MathRHT

Rational Homotopy Theory

— Summer 2019 at the University of Nevada, Reno

  • Lecture Notes:

My Lecture Notes: RHT-lecture notes. An extended note from Spectral Sequence. 

  • References:

Main reference book for this lecture note:

  1. Phillip Griffiths and John Morgan, Rational homotopy theory and differential forms, Second ed., Progr. Math., vol. 16, Springer, New York, 2013. MR3136262

Some other books:

  1. Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR1802847
  2. Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory II , World Scientific Publishing, Hackensack, NJ, 2015. MR3379890
  3. Yves Félix, John Oprea, and Daniel Tanré, Algebraic models in geometry, Oxford Grad. Texts in Math., vol. 17, Oxford Univ. Press, Oxford, 2008. MR2403898

Two seminal papers:

  1. Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR0258031
  2. Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math.(1977), no. 47, 269-331. MR0646078

Some important papers:

  1. Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds. , Invent. Math. 29 (1975), no. 3, 245-274. MR0382702
  2. Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233-279. MR539532
  3. John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), no. 48, 137-204. MR516917

Some lecture notes:

  1. Kathryn Hess, Rational homotopy theory: a brief introduction. Interactions between homotopy theory and algebra, 175–202, Contemp. Math., 436, Amer. Math. Soc., Providence, RI, 2007 MR2355774
  2. Alexander Berglund, Rational homotopy theory. lecture notes 2012. http://staff.math.su.se/alexb/rathom2.pdf
  3. Yves Félix, Steve Halperin, Rational homotopy theory via Sullivan models: a survey. arXiv:1708.05245

Elementary homotopy theory

  1. Allen Hatcher, Algebraic topology, (Chapter 4) Cambridge University Press, Cambridge, 2002. MR1867354 http://www.math.cornell.edu/~hatcher/
  2. M.Huntchings, Introduction to higher homotopy groups and obstruction theory , https://math.berkeley.edu/~hutching/teach/215b-2011/homotopy.pdf

Spectral sequences

  1. R.Bott and L.Tu, Differential Forms in Algebraic Topology, (Chapter 14) Springer, (1982).
  2. John McCleary, A user’s guide to spectral sequences, second ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR1793722
  3. A.Hatcher, Spectral Sequences in Algebraic Topology, http://www.math.cornell.edu/~hatcher/
  4. M.Huntchings, Introduction to spectral sequence, http://math.berkeley.edu/~hutching/teach/215b-2011/ss.pdf

 

© 2025 Northeastern University