Rational Homotopy Theory
— Summer 2019 at the University of Nevada, Reno
-
Lecture Notes:
My Lecture Notes: RHT-lecture notes. An extended note from Spectral Sequence.
-
References:
Main reference book for this lecture note:
- Phillip Griffiths and John Morgan, Rational homotopy theory and differential forms, Second ed., Progr. Math., vol. 16, Springer, New York, 2013. MR3136262
Some other books:
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR1802847
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory II , World Scientific Publishing, Hackensack, NJ, 2015. MR3379890
- Yves Félix, John Oprea, and Daniel Tanré, Algebraic models in geometry, Oxford Grad. Texts in Math., vol. 17, Oxford Univ. Press, Oxford, 2008. MR2403898
Two seminal papers:
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR0258031
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math.(1977), no. 47, 269-331. MR0646078
Some important papers:
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds. , Invent. Math. 29 (1975), no. 3, 245-274. MR0382702
- Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233-279. MR539532
- John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), no. 48, 137-204. MR516917
Some lecture notes:
- Kathryn Hess, Rational homotopy theory: a brief introduction. Interactions between homotopy theory and algebra, 175–202, Contemp. Math., 436, Amer. Math. Soc., Providence, RI, 2007 MR2355774
- Alexander Berglund, Rational homotopy theory. lecture notes 2012. http://staff.math.su.se/alexb/rathom2.pdf
- Yves Félix, Steve Halperin, Rational homotopy theory via Sullivan models: a survey. arXiv:1708.05245
Elementary homotopy theory
- Allen Hatcher, Algebraic topology, (Chapter 4) Cambridge University Press, Cambridge, 2002. MR1867354 http://www.math.cornell.edu/~hatcher/
- M.Huntchings, Introduction to higher homotopy groups and obstruction theory , https://math.berkeley.edu/~hutching/teach/215b-2011/homotopy.pdf
Spectral sequences
- R.Bott and L.Tu, Differential Forms in Algebraic Topology, (Chapter 14) Springer, (1982).
- John McCleary, A user’s guide to spectral sequences, second ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR1793722
- A.Hatcher, Spectral Sequences in Algebraic Topology, http://www.math.cornell.edu/~hatcher/
- M.Huntchings, Introduction to spectral sequence, http://math.berkeley.edu/~hutching/teach/215b-2011/ss.pdf
Recent Comments