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Section Forecasting 

1. Linear prediction.

2. Best linear predictor
3. Forecasting AR and MA models.

4. Building ARMA models



We explore forecasting: The goal is to predict future values of a time 
series 𝑥!"#, based on the observed data 𝑥 = {𝑥$, … , 𝑥!%$, 𝑥!}. 

Ø Forecasting



We first assume {𝑥&} is stationary.



The minimum mean square error predictor

𝑥!"#! = 𝐸 𝑥!"# 𝑥$:!

is the best way to forecast 𝑚 steps into the future with the data you have in 
the sense that that point minimizes mean square error

𝐸 𝑥!"# − 𝑔 𝑥$:! (

where 𝑔(𝑥) is any function of the observations.

Conditional expectations are almost always the way you want to use 
data to forecast/predict something else.

Conditional expectations



First, we restrict our attention to predictors that are linear functions of the 
observations, i.e.

𝑥!"#! = 𝛼) +/
*+$

!

𝛼*𝑥* =/
*+)

!

𝛼*𝑥*

where 𝛼), 𝛼$, … , 𝛼! ∈ ℝ 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑥) = 1. 

Theorem: Linear predictors that minimize the mean square prediction 
error are called best linear predictors (BLP), which is solved by

Linear prediction depends on on the second-order moments of the process, 
which can be estimated from the data {𝑥$, … , 𝑥!%$, 𝑥!}.

Linear predictors

𝐸 𝑥!"# − 𝑥!"#! 𝑥, = 0,  for 𝑘 = 0,1,2, … , 𝑛

where 𝑥) = 1.



The reason for the above theorem is similar as we did before. We want to 
minimize the mean square error

𝐸 𝑥!"# − 𝑥!"#! ( = 𝐸 𝑥!"# −/
*+)

!

𝛼*𝑥*

(

Take partial derivative with respect to 𝛼* , and find critical points, i.e.,  

𝐸 𝑥!"# −/
*+)

!

𝛼*𝑥* 𝑥, = 0 for 𝑘 = 0,1,2, … , 𝑛

So, we will find 
𝑥!"#! = 𝛼) +/

*+$

!

𝛼*𝑥*

by solving the above equations.



Remarks: 

• Every time we get a new data point, we have to recalculate the 
prediction.

• Every time we get a new data point, there is another equation in a 
new system of equations

• Prediction errors 𝑥!"# − 𝑥!"#! are are orthogonal/uncorrelated with 
the prediction variables (1, 𝑥$, … , 𝑥!%$, 𝑥!).

• We want recursive formula: get 𝑥!"#! from 𝑥!%$"#!%$

• We also want our recursive formulas to have bounded memory
• footprints.
• Different algorithms work for different models: innovations algorithm, 

Durbin-Levinson, Kalman  filter, particle  filters, etc.
• There are algorithms that assume you have an infinite past of 

history.



From the first equation when 𝑥) = 1, 

𝐸 𝑥!"# −/
*+)

!

𝛼*𝑥* = 0

we have

𝛼) = 𝜇 1 −/
*+)

!

𝛼*

So, the general form of the forecast is 

𝑥!"#! = 𝜇 +/
*+$

!

𝛼*(𝑥*−𝜇)

So, we can assume without loss of generality that  𝜇 = 0.



Now, we focus on one-step-ahead, and change the notations

𝑥!"$! = 𝛼!𝑥! + 𝛼!%$𝑥!%$ +⋯+ 𝛼$𝑥$

= 𝜙!$𝑥! + 𝜙!(𝑥!%$ +⋯+ 𝜙!!𝑥$

The new notation 𝜙!*: = 𝛼!"$%* more useful for pure AR(p) models.

𝐸 𝑥!"# −/
*+$

!

𝜙!*𝑥!"$%* 𝑥!"$%, = 0 for 𝑘 = 1,2, … , 𝑛

Equivalently, 

𝛾- 𝑘 −/
*+$

!

𝜙!*𝛾- 𝑘 − 𝑗 = 0

q One-step-ahead linear prediction



Equivalently, 

Equivalently, 
𝛤! 𝜙! = 𝛾!

For each data set size 𝑛, we solve the above equation for 𝜙!

𝜙! = 𝛤!%$ 𝛾!

Then, the forecasting is given by 

𝑥!"$! = 𝜙!$𝑥! + 𝜙!(𝑥!%$ +⋯+ 𝜙!!𝑥$ = 𝜙!
.
�⃗�

𝛾(0) 𝛾(1) ⋯ 𝛾(𝑛 − 1)
𝛾(1)
⋮

𝛾(𝑛 − 1)

𝛾(0) ⋯ 𝛾(𝑛 − 2)
⋮

𝛾(𝑛 − 2)
⋱
⋯

⋮
𝛾(0)

𝜙!$
𝜙!(
⋮

𝜙!!

=

𝛾(1)
𝛾(2)
⋮

𝛾(𝑛)



Once we have the forecast from the weight vector solution, we can calculate its 
variance (mean square error):

𝐸 𝑥!%$ − 𝑥!%$! ( = 𝐸 𝑥!%$ − 𝜙!
.
�⃗�

(

= 𝐸 𝑥!%$ ( − 2𝐸 𝑥!%$𝜙!
.
�⃗� + 𝐸 𝜙!

.
�⃗�

(

= 𝛾-(0) − 2𝐸 𝑥!%$�⃗�. 𝜙! + 𝜙!
.
𝐸 �⃗��⃗�. 𝜙!

= 𝛾-(0) − 2𝛾!
.𝜙! + 𝜙!

.
Γ!𝜙!

= 𝛾-(0) − 2𝛾!
.𝜙! + 𝜙!

.
𝛾!

= 𝛾-(0) − 𝛾!
.𝜙!

The term 𝛾!
.𝜙! is the reduction in uncertainty and depends on how much 

autocorrelation you have.

= 𝛾-(0) − 𝛾!
.𝛤!%$ 𝛾!

q Mean squared error of one-step-ahead linear prediction



𝐸 𝑥!%$ − 𝑥!%$! ( = 𝛾-(0) − 𝛾!
.𝛤!%$ 𝛾!

= 𝑉𝑎𝑟 𝑥!"$ − 𝐶𝑜𝑣(𝑥!"$, �⃗�) 𝐶𝑜𝑣 �⃗�, �⃗� %$𝐶𝑜𝑣(�⃗�, 𝑥!"$ )

= 𝐸 𝑥!%$ − 0 ( − 𝐶𝑜𝑣(𝑥!"$, �⃗�) 𝐶𝑜𝑣 �⃗�, �⃗� %$𝐶𝑜𝑣(�⃗�, 𝑥!"$ )

Variance is reduced:

Here �⃗� =

𝑥!
𝑥!%$
⋮
𝑥$



Example: Forecasting AR(1)

Consider an AR(1) model: 𝑥&"$ = 𝜙$𝑥& + 𝑤&

The predictions/forecasts for 𝑥($ = 𝜙$$𝑥$

Prediction equation: 𝛤! 𝜙! = 𝛾!

That is 𝛾 0 𝜙$$ = 𝛾(1)

𝛾 1 = 𝐶𝑜𝑣 𝑥), 𝑥$ = 𝜙$𝛾(0)

So, 𝜙$$ = 𝜙$



Example: AR(2)

Consider an AR(2) model: 𝑥!"$ = 𝜙$𝑥! + 𝜙(𝑥!%$ + 𝑤!

Find the predictions/forecasts for 𝑛 = 2, 𝑛 = 3,…

At 𝑛 = 2, forecasting time 3 requires solving

𝛤! 𝜙! = 𝛾!

Equivalently, 

More explicitly, 

𝐸 𝑥!"$ −/
*+$

!

𝜙!*𝑥!"$%* 𝑥!"$%, = 0
for 𝑘 = 1,2

Here, 𝜙($ = 𝜙$ and 𝜙(( = 𝜙(.

𝛾(0) 𝛾(1)
𝛾(1) 𝛾(0)

𝜙!$
𝜙!(

= 𝛾(1)
𝛾(2)



More generally, assume that n > 2. The prediction equations are now for 
𝑘 = 1,… , 𝑛

𝐸 𝑥!"$ −/
*+$

!

𝜙!*𝑥!"$%* 𝑥!"$%, = 0

Hence, the solution is  

𝜙!$
𝜙!(
𝜙!/
⋮

𝜙!!

=

𝜙$
𝜙(
0
⋮
0



Example: Forecasting an AR(2) model

Consider the following AR(2) model.

𝑋& +
1

1.21𝑋&%( = 𝑊&

The zeros of the characteristic polynomial 𝑧( + 1.21 are at ±1.1𝑖. We can
solve the linear difference equations 𝜓) = 1, 𝜙 𝐵 𝜓& = 0 to compute the
𝑀𝐴(∞) representation:

𝜓& =
1
2 1.1 %& cos

𝜋𝑡
2

Thus, the 𝑚 −step-ahead estimates have mean squared error

𝐸 𝑋!"# − b𝑋!"#
( = /

*+)

#%$

𝜓*(







Example: AR(p)

Assume at time 𝑡 ≥ 𝑝 we want to predict/forecast time 𝑡 + 1 with an AR(p) 
model for which we know the parameters  𝜙$, … , 𝜙0. We would just use the 
previous 𝑝 time points  𝑡, 𝑡 − 1, … , 𝑡 − 𝑝 + 1, and use prediction 𝜙$𝑥& +⋯+
𝜙0𝑥&%0"$ :

Consider an AR(p) model: 𝑥&"$ = 𝜙$𝑥& + 𝜙(𝑥&%$ +⋯+ 𝜙0𝑥&%0"$ + 𝑤&

𝑥!"$! = 𝑃 𝑋!"$ |𝑋$, … , 𝑋!

= 𝑃 ∑1+$
0 𝜙1𝑋!"$%1 +𝑊!"$ 𝑋$, … , 𝑋!

=/
1+$

0

𝜙1 𝑃 𝑋!"$%1 𝑋$, … , 𝑋!

=/
1+$

0

𝜙1 𝑋!"$%0 for 𝑛 ≥ 𝑝.

In more details, the Durbin-Levinson algorithm gives the calculation for 
AR(p) models



Remark (Innovations Algorithm for MA(q))

The Innovations Algorithm is more useful for pure MA(q) models, and can be 
extended to ARMA(p,q) models. The idea is to write predictions in terms of

h𝑥!"$! =/
*+$

!

𝜃!*(𝑥!"$%* − h𝑥!"$%*)

instead of 

h𝑥!"$! =/
*+$

!

𝜙!* 𝑥!"$%*

The terms 𝑥!"$%* − h𝑥!"$%* are called the innovations, and are kind of like 
𝑤!"$%*



The prediction operator

For random variables 𝑌, 𝑍$, . . . , 𝑍!, the best linear prediction of 𝒀 given 𝒁 is 
the operator 𝑃(−|𝑍 ) applied to 𝑌

𝑃 𝑌 𝑍 = 𝜇2 + 𝜙.(𝑍 − 𝜇4⃗)

Γ𝜙 = �⃗�with

where
𝛾 = 𝐶𝑜𝑣 𝑌, 𝑍

Γ = 𝐶𝑜𝑣 𝑍, 𝑍



Properties of the prediction operator

𝐸 𝑌 − 𝑃 𝑌 𝑍 = 0

𝐸 𝑌 − 𝑃 𝑌 𝑍
(
= 𝑉𝑎𝑟 𝑌 − 𝜙.�⃗�

𝐸 𝑌 − 𝑃 𝑌 𝑍 𝑍 = 0

𝑃 𝑍1 𝑍 = 𝑍1

𝑃 𝑌 𝑍 = 𝐸[𝑌] if 𝛾 = 0

𝑃 𝛼) + 𝛼$𝑌$ + 𝛼(𝑌( | 𝑍 = 𝛼) + 𝛼$𝑃 𝑌$ 𝑍 + 𝛼(𝑃 𝑌( 𝑍



Example: predicting m steps ahead

𝛤! 𝜙!
(#)

= 𝛾!
(#)

𝑥!"#! = 𝜙!$
(#)𝑥! + 𝜙!(

(#)𝑥!%$ +⋯+ 𝜙!!
(#)𝑥$ = 𝜙!

(#).
�⃗�

where  𝛤! = 𝐶𝑜𝑣 �⃗�, �⃗� and 𝛾!
(#) = 𝐶𝑜𝑣 𝑥!"#, �⃗� =

𝛾(𝑚)
𝛾(𝑚 + 1)

⋮
𝛾(𝑚 + 𝑛 − 1)

In addition, the variance (error) 

𝐸 𝑥!"# − 𝑥!"#! ( = 𝛾 0 − 𝜙!
(#).

𝛾!
(#)

Solve equation



Review: (Real Hilbert Space)

• Hilbert spaces is a complete inner product space.

Let 𝑉 be a real vector space. For example, 𝑉 is a subspace of ℝ!.

Definition (Inner Product). An inner product on 𝑉 is a binary function
−,− : 𝑉×𝑉 ⟶ ℝ

such that for vectors 𝑢, �⃗�, 𝑤 ∈ 𝑉 and a scalar 𝑐 ∈ ℝ, the following hold:
(1.)  𝑢, �⃗� = �⃗�, 𝑢
(2.)  𝑢 + �⃗�, 𝑤 = 𝑢,𝑤 + �⃗�, 𝑤
(3.)  𝑐𝑢, �⃗� = 𝑐 �⃗�, 𝑢
(4.)  𝑢, 𝑢 ≥ 0
(5.)  𝑢, 𝑢 = 0 if and only if 𝑢 = 0

• We call 𝑉 an inner product space with inner product −,− .

Complete means that the limits of Cauchy sequences {𝑥!} are in the space

A sequence {𝑥!} is called Cauchy sequence if for every 𝜖 ∈ ℝ, there is a 
positive integer 𝑁 such that 𝑥# − 𝑥! < 𝜖 all natural numbers 𝑚, 𝑛 > 𝑁.



Examples: 

1. Euclidean inner product space ℝ!

2. {Random Variables 𝑋 | 𝐸 𝑋( < ∞} with inner product 𝑋, 𝑌 ≔ 𝐸(𝑋𝑌)

3. Rational numbers ℚ is not complete. 

Theorem (Orthogonal Projection Theorem)

Let ℋ be a Hilbert space, ℳ be a closed linear subspace of ℋ, and �⃗� ∈ ℋ.

�⃗�

ℳ

There exist an unique point 𝑃�⃗� ∈ ℳ such that

𝑃�⃗�

1. �⃗� − 𝑃�⃗� ≤ 𝑤 − 𝑃�⃗� for any 𝑤 ∈ ℳ

2. �⃗� − 𝑃�⃗�, 𝑤 = 0 for any 𝑤 ∈ ℳ

�⃗� − 𝑃�⃗�



Application: Linear prediction

Let 𝑊 = 𝑆𝑝𝑎𝑛 1, 𝑋$, … , 𝑋! be subspace of the Hilbert space of all random 
variables 𝑍 such that 𝐸 𝑍( < ∞. 

Inner product 𝑋, 𝑌 ≔ 𝐸(𝑋𝑌)

�⃗�: = 𝑋!"#

Apply the Projection theorem, we know the best linear predictor 𝑋!"#! is give 
by the orthogonal projection of �⃗� onto 𝑊. From condition 2, we have

So, 𝑊 = {𝛼) + ∑*+$! 𝛼*𝑥*}

𝐸[(𝑋!"#! − 𝑋!"# )𝑋1] = 0 for any 𝑖 = 0,1, … , 𝑛

So, the prediction errors (𝑋!"#! − 𝑋!"#) are orthogonal to the prediction 
variables (1, 𝑋$, . . . , 𝑋!).



Review: Time series modelling and forecasting

1. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals are stationary.

(a) Remove trend and seasonal components.

(b) Differencing.

(c) Nonlinear transformations (log, −, etc .

3. Fit model to residuals.

4. Forecast time series by forecasting residuals and inverting any transformations.



Stationary time series models: ARMA(p,q).

• p = 0: MA(q),

• q = 0: AR(p).

We have seen that any causal, invertible linear process has:

• an MA(∞) representation (from causality), and

• an AR(∞) representation (from invertibility).

Real data cannot be exactly modelled using a finite number of parameters.

We choose 𝑝, 𝑞 to give a simple but accurate model.

Question: How do we use data to decide on p, q?

1. Use sample ACF/PACF to make preliminary choices of model order.

2. Estimate parameters for each of these choices.

3. Compare predictive accuracy/complexity of each (using, e.g., AIC).



Estimate the parameters of an ARMA(p,q) model.

𝜙 𝐵 𝑋& = 𝜃 𝐵 𝑊&

We will assume (for now) that:

1. The model order (p and q) is known, and

2. The data has zero mean. (We can subtract the sample mean if not.)

q Parameter estimation

We need to compute parameter estimates for several different model orders. Thus, 
recursive algorithms for parameter estimation are important. Some of these are 
identical to the recursive algorithms for forecasting.

We explore a couple of ways to estimate the parameters for ARMA 
models: Method of Moments (MOM) estimation and Maximum Likelihood 
(ML) estimation.



q Parameter estimation: Method of Moments

Let's start with the method of moments (MOM) estimation. The idea behind 
this is to equate population moments to sample moments and then solve for 
the parameters in terms of the sample moments. We re-use a lot of the 
same equations from the previous forecasting. 

Let’s  first assume that we have a causal AR(p) model

𝜙 𝐵 𝑋& − 𝜇 = 𝑊&

where the white noise 𝑊& has variance 𝜎7( and 

𝜙 𝐵 = 1 − 𝜙$𝐵 −⋯− 𝜙0𝐵0

Given n observations 𝑥$, 𝑥(, … , 𝑥!, we are interested in estimating the 
parameters 𝜙$, … , 𝜙0 and 𝜎7( . Initially we assume that the order 𝑝 is known.



𝐸 𝑋& = 𝜇 can always be estimated with the first sample moment  �̅�.

We then transform the data before estimating as follows mean zero by 𝑥& − �̅�.

The method of moments works well when estimating causal AR(p) models.

Consider a casual AR(p) model:

𝑥& = 𝜙$𝑥&%$ + 𝜙(𝑥&%( +⋯+ 𝜙0𝑥&%0 + 𝑤&

For ℎ = 1,… , 𝑝, multiply both sides by 𝑥&%8 and take expectations:

𝛾 ℎ = 𝜙$𝛾(ℎ − 1) + 𝜙(𝛾(ℎ − 2) + ⋯+ 𝜙0𝛾(ℎ − 𝑝)

When ℎ = 0, we do the same thing and get

𝛾 0 = 𝜙$𝛾 1 − 𝜙(𝛾 2 − ⋯− 𝜙0𝛾(𝑝)



We call these the Yule-Walker equations

We can also write them in matrix notation that should look familiar:

Γ0𝜙 = �⃗�

𝜎7( = 𝛾 0 − 𝜙.�⃗�

Use the sample data, solve for the desired parameters:

�𝜙 = �Γ0
%$ �⃗𝛾

𝜎7( = h𝛾 0 − �⃗𝛾. �Γ0
%$ �⃗𝛾



The asymptotic behavior of the Yule-Walker estimators for causal AR(p) 
processes is (when p large)

𝑛 �𝜙 − 𝜙 ⟶ 𝑁 0, 𝜎7( �Γ0
%$

h𝜎7( ⟶ 𝜎7(

So, we have Confidence intervals for Yule-Walker estimation



Method of Moments Estimation for MA(q)

For higher order MA(q) models, the method of moments quickly gets 
complicated. The equations are non-linear in  𝜃$, … , 𝜃9, so numerical 
methods need to be used.

Consider an invertible MA(1) process 𝑋& = 𝑊& + 𝜃𝑊&%$ with 𝜃 < 1

We know that 
𝜌 1 =

𝜃
1 + 𝜃(

Using method of moments, we equate h𝜌(1) to  𝜌(1) and solve a
quadratic equation in  𝜃.



q Parameter estimation: Maximum likelihood estimator

Assume that {𝑋&} is Gaussian, that is, 𝜙 𝐵 𝑋& = 𝜃 𝐵 𝑊& , where 𝑊& is
i.i.d. Gaussian.

Choose 𝜙1 , 𝜃* to maximize the likelihood:

𝐿 𝜙, �⃗�, 𝜎( = 𝑓:,<,=!(𝑋$, … , 𝑋!)

Here 𝑓:,<,=! is the joint (Gaussian) density for the given ARMA model.
(c.f. choosing the parameters that maximize the probability of the data.)



𝐿 𝜙, �⃗�, 𝜎( =
1

2𝜋 !/( Γ! $/( exp −
1
2𝑋

.Γ!%$𝑋

Suppose that 𝑋$, 𝑋(, . . . , 𝑋! is drawn from a zero mean Gaussian ARMA(p,q) 
process.

Here Γ_𝑛 is the variance/covariance matrix of 𝑋 with the given parameter values.
The maximum likelihood estimator (MLE) of 𝜙, �⃗�, 𝜎( maximizes this quantity. 

Advantages of MLE:
Efficient (low variance estimates).
Often the Gaussian assumption is reasonable.
Even if {𝑋&} is not Gaussian, the asymptotic distribution of the estimates of 𝜙, �⃗�, 𝜎(
is the same as the Gaussian case.
Disadvantages of MLE:
Difficult optimization problem.
Need to choose a good starting point (often use other estimators for this).



Example

Consider the AR(1) model with nonzero mean

𝑋& = 𝜇 + 𝜙(𝑋&%$ − 𝜇) +𝑊&

where 𝜙 < 1 and 𝑊& is iid 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎()

The likelihood:

𝐿 𝜙, �⃗�, 𝜎( = 𝑓:,<,=!(𝑋$, … , 𝑋!)

is functionally equivalent to the joint probability distribution of the observed 
data 𝑥$, … , 𝑥!

For a given data set, think of the likelihood as a function of the 
parameters (not the data).



𝐿 𝜙, �⃗�, 𝜎( = 𝑓(𝑥$, … , 𝑥&)

= 𝑓 𝑥$ 𝑓 𝑥( 𝑥$ 𝑓 𝑥/ 𝑥(, 𝑥$ …𝑓(𝑥&|𝑥&%$, … , 𝑥$)

= 𝑓 𝑥$ 𝑓 𝑥( 𝑥$ 𝑓 𝑥/ 𝑥( …𝑓(𝑥&|𝑥&%$)

These are all the same:

𝑋& = 𝜇 + 𝜙(𝑋&%$ − 𝜇) +𝑊& 𝑊& ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎( )

So, 𝑋&|𝑋&%$ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 + 𝜙 𝑋&%$ − 𝜇 , 𝜎( )

𝐿 𝜙, �⃗�, 𝜎( = 𝑓-" 𝑥$ 2𝜋𝜎( %(!%$)/( exp −
1
2
∑&+(! 𝑥& − 𝜇 − 𝜙 𝑥& − 𝜇

(

𝜎(

Take log likelihood and partial derivatives.  



Building ARMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Nonlinearly transform data, if necessary

3. Identify preliminary values of p, and q.

4. Estimate parameters.

5. Use diagnostics to confirm residuals are white/iid/normal.

6. Model selection: Choose p and q.



Question: How do we check that a model fits well?

The residuals (innovations, 𝑥& − 𝑥&&%$ ) should be white noise.
Consider the standardized innovations,

𝑒& =
𝑥& − h𝑥&&%$

�𝑃&
&%$

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality



Testing i.i.d.: Turning point test

{𝑋&} i.i.d. implies that 𝑋& , 𝑋&"$ 𝑎𝑛𝑑 𝑋&"( are equally likely to occur in
any of six possible orders:

provided 𝑋& , 𝑋&"$, 𝑋&"( are distinct

Four of the six are turning points.



Define 𝑇 = {𝑡 ∶ 𝑋& , 𝑋&"$, 𝑋&"( is a turning point}.

𝐸𝑇 = 𝑛 − 2 2/3

Can show 𝑇 ∼ 𝑁 (!
/
, ?!
@A

Reject (at 5% level) the hypothesis that the series is i.i.d. if

𝑇 −
2𝑛
3

> 1.96
8𝑛
45

Tests for positive/negative correlations at lag 1.



Testing i.i.d.: Difference-sign test

𝑆 = 𝑖 𝑋1 > 𝑋1%$} = 𝑖 ∇𝑋 1 > 0}

𝐸 𝑆 =
𝑛 − 1
2

Can show 𝑆 ∼ 𝑁(𝑛/2, 𝑛/12).

Reject (at 5% level) the hypothesis that the series is i.i.d. if

𝑆 −
𝑛
2 > 1.96

𝑛
12

Tests for trend.

(But a periodic sequence can pass this test...)



Testing i.i.d.: Rank test

𝑁 = 𝑖, 𝑗 𝑋1 > 𝑋* 𝑎𝑛𝑑 𝑖 > 𝑗}|.

𝐸𝑁 = 𝑛(𝑛 − 1)/4

Can show 𝑁 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑛(/4, 𝑛//36)

Reject (at 5% level) the hypothesis that the series is i.i.d. if

𝑁 −
𝑛(

4 > 1.96
𝑛/

36

Tests for linear trend.



Testing if an i.i.d. sequence is Gaussian: qq plot

Plot the pairs 𝑚$, 𝑋 $ , …, 𝑚!, 𝑋 ! , where 𝑚* = 𝐸𝑍(*)

𝑍($) < 𝑍(() < ⋯ < 𝑍(!) are order statistics from N(0, 1) sample of size n, and

𝑋($) < 𝑋(() < ⋯ < 𝑋(!) are order statistics from series 𝑋$, … , 𝑋!

Idea: If 𝑋1 ∼ 𝑁(𝜇, 𝜎)

𝐸𝑋(*) = 𝜇 + 𝜎𝑚(*)

so 𝑚* , 𝑋 * should be linear.

There are tests based on how far correlation of 𝑚* , 𝑋 * is from 1



q Model Selection

We have used the data 𝑥 to estimate parameters of several models. They all
fit well (the innovations are white). We need to choose a single model to
retain for forecasting. How do we do it?

If we had access to independent data 𝑦 from the same process, we could
compare the likelihood on the new data, 𝐿B 𝜙, �⃗�, 𝜎(

We could obtain 𝑦 by leaving out some of the data from our model-building,
and reserving it for model selection. This is called cross-validation. It
suffers from the drawback that we are not using all of the data for parameter
estimation.



Model Selection: AIC

We can approximate the likelihood defined using independent data:
asymptotically

− ln 𝐿B
�𝜙, �⃗𝜃, h𝜎( ≈ − ln 𝐿-

�𝜙, �⃗𝜃, h𝜎( +
(p + q + 1)n
n − p − q − 2

𝐴𝐼𝐶C : corrected Akaike information criterion.

Notice that:
• More parameters incur a bigger penalty.
• Minimizing the criterion over all values p,q, �𝜙, �⃗𝜃, h𝜎( corresponds to
choosing the optimal �𝜙, �⃗𝜃, h𝜎( w for each p, q, and then comparing the
penalized likelihoods.

There are also other criteria: BIC.



Textbook[Shumway-Stoffer]: Chapter 3.4.



https://www.mathworks.com/help/econ/time-series-regression-vii-forecasting.html

Time Series Regression: Forecasting

MATLAB Examples: 

https://www.mathworks.com/help/econ/time-series-regression-viii-lagged-
variables-and-estimator-bias.html

Lagged Variables and Estimator Bias

https://www.mathworks.com/help/econ/modeling-the-united-states-economy.html

Model the United States Economy

https://www.mathworks.com/help/ident/ug/time-series-prediction-and-
forecasting-for-prognosis.html

Time Series Prediction and Forecasting for Prognosis
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