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Section- Discrete Fourier transform and Wavelet transform

1. Spectral estimation

2. Sample autocovariance

3. Discrete Fourier transform 

4. Periodogram

5. Wavelet Transform introduction



So far, we've looked at the spectral density, which gives an alternative view of
stationary time series. It is a population quantity. 

We'll next consider the sample version: the periodogram.

Given a realization 𝑥!, . . . , 𝑥" of a time series, how can we estimate the 
spectral density?

Spectral Estimation:

• One approach: replace 𝛾(ℎ) in the definition of spectral density

𝑓 𝜔 =+
#$

$

𝛾 ℎ 𝑒#%&'()

with sample autocovariance -𝛾 ℎ .

• Another approach, called the periodogram: compute 𝐼(𝜔), the squared 
modulus of the discrete Fourier transform (at frequencies  𝜔 = 𝑘/𝑛).



• These two approaches are identical at the Fourier frequencies 𝜔 = 𝑘/𝑛.

• The asymptotic expectation of the periodogram 𝐼(𝜔) 𝑖𝑠 𝑓(𝜔). We can 
derive some asymptotic properties, and hence do hypothesis testing.

• Unfortunately, the asymptotic variance of 𝐼(𝜔) is constant.  It is not a 
consistent estimator of 𝑓(𝜔).

• We can reduce the variance by smoothing the periodogram—averaging 

over adjacent frequencies. If we average over a narrower range as 𝑛 → ∞, 
we can obtain a consistent estimator of the spectral density.

Remarks:



Estimating the spectrum: Sample autocovariance

-𝛾 ℎ =
1
𝑛 +

*+!
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𝑥*- ) − �̅� (𝑥* − �̅�)

Idea: Use sample autocovariance -𝛾 ℎ replace 𝛾(ℎ)

in the definition of spectral density

𝑓 𝜔 = +
)+#$

$

𝛾 ℎ 𝑒#%&'()

That is, for − !
%
≤ 𝜔 ≤ !

%
, estimate 𝑓 𝜔 by 

:𝑓 𝜔 = +
)+#"-!

"#!
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Estimating the spectrum: Periodogram

Another approach to estimating the spectrum is called the periodogram. It was 
proposed in 1897 by Arthur Schuster (at Owens College, which later became part of 
the University of Manchester), who used it to investigate periodicity in the 
occurrence of earthquakes, and in sunspot activity.

Arthur Schuster, “On Lunar and Solar Periodicities of Earthquakes,” Proceedings of
the Royal Society of London, Vol. 61 (1897), pp. 455–465.

To define the periodogram, we need to introduce the discrete Fourier transform 
(DFT) of a finite sequence 𝑥!, . . . , 𝑥".

�⃗� =

𝑥!
𝑥%
⋮
𝑥"

∈ ℂ"



q Discrete Fourier Transform

For a times series sequence x = (𝑥!, . . . , 𝑥"), define the discrete Fourier 
transform (DFT) as (𝑋(𝜔.), 𝑋(𝜔!), . . . , 𝑋(𝜔"#!)), where

In some cases, a spectrum-domain representation is more convenient in 
describing a process. To transform a time-domain representation to a 
spectrum-domain representation, we use the Fourier transform.

𝑋 𝜔/ =
1
𝑛
+
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𝑥*𝑒#%&'(!*

and 𝜔/ =
/
"

, for 𝑘 = 0,1, … , 𝑛 − 1, are called the Fourier frequencies.
(Think of 𝜔/ 𝑘 = 0, . . . , 𝑛 − 1} as the discrete version of the frequency
range  𝜔 ∈ [0, 1].)



First, let’s show that we can view the DFT as a representation of 𝑥 in a different 
basis, the Fourier basis.

Consider the space ℂ" of vectors of 𝑛 complex numbers, with inner product
�⃗�, 𝑏 = �⃗�∗𝑏, where �⃗�∗ is the complex conjugate transpose of the vector �⃗� ∈ ℂ".

Suppose that a set {𝜙1 | 𝑗 = 0, 1, . . . , 𝑛 − 1} of 𝑛 vectors in ℂ" are
orthonormal:

𝜙1 , 𝜙/ = L1 𝑖𝑓 𝑗 = 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then these {𝜙1} span the vector space ℂ" , and so for any vector �⃗� ∈ ℂ", we can
write �⃗� in terms of this new orthonormal basis,

�⃗� = +
1+.

"#!

𝜙1 , �⃗� 𝜙1



An alternative way to represent the DFT is by separately considering the real and 
imaginary parts,

𝑋 𝜔1 = 𝐸1 , �⃗� =
1
𝑛
+
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𝑒#%&'("* 𝑥*
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cos(2𝜋𝑡𝜔1) 𝑥* − 𝑖
1
𝑛
+
*+!

"

sin 2𝜋𝑡𝜔1 𝑥*

= 𝑋2 𝜔1 − 𝑖𝑋3 𝜔1

where this defines the sine and cosine transforms, 𝑋3 𝑎𝑛𝑑 𝑋2 , 𝑜𝑓 �⃗�.



Fast Fourier Transform (FFT) is used to compute the Discrete Fourier 
Transform (DFT) to make the computations more efficient.

Fast Fourier Transform



q Periodogram

The periodogram is defined as

𝐼 𝜔1 = 𝑋 𝜔1
% =

1
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𝑒#%&'("* 𝑥*
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= 𝑋2% 𝜔1 + 𝑋3% 𝜔1
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cos 2𝜋𝑡𝜔1 𝑥*

𝑋3% 𝜔1 =
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sin 2𝜋𝑡𝜔1 𝑥*

Recall we want to estimate 𝑓 𝜔 =+
#$

$

𝛾 ℎ 𝑒#%&'()



The periodogram 𝐼 𝜔1 = 𝑋 𝜔1
%

for one of the Fourier frequencies  𝜔1 =
1
"

(for 𝑗 = 0, 1, . . . , 𝑛 − 1).
The orthonormality of the 𝐸1 implies that we can write

�⃗�∗�⃗� = +
1+.
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For �⃗� = 0, we can write this as 

-𝜎4
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This is the discrete analog of the identity

-𝜎4
% = 𝛾4 0 = ]

#!%

!
%
𝑓4 𝜔 𝑑𝜔

Think of 𝐼(𝜔1) as the discrete version of 𝑓(𝜔) at the frequency 𝜔1 = 𝑗/𝑛,
and think of !

"
∑(" . as the discrete version of ∫ 𝑑𝜔



Estimating the spectrum: Periodogram

Why is the periodogram at a Fourier frequency (that is, 𝜔 = 𝜔1 ) the same as
computing 𝑓(𝜔) from the sample autocovariance?

Almost the same. They are not the same at 𝜔. = 0 when ̅⃗𝑥 ≠ 0.

For 𝑗 = 0, we have 

𝐼 0 = 𝑛�̅�%

But, for 𝑗 ∈ {1, . . . , 𝑛 − 1},



But if either ̅⃗𝑥 ≠ 0, or we consider a Fourier frequency 𝜔1 with 𝑗 ∈ {1, . . . , 𝑛 − 1},

𝐼 𝜔1 = 𝑋 𝜔1
% =
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where the fact that 𝜔1 ≠ 0 implies ∑*+!" 𝑒#%&'("* = 0 (we showed this when we were 
verifying the orthonormality of the Fourier basis) has allowed us to subtract the sample 
mean in that case.



We can think of the inverse Fourier transform as a regression of 𝑥* on sines 
and cosines with the coefficients equal to %

)
times the sine part and the 

cosine part of the Fourier transforms respectively.

Therefore, 𝑋2(𝜔1) and 𝑋3(𝜔1) measure the contribution the frequency 𝜔1 has 
in explaining the variation in the time series. The bigger 𝑋2(𝜔1) and 𝑋3(𝜔1), 
the greater the contribution from the frequency 𝜔1.

Interpreting the Periodogram

One can show that

+
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𝑥* − �̅� % = 2 +
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𝑋2% 𝜔1 + 𝑋3% 𝜔1 =2+
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𝐼 𝜔1



The sum of squares can be decomposed into 2 times the sum of the 
periodograms over frequencies 𝜔1 for 1 ≤ 𝑗 ≤ 𝑚. In other words, the 
variation in the series 𝑥* is distributed over frequencies 𝜔1, where the 
amount of variation explained by frequency 𝜔1 is 2𝐼(𝜔1).

Thus, we can interpret the periodogram as the amount of variation at a 
certain frequency. This is how we also interpret the spectral density. 
The periodogram is the sample version of the spectral density, which is 
a population quantity.



Asymptotic properties of the periodogram

We want to understand the asymptotic behavior of the periodogram 𝐼(𝜔) at
a particular frequency 𝜔, as 𝑛 increases. We’ll see that its expectation
converges to 𝑓(𝜔).

Let 𝜔1:" denote a frequency of the form 1#
"

, where {𝑗"} is a sequence of 
integers so that 𝑗" → ∞ and 𝑛 → ∞. It turns out that

𝐸 𝐼 𝜔1:" → 𝑓 𝜔 =+
#$

$

𝛾 ℎ 𝑒#%&'()

The spectral density is the long run average of the periodogram.

Further more, 
%: (":#
;((")

follows chi-squared distribution and confidence interval can 

be calculated.



Example: 

In this example, we will look at the Southern Oscillation Index (SOI) and 
recruitment datasets, which contain monthly data on the changes in air 
pressure and estimated number of new fish in the central Pacific Ocean from 
1950 to 1987. The central Pacific Ocean warms approximately every three to 
seven years due to El Nino.
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• "Time Series Analysis and Its Applications", 4th ed. 2017, by Shumway and Stoffer. 

Sections 4.4

• I. Daubechies (Ten Lectures on Wavelets; Orthonormal Bases of Compactly 
Supported Wavelets) https://epubs.siam.org/doi/book/10.1137/1.9781611970104

• Mark Kon, lecture notes:  http://math.bu.edu/people/mkon/Wavelets.pdf

https://epubs.siam.org/doi/book/10.1137/1.9781611970104
http://math.bu.edu/people/mkon/Wavelets.pdf

