipy.org/doc/scipy/tutorial/interpolate.html

B-spline: 
h_ps://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.B
Spline.html

Coding Resources:

Matlab: 

Python-Scipy:

R: 

https://github.com/madrury/basis-expansions

https://www.mathworks.com/help/curvefit/smoothing-splines.html

https://www.mathworks.com/help/curvefit/construction.html
https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html
https://github.com/madrury/basis-expansions
https://www.mathworks.com/help/curvefit/smoothing-splines.html


Further reading: 

h_ps://openaccess.thecvf.com/content_cvpr_2018/papers/Fey_SplineCNN_
Fast_Geometric_CVPR_2018_paper.pdf

SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels 

https://openaccess.thecvf.com/content_cvpr_2018/papers/Fey_SplineCNN_Fast_Geometric_CVPR_2018_paper.pdf

