
MATH 7339 - Machine Learning and Statistical Learning Theory 2  

1. Neural Network Basics 

2. Backpropagation
3. Convolutional Neural Networks

4. Recurrent Neural Networks
5. Long Short-Term Memory (LSTM)
6. Deep Learning for Time Series

Section- Time Series using Deep Learning



q Neural Network Model:

1. Data:  𝒟 = �⃗� ! , 𝑦 ! for 𝑖 = 1… 𝑛.

2. Model 𝒉𝚯(𝒙)

3. Cost Function 𝑱(𝚯)

4. Optimization

5. Prediction 𝒉#𝚯(𝒙)

Machine Learning Framework/Structure:  



Neural network for time series:

The inputs are shown with square markers, and the labels are shown with 
crosses. Each data window consists of 24 timesteps with square markers 
followed by 24 labels with crosses.



Data window. 

Our data window has 24 timesteps as input and 24 timesteps as output.   

You might think that we are wasting a lot of training data, but





2 Neural Network Model: 

ℎ$ �⃗� ≔ 𝐹 % ∘ Θ % ∘ ⋯ ∘ 𝐹 & ∘ Θ & ∘ 𝐹 ' ∘ Θ '

3 Cost Functions :
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2. Cross-Entropy cost for classification

1. Mean Square Error for regression
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!('

)

;
*('

+

𝕀 𝑦 ! = 𝑘 ln ℎ$ �⃗� !
*

3. Hinge loss,  0–1 loss, …

𝐽 Θ := 𝐿 ℎ$ 𝑋 , �⃗� , where 𝐿 −,− is a metric.

For example:



4 Optimization-Gradient Descent: 

Θ,-' = Θ, − 𝛼∇𝐽(Θ,)

The key calculation is the gradient ∇𝐽 Θ by chain rule.

Goal: Minimize the loss function 𝐽(Θ) by gradient descent: 

Difficulty: Too much calculation/memory in formula ∇𝐽 Θ

Solution: automatic differentiation (Back-propagation) 

For example: 𝐹 = 𝐹 𝑧 �⃗� 𝑡 :

𝜕𝐹
𝜕𝑡

=
𝜕𝐹
𝜕𝑧

𝜕𝑧
𝜕�⃗�
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ℝ. → ℝ/ → ℝ) → ℝ%

By Chain Rule:



1. Numerical differentiation using finite difference approximations (e.g., 
set ℎ = 0.001);

Computation Methods:

2. Manually working out analytical derivatives and coding them directly;

3. Derive analytic gradient, check your implementation with numerical gradient 
to avoid redundant computations; (called automatic differentiation (Autodiff), 
also called algorithmic differentiation), e.g., Back-propagation method.

• Autodiff is not a formula, but a procedure for computing derivatives.
• Autodiff is both efficient (linear in the cost of computing the value) and 

numerically stable.

Comments: 

• Numerical Finite differences are expensive, since you need to do a forward 
pass for each derivative. It also induces huge numerical error. Normally, we 
only use it for testing. Autodiff is not finite differences. 

• Symbolic differentiation (e.g. Mathematica) can result in complex and 
redundant expressions. Autodiff is not symbolic differentiation.



Example: One layer neural network: 
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Analytical Derivatives: 

Disadvantages?



Efficient algorithmic differentiation :

• Computing the loss functions: • Computing the derivatives:
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Computing the loss functions:

Computing the derivatives:
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The goal isn’t to obtain closed-form solutions for derivative. 

The goal is to write a program that efficiently computes the derivatives.

Ø Computation Graphs



Computational Graphs

• Formalize computation as graphs 

• Nodes indicate variables (scalar, vector, tensor or another variable) 

• Operations are simple functions of one or more variables 

• Our graph language comes with a set of allowable operations

https://www.deeplearningbook.org/contents/mlp.html Sec 6.5

𝑧 = 𝑓(𝑓(𝑓(𝑤)))

https://www.deeplearningbook.org/contents/mlp.html


Ø Convolution Neural Networks (CNN)

CNNs are a specific type of neural networks that are generally composed of 
convolution layers and pooling layers. 

Typical CNN architecture



Ø Convolution layers: (generate feature maps.)

Mathematically, a convolution combines two matrices to make a third, by
taking the dot product of the smaller matrix with every block of the larger.

𝐴 ∗ 𝐵 !,, = ;
/(4

%0'

;
5(4

)0'

𝐴!-/,,-5𝐵/,5

Suppose B is an 𝑚×𝑛 matrix.

https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/


Edge detect:



Convolutions In Neural Networks
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CNN for time series:

1-D CNN





2-D CNN for multiple features: 



Conditional time series forecasting with convolutional neural networks

Dilated Convolutional Neural Networks (DCNN)

DCNN are a specific kind of CNN that allow for a longer reach back to 
historical information by connecting an exponential number of input values 
to the output (using dilated convolutional layers of varied dimensions)

https://arxiv.org/pdf/1703.04691.pdf

https://arxiv.org/pdf/1703.04691.pdf


Ø Recurrent Neural Networks: Process Sequences (for sequence data.)

Long short-term memory (LSTM) is a particular case of a recurrent 
neural network (RNN). Gated recurrent unit (GRU) are another 
subtypes of RNN. 

One common application of RNN and LSTM is in natural language 
processing, where words in a sentence have an order. 

A recurrent neural network (RNN) is a deep learning architecture 
especially adapted to processing sequences of data.



o Recurrent Neural Networks examples

Image 
Captioning

Sentiment 
Classification

Machine 
Translation

Video 
classification 
on frame level

Vanilla 
Neural 
Networks

A baseball player 
throws a ball



• Sequential Processing of Non-Sequence Data.

1. Classify images by taking a series of “glimpses”

• Machine Translation:

• Word prediction:

2. Generate images one piece at a time.

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015



A recurrent node is often represented in “wrapped” form. RNN’s are used extensively 
in time series prediction and natural language processing.

Usually want to predict 
a vector at some time 
steps

A recurrent neural network has state variables that can be changed at runtime and that 
persist between prediction runs.

For example, in text prediction an RNN may predict one word at a time while 
"remembering" its previous predictions.

State variables
ℎ9



𝑓: : Function with parameters 𝑊.

RNN new hidden state

�⃗�9 ∶ input vector at some time step.

Sequence of vectors �⃗� by applying a recurrence formula at every time step:

=
ℎ9

ℎ\ = 𝑓](ℎ\^_, �⃗�\)

RNN output

𝑦9 = 𝑔:!" (ℎ9)

𝑔: : Function with parameters 𝑊;< .



State space equations in feedback dynamical systems.

Vanilla Recurrent Neural Networks

The state consists of a single “hidden” vector h:

Or  𝑦9 = softmax (𝑊;<ℎ9)

ℎ9 = 𝑓:(ℎ90', 𝑥9)

ℎ9 = tanh(𝑊;;ℎ90' +𝑊=;𝑥9)

𝑦9 = 𝑊;<ℎ9

ℎ9



RNN: Computational Graph: Many to Many (Sequence-to-Sequence) (Seq2Seq)

Loss function:



Sequence to Sequence: Many-to-one + one-to-many



Forward through entire sequence to compute loss, then backward through entire 
sequence to compute gradient.

Backpropagation through time

To train an RNN, we unroll it to the the number of steps we require to match out input 
data shape and then perform standard autodiff backpropagation with input vector and 
output vector.



Standard Vanilla RNN Forward Function:



Vanilla RNN Gradient Flow- Backward Gradient

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions 
on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

𝜕ℎ9
𝜕ℎ90'

= tanh2 𝑊;;ℎ90' +𝑊=;𝑥9 𝑊;;

y>



Vanilla RNN Gradient Flow-Backpropagation

𝜕𝐿
𝜕𝑊 =

𝜕𝐿'
𝜕𝑊 +

𝜕𝐿&
𝜕𝑊 +⋯+

𝜕𝐿?
𝜕𝑊

Total Cost: 𝐿 = 𝐿' + 𝐿& +⋯+ 𝐿?

𝜕𝐿9
𝜕𝑊 =

𝜕𝐿9
𝜕ℎ9

𝜕ℎ9
𝜕ℎ90'

⋯
𝜕ℎ&
𝜕ℎ'

𝜕ℎ'
𝜕𝑊

𝜕ℎ9
𝜕ℎ90'

= tanh2 𝑊;;ℎ90' +𝑊=;𝑥9 𝑊;; Tanh2(z) = 1 − tanh&(z)



1. Largest singular value > 1: Exploding gradients

Gradient clipping: Scale gradient if its norm is too big

Change RNN architecture, e.g., Long Short Term Memory (LSTM), Gated 
recurrent units (GRUs)

2. Largest singular value < 1: Vanishing gradients

Computing gradient of ℎ4 involves many factors of 𝑊 (and repeated tanh ). The main 
challenge with RNN's is that training is highly susceptible to gradient explosion and 
vanishing, because recurrent nodes lead to highly nonlinear networks. 

Explosion and Vanishing of Gradients



Ø Long Short Term Memory (LSTM)

Standard Vanilla RNN LSTM

ℎ9 = tanh(𝑊;;ℎ90' +𝑊=;𝑥9)

= tanh 𝑊 ℎ90'
𝑥9

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997



vector from 
below (x)

Ø Long Short Term Memory (LSTM). [Hochreiter et al., 1997]

𝑓: Forget gate, Whether to erase cell. (forget irrelevant information)
𝑖: Input gate, whether to write to cell. (store relevant information from current input)
𝑔: Gate gate, How much to write to cell.
𝑜: Output gate, How much to reveal cell. (Return a filtered version of the cell state. )

Gates are a way to optionally let information through. They are composed out of a 
sigmoid neural net layer and a pointwise multiplication operation.

The long term memory 𝑐9 is a vector whose length is the same as the output. 



Backpropagation from 𝑐9 𝑡𝑜 𝑐90' only 
elementwise multiplication by 𝑓, no 
matrix multiply by 𝑊.

In the diagram, the product and sum are the 
component wise product and sum. 

We only need to stipulate how to update the long term memory 𝑐! . We allow the long term memory to 
“forget” by making at the first multiplication, and to then store new information in the memory, by 
adding on a masked (non-liner) term dependent on the input 𝑥! , and the previous output ℎ!"#.



• The gradient contains the 𝑓 gate’s vector of activations: allows better control 

of gradients values, using suitable parameter updates of the forget gate 𝑓.

• The 𝑓, 𝑖, 𝑔, 𝑎𝑛𝑑 𝑜 𝑔𝑎𝑡𝑒𝑠 better balance of gradient values. 

• The LSTM architecture makes it easier for the RNN to preserve information over many 

timesteps, e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 

indefinitely.

• By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 𝑊; that 

preserves info in hidden state. 

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does 

provide an easier way for the model to learn long-distance dependencies

Remarks: 



Uninterrupted gradient flow.

Similar to ResNet.

In between: Srivastava et al, “Highway Networks”, ICML DL Workshop 2015



Deep RNN Network:

1. Multilayer RNN:

2. LSTM

tf.keras.layers.LSTM(num_units))



Gated recurrent units (GRU) [Learning phrase representations using RNN 
encoder-decoder for statistical machine translation, Cho et al. 2014]

LSTM's are stronger than GRU’s: https://arxiv.org/abs/1805.0490856

GRU is a simplified version of LSTM.

Gated recurrent units (GRU)

https://arxiv.org/abs/1805.0490856
https://arxiv.org/abs/1805.0490856


RNN as the encoder and a fully connected layer as the decoder



RNN +CNN for Time Series

Sequence-to-sequence modeling for time series has been fairly popular for 
the past several years. These methods range from vanilla models to 
advanced industry competitors.

We can also combine the CNN architecture with the LSTM architecture to 
further improve the performance of our deep learning models.



RNN-to-RNN



q Attention and Transformers for Time Series

Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf

Attention is key concept in deep learning in recent years. Attention can be 
thought of as a mechanism that allows a neural network to selectively focus 
on certain parts of an input, while ignoring others.

One of the most popular attention mechanisms is the "self-attention" 
mechanism,  also known as the Transformer, introduced by Vaswani et al. 
in 2017. The Transformer has since become a cornerstone of many state-
of-the-art deep learning models, including the famous GPT-3 language 
model.

In 2015, Bahdanau et al. proposed the first known attention model
https://arxiv.org/abs/1409.0473

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1409.0473


Traditional v.s. Attention model in Seq2Seq models

Learn attention weights, �⃗� , for each hidden state corresponding to the input sequence and 
combine them into a single context vector while decoding



Decoding using attention

ℎ!: Hidden states generated during encoding process

𝑠!: Hidden states generated during decoding process

𝑐, =;
!('

?#

𝛼!,,ℎ!

How these attention weights, 𝛼, are calculated?



Attention mechanism -Queries, keys and values

Query 𝒒: A learned parameter that represents the current token in the 
sequence that we want to compute the attention weights for.  

Key 𝑲: A set of learned parameter that represents each token in the sequence. 
The key vector is used to compute the similarity between the query vector and 
each token in the sequence.

Value 𝑽: A set of learned parameter that represents each token in the 
sequence. The value vector is used to compute the weighted sum of the other 
tokens' values. (In many cases, 𝐾 𝑎𝑛𝑑 𝑉 are the same).

𝑇 �⃗�, 𝐾, 𝑉 =;
!

𝑝 𝑎 𝑘! , �⃗� ×𝑣!

The alignment function 𝑎(−,−) that calculates a similarity score between the 
queries and keys. (Usually it is dot product 𝑘!?�⃗� or weighted dot product 𝑘!?𝑊�⃗� )

A distribution function 𝑝(−) converts this score into attention weights that sum up to 1.

Think of an attention model as learning an attention distribution (𝛼 )



https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html

Illustration of with key, query and value transformations.

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html


Scaled Dot Product Attention

Attention Is All You Need https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762


Transformers – Attention is all you need

Just as the title of the paper implies, they explored an architecture that used attention
(scaled dot product attention) and threw away recurrent networks altogether. Both the 
encoder and decoder are non-recurrent. 

Transformers in time series

Time series have a lot of similarities with NLP because both deal with sequences data.

Transformers in Time Series: A Survey https://arxiv.org/pdf/2202.07125.pdf

Are Transformers Effective for Time Series Forecasting? https://arxiv.org/pdf/2205.13504.pdf

https://arxiv.org/pdf/2202.07125.pdf
https://arxiv.org/pdf/2205.13504.pdf


https://arxiv.org/pdf/1703.04691.pdf

Conditional time series forecasting with convolutional neural networks,(2017)

Textbooks with examples: 

Time Series Forecasting in Python:
https://github.com/marcopeix/TimeSeriesForecastingInPython

Modern Time Series Forecasting with Python
https://github.com/PacktPublishing/Modern-Time-Series-Forecasting-
with-Python

https://arxiv.org/pdf/1703.04691.pdf
https://github.com/marcopeix/TimeSeriesForecastingInPython
https://github.com/PacktPublishing/Modern-Time-Series-Forecasting-with-Python
https://github.com/PacktPublishing/Modern-Time-Series-Forecasting-with-Python


https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-
using-deep-learning.html

Time Series Forecasting Examples Using Deep Learning

MATLAB-Forecast time series data using a long short-term memory 
(LSTM) network

https://machinelearningmastery.com/time-series-prediction-lstm-
recurrent-neural-networks-python-keras (LSTM-Python)

https://machinelearningmastery.com/how-to-develop-convolutional-neural-
network-models-for-time-series-forecasting/ (CNN-Python)

https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/

