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Section Exploratory Data Analysis 

1. Detrend 

2. Difference operator

3. Frequency 

4. Smoothing



Motivation: 

In time series analysis, we need to account for the dependence
between the values in the series. We frequently would prefer to analyze a 
stationary process. 

In addition, ARMA processes provide a rich framework for analyzing stationary
processes.

Stationarity for a time series enables us to measure the dependence, since 
the dependence structure is regular and does not change over time. This 
allows us to better estimate autocorrelation and other quantities of interest.



A strong trend, however, may obscure the behavior of the stationary 
process. It may, therefore, be necessary to remove a trend; one way to do 
that is via regression. 

𝑥! = 𝜇! + 𝑦!

where 𝑦! is a zero mean stationary process, e.g. MA(2), AR(1), white noise, 
etc., and  𝜇! is a deterministic trend, e.g.  𝜇" = 𝛽# + 𝛽$𝑡.

For example, 



Linear Regression Basics

The basic data type for regression consists of a list of pairs of numbers, 
𝑥$, 𝑧$ , … . (𝑥%, 𝑧%), where the 𝑥& are thought of as the response variables 

and 𝑧& are thought of as the predictor variables.

The linear regression model would then be

𝑥! = 𝛽# + 𝛽$𝑧!$ +⋯+ 𝛽!'𝑧!' + 𝑤!

= 𝛽(𝑧! + 𝑤!

Here, 𝑤! are iid normal random noise with mean zero and variance 𝜎).

𝑧! =

1
𝑧!$
𝑧!)
⋮
𝑧!'

Estimating the parameter vector 𝛽 is done by minimizing the sum of 
squares error

𝐿 =5
!*$

%

𝑥! − 𝛽(𝑧!
)



Solution is the ordinary least squares (OLS) estimator 

7⃗𝛽 = 𝑍(𝑍 +$ 𝑍(�⃗� �⃗� =

𝑥$
𝑥)
⋮
𝑥%

Denote the minimized error sum of squares

𝑆𝑆𝐸:=5
!*$

%

𝑥! −
7⃗𝛽(𝑧!

)

An unbiased estimator for the variance 𝜎)

𝑠) = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − (𝑞 + 1)

Fitted values 
@𝑥!: =

7⃗𝛽(𝑧!

Residuals: 
𝑒! = 𝑥! − @𝑥!



Assuming independent Gaussian errors, we can build confidence
intervals using statistics such as

Inference

7𝛽& − 𝛽&
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 ( 7𝛽&)

which have a t-distribution with 𝑛 − (𝑞 + 1) d.f, and 𝑠,) is distributed 
proportionally to a 𝜒%+('.$))

Model Selection: 

Subset selection using AIC,  BIC,



Assumptions for Linear Regression

• There is a linear relationship between the response and predictor variables. 
• There is a random noise 𝑤&
• 𝐸(𝑤& ) = 0.
• 𝑉𝑎𝑟 𝑤& = 𝜎) is constant and finite. 
• 𝑤& are iid normal.

The assumptions for linear regression are:

Diagnostics of linear assumptions: 

Check regression assumptions are satisfied:

• Residual plot: to check if right regression equation used, variance 
of errors is constant, mean of errors is zero.

• ACF plot: to determine correlation.
• Normal probability plot: to check for normality. (QQ plot)



q Detrending

If our process has a linear trend, we could use linear regression to remove 
the trend (“detrend”).

Consider the model: 
𝑥! = 𝜇! + 𝑦!

where 𝑦! is a zero mean stationary process, e.g. MA(2), AR(1), white 
noise, etc., and  𝜇! is a deterministic trend, e.g.  𝜇" = 𝛽# + 𝛽$𝑡.

We can view 𝑥! as having stationary behavior around a trend. 
A strong trend, 𝜇!, can obscure the behavior of the stationary process, 𝑦! .

1. Obtain an estimate of the trend component, �̂�! , e.g. via OLS.
2. Work with the residuals 𝑒! = 𝑥! − �̂�!

Remove the trend:



q Differencing

The first difference of 𝑥! is

∇𝑥!: = 𝑥! − 𝑥!+$

For example, if 𝑥! = 𝛽# + 𝛽$𝑡 + 𝑦!

∇𝑥! = 𝛽$ + 𝑦! − 𝑦!+$

The detrending may give us a more accurate representation, whereas 
differencing completely removes 𝛽# and turns 𝛽$ in to the mean of the series 
∇𝑥! . 

In addition, second difference eliminates a quadratic trend.

Using backshift operator, ∇= 1 − B

In general, the 𝒅-th difference operator is ∇0= 1 − 𝐵 1



Random Walk Trend

Not stationary, but differenced data are stationary

𝑋!

𝑋! − 𝑋!+$



• An advantage of differencing over detrending is that fewer parameters 
are estimated after the differencing operation.

• A disadvantage of differencing is that it often makes an estimate of the 
stationary process 𝑦! more difficult.

Differencing Vs Detrending

Differencing changes 𝑦! and often introduces additional dependency.

For example, consider the MA(1) process 𝑦! = 𝑤! + 𝜃$𝑤!+$

Suppose 𝑥! = 𝛽# + 𝛽$𝑡 + 𝑤! + 𝜃$𝑤!+$

∇𝑥! = 𝛽$ + 𝑦! − 𝑦!+$

= 𝛽$ + 𝑤! + 𝜃$𝑤!+$ − 𝑤!+$ − 𝜃$𝑤!+)

= 𝛽$ +𝑀𝐴(2)

∇𝑥! is stationary.



We've already seen how we can use differencing to obtain stationary processes. 
We are assuming that our observations can be written in the form 

𝑥! = 𝜇! + 𝑦!

where 𝑦! is a zero mean stationary process,  and  𝜇! is a trend. 

q Frequency and Periodic Functions

We have considered that 𝜇! to be a linear or polynomial functions.  

Now, let us consider 𝜇! as a periodic function. For example, 

𝜇! = 𝐴 cos(2𝜋𝜔𝑡 + 𝜙)

where • 𝐴: amplitude
• 𝜔: frequency
• $

2
: Period

• 𝜙: phase 



Example: 

Assume that 𝑦! in model is white noise.  

𝑥! = 𝜇! + 𝑦!

= 𝐴 cos 2𝜋𝜔𝑡 + 𝜙 + 𝑤!

We could try to use non-linear least squares to fit 𝐴,𝜔, 𝜙

Here, we have rewrite the model using  cos 𝛼 + 𝛽 = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽

In many settings, certain frequencies are natural. 

For example, in monthly data a frequency 𝜔=1/12 (corresponding to a period 
of 12) is quite natural. We may want to remove a periodic signal by fitting

𝑥! = 𝛽$ cos
2𝜋
12 𝑡 + 𝛽) sin

2𝜋
12 𝑡 + 𝑤!

We can use OLS estimate 𝛽



Ø Smoothing

Sometimes, the time series data we have can be too noisy to be able to 
detect long term trends. Smoothing is used to smooth out short term 
random fluctuations so that longer term trends can be emphasized.

𝑥! = 𝜇! + 𝑦!

where 𝑦! is a zero mean stationary process,  and  𝜇! is a trend or frequency. 

Assume the models of the form

One way to approximate 𝜇! is to take a moving average of the time series. 
Averaging, in general, reduces variability. It can also reduce “seasonal” 
fluctuations. Averaging can help in viewing longer term trends, because the 
seasonal variations will be dampened. 



In general we may write a moving average as

𝑚! = 5
3*+4

4

𝑎3𝑥!+3

where 𝑎3 ≥ 0 and ∑3*+44 𝑎3 = 1

It is also called centered moving average. The smoothed value for a 
particular time is calculated as a linear combination of observations for 
surrounding times. 

Averaging has the advantage of being adaptable to slow changes in 𝜇!
across time. The disadvantage is that there may still be a substantial 
amount of variability in our estimate 𝜇! , and we may not know a priori 
what the window size k should be.

Question: What is an appropriate window size, k, to smooth away 
seasonality in monthly data, in order to identify yearly trends?



It was mentioned earlier that averaging reduces variation, in general. 

For example, assume that the original series 𝑥! is stationary, such that  
𝑉𝑎𝑟 𝑥! = 𝜎) . Let's create another time series

𝑦! =
1
3𝑥!+$ +

1
3𝑥! +

1
3𝑥!.$

Question: Derive the variance of 𝑦! .

Variance Reduction with Averaging



Kernel Smoothing

The idea with kernel smoothing is similar to the moving average; however, the 
contribution to the estimate of the smooth function at a point t from local points 
declines as a function of distance from the current point. The smooth function 
is estimated by

�̂�! =5
&*$

%

𝑤!(𝑖) 𝑥&

where 𝑤! 𝑖 =
𝐾 𝑡 − 𝑖

𝑏
∑3*$% 𝐾 𝑡 − 𝑗

𝑏

Here, 𝐾( ) is the kernel function, and 𝑏 is the bandwidth.

For example, 𝐾 𝑧 = $
)5
exp − 6!

)



Smoothing Splines



Textbook[Shumway-Stoffer]: Chapter 2


