
Notes on spectral sequence

He Wang

Long exact sequence coming from short exact sequence of (co)chain com-
plex in (co)homology is a fundamental tool for computing (co)homology. 
Instead of considering short exact sequence coming from pair (X, A), one 
can consider filtered chain complexes coming from a increasing of subspaces 
X0 ⊂ X1 ⊂ · · · ⊂ X. We can see it as many pairs (Xp, Xp+1). There is 
a natural generalization of a long exact sequence, called spectral sequence, 
which is more complicated and powerful algebraic tool in computation in the 
(co)homology of the chain complex. Nothing is original in this notes.
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1 Homological Algebra

1.1 Definition of spectral sequence

Definition 1.1. A differential bigraded module over a ring R, is a collec-
tion of R-modules, {Ep,q}, where p, q ∈ Z, together with a R-linear mapping,
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d : E∗,∗ → E∗+s,∗+t, satisfying d◦d = 0. d is called the differential of bidegree
(s, t).

Definition 1.2. A spectral sequence is a collection of differential bigraded
R-modules {Ep,q

r , dr}, where r = 1, 2, · · · and

Ep,q
r+1
∼= Hp,q(E∗,∗r ) ∼= ker(dr : Ep,q

r → E∗,∗r )/im(dr : E∗,∗r → Ep,q
r ).

In practice, we have the differential dr of bidegree (r, 1 − r) (for a spec-
tral sequence of cohomology type) or (−r, r − 1) (for a spectral sequence of
homology type).

Let’s look at what the (first quadrant) spectral sequence of cohomology
type looks like.
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An convention for spectral sequence of homology type is {Er
p,q, dr} or

{Er
p,q, d

r}. In fact, some spectral sequences may have one grading(Bockstein
spectral sequence), or three gradings.

Next consider the E∗,∗∞ -term. For the first quadrant cohomological spec-
tral sequence, consider Ep,q

r , when r > max(p, q+ 1), the differentials dr = 0.
Thus, Ep,q

r+1 = Ep,q
r , also Ep,q

r+k = Ep,q
r , so, we can define Ep,q

∞ = Ep,q
r+1. In

general case, we define E∗,∗∞ -term in the following way.(You can skip it at the
first time)

Start from E∗,∗2 -term. In order make the argument clear, let us suppress
the bigrading. Denote

Z2 = ker d2 and B2 = im d2.

Then, B2 ⊂ Z2 ⊂ E2 and E3
∼= Z2/B2 with short exact sequence

0→ B2 → Z2
j−→ E3 → 0.

Denote Z̄3 = ker d3 : E3 → E3 which is a submodule of E3. So Z̄3
∼= Z3/B2,

where Z3 = j−1(Z̄3) is a submodule of Z2. Similar B̄3 = im d3 ∼= B3/B2 with
B3 = j−1(B̄3). Then we have

E4
∼= Z̄3/B̄3

∼= Z3/B3

and
B2 ⊂ B3 ⊂ Z3 ⊂ Z2 ⊂ E2.
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Iterating this process, we can present the spectral sequence as an infinite
tower of submodules of E2:

B2 ⊂ B3 ⊂ · · · ⊂ Bn ⊂ · · · ⊂ Zn ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ E2 (1.1)

with property that
En+1

∼= Zn/Bn

and the differential dn+1 can be taken as a mapping Zn/Bn → Zn/Bn, which
has kernel Zn+1/Bn and image Bn+1/Bn. This dn+1 induces a short exact
sequence

0→ Zn+1/Bn → Zn/Bn
dn+1−−−→ Bn+1/Bn → 0

which gives isomorphisms

Zn/Zn+1
∼= Bn+1/Bn.

Conversely, a tower of submodules of E2, together with a set of isomorphisms,
determines a spectral sequence, by the following diagram.

Zp,q
n /Bp,q

n

epic// Zp,q
n /Zp,q

n+1
∼= Bp+r,q+1−r

n+1 /Bp+r,q+1−r
n

monic// Zp+r,q+1−r
n /Bp+r,q+1−r

n

Ep,q
n+1

dn+1 // Ep+r,q+1−r
n+1

Let Zp,q
∞ = ∩nZp,q

n and Bp,q
∞ = ∪nBp,q

n . Define

Ep,q
∞ = Zp,q

∞ /Bp,q
∞ .

Definition 1.3. A filtration F ∗ on anR-module A is a family of submodules
{F pA}, such that

· · · ⊂ F p+1A ⊂ F pA ⊂ F p−1A ⊂ · · · ⊂ A (decreasing filtration)

or

A ⊃ · · · ⊃ F p+1A ⊃ F pA ⊃ F p−1A ⊃ · · · (increasing filtration)

A filtration is said to be convergent if ∩sF sA = 0 and ∪sF sA = A.
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Definition 1.4. A spectral sequence {E∗,∗r , dr} is said to converge to a graded
module H∗ if there is a (decreasing) filtration F ∗ on H∗ such that

Ep,q
∞
∼= F pHp+q/F p+1Hp+q. (1.2)

A filtration F ∗ on graded R-module H∗ means that a filtration on each
Hn. In fact, we can examine the filtration on each degree by letting

F pHn = F pH∗ ∩Hn.

How to get information from a spectral sequence converging to H∗? We
can see that in the following example.

Example 1.5. Suppose the filtration of H∗ is bounded above and below.
That is

0 ⊂ F nH∗ ⊂ F n−1H∗ ⊂ · · · ⊂ F 1H∗ ⊂ F 0H∗ ⊂ H∗

By formula (1.2), we have a series of short exact sequence

0 // F nHp+q // En,p+q−n
∞

// 0

0 // F nHp+q // F n−1Hp+q // En−1,p+q−n+1
∞

// 0

0 // F kHp+q // F k−1Hp+q // Ek−1,p+q−k+1
∞

// 0

0 // F 1Hp+q // F 0Hp+q // E0,p+q
∞

// 0

0 // F 0Hp+q // Hp+q // E−1,p+q+1
∞

// 0

If H∗ is vector space, then

Hp+q ∼=
⊕

i+j=p+q

Ei,j
∞

In the above example, two assumptions are important, (H∗ is vector space
and the filtration of H∗ is bounded above and below). If we don’t have this
tow assumption, the problem is hard. For general module H, we will meet

the extension problem. For example, 0→ Z 2−→ Z→ Z/2→ 0 is not splitting.
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1.2 Construction of spectral sequence

Definition 1.6. An exact couple is an exact sequence of R-modules of the
form

D
i // D

j~~
E

k

``

where i, j and k are R-module homomorphisms. Define d : E → E by
d = j ◦ k. Then

d2 = j(kj)k = 0.

So, homology H(E) = ker d/im d is defined.

From the above exact couple, we can construct a new exact couple, called
derived couple,

D′ i′ // D′

j′~~
E ′

k′

``

by making the following definitions.

1. D′ = i(D).

2. E ′ = H(E).

3. i′ = i|D′ .

4. j′ : D′ → E ′ is defined to be j′(a′) = [j(a)], where a′ = i(a). This is well
defined: (a.) ja is a cycle. d(ja) = jkj(a) = 0. (b.) [ja] is independent
of the choice of a. Suppose a′ = ia1. Then because i(a − a1) = 0, we
have a− a1 = kb for some b ∈ E. Thus,

ja− ja1 = j(a− a1) = jk(b) = db.

So, [ja] = [ja1].

5. k′ : E ′ → D′ is defined to be k′[e] = k(e). This is well defined, since we
can get k(e) = i(a) ∈ i(A) from jke = 0.

Proposition 1.7. The derived couple {D′, E ′, i′, j′, k′} is also an exact cou-
ple.

6
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Proof: It is straightforward to check the exactness. (Exercise) 2

Iterate this process, we can get the nth derived exact couple

{D(n), E(n), i(n), j(n), k(n)}.

Theorem 1.8. Suppose D∗,∗ = {Dp,q} and E∗,∗ = {Ep,q} are graded modules
over R equipped with homomorphisms i of bidegree (−1, 1), j of bidegree (0, 0)
and k of bidegree (1, 0).

D∗,∗ i // D∗,∗

j{{
E∗,∗

k

cc

These data determine a spectral sequence {E∗,∗r , dr} of cohomology type, with
E∗,∗r = (E∗,∗)(r−1) and dr = j(r) ◦ k(r).

Proof: We only need to check that the differential have bidegree (r, 1 − r).
We can prove this by induction and notice that

deg(i(n)) = deg(i),

deg(k(n)) = deg(k),

deg(j(n)) = deg(j)− (n− 1)[deg(i)].

deg(dr) = deg(j(r)) + deg(k(r)).

So, j(n) has bidegree (n− 1,−n+ 1) and deg(dr) = (r, 1− r). 2

Remark: For homomorphisms i of bidegree (1,−1), j of bidegree (0, 0) and
k of bidegree (−1, 0), we can get the spectral sequence with homology type,
with dr the bidegree (−r, r − 1). 2

Denote

D∞ =
∞⋂
n=1

D(n+1) =
∞⋂
n=1

Im[i(n)], D0 =
∞⋃
m=1

Ker[i(n)]

Then, in [5], we have
E∞ ∼= k−1D∞/jD0.

Exercise: Verify Zn = k−1(Im[i(n))] and Bn = j(Ker[i(n)]) satisfy tower
(1.1).
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Example 1.9. An important example of exact couple comes from the long
exact sequence in homology and a short exact sequence of coefficient. Let

0→ Z ×p−→ Z→ Z/p→ 0,

(C∗, d) be a differential graded free abelian group. Then we have short exact
sequence

0→ C∗
×p−→ C∗ → C∗ ⊗ Z/p→ 0,

and an exact couple

H∗(C∗)
H(×p) // H∗(C∗)

jww
H∗(C∗ ⊗ Z/p)

k

gg

Then from this exact couple, we can have the Bockstein spectral sequence
with En

1 = Hn(X,Z/p), and d1 = β the Bockstein homomorphism, and
converging to (H∗(X)/torsion)⊗ Z/p. (see [2] Chapter 10)

One important method to get an exact couple is from filtered differential
module.

Definition 1.10. A R-module is a filtered differential graded module
(FDGM) if

1. (Graded) A is a direct sum of submodules, A =
∞⊕
n=0

An.

2. (Differential) There is an R-linear mapping d : A → A of degree 1(d :
An → An+1) (or of degree -1) satisfying d ◦ d = 0.

3. (Filtration) A has a filtration F ∗ and the differential d respects the
filtration, that is, d : F pA→ F pA.

Remark 1.11. Since the differential d preserve the filtration F ∗, d induces a
well-defined differential d : F pAn/F p+1An → F pAn+1/F p+1An+1, and make
{F pA/F p+1A, d} into an cochain complex.

8
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Example 1.12. For topological space X, the (co)chain complex (C∗(X), d)
((C∗(X), d)) can give a differential graded module C. If we can give filtration
on each Cn(X) (Cn(X)) such that the filtration preserve the differential, then

we have a FDGM , C =
∞⊕
n=0

Cn(X), (or C =
∞⊕
n=0

Cn(X)). More details will

be discussed in the Section 2.

Theorem 1.13. (Cohomology type) Each decreasing filtrated differential graded
module (A, d, F ∗) of degree 1 determines a spectral sequence, {E∗,∗r , dr}, with
dr of bidegree (r, 1− r) and

Ep,q
1
∼= Hp+q(F pA/F p+1A).

Moreover, if the filtration F ∗ is convergent, then the spectral sequence con-
verges to H∗(A, d), that is

Ep,q
∞
∼= F pHp+q(A, d)/F p+1Hp+q(A, d)

The filtration on Hp+q(A) is given by

F p(Hp+q(A)) = ker[Hp+q(A)→ Hp+q(F pA)].

Proof: For each filtration degree p, there is a short exact sequence of graded
modules

0→ F p+1A→ F pA→ F pA/F p+1A→ 0

When we apply the homology functor, we obtain, for each p, the long exact
sequence

· · ·Hp+q(F p+1A)
i−→ Hp+q(F pA)

j−→ Hp+q(F pA/F p+1A)
k−→

Hp+q+1(F p+1A)
i−→ Hp+q+1(F pA)

j−→ · · ·

Define

Ep,q = Hp+q(F pA/F p+1A) and Dp,q = Hp+q(F pA).

Then we have the long exact sequence

· · ·Dp+1,q−1 i−→ Dp,q j−→ Ep,q k−→ Dp+1,q i−→ Dp,q+1 j−→ · · ·

9
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with i of bidegree (−1, 1), j of bidegree (0, 0) and k of bidegree (1, 0). This
gives an exact couple

D∗,∗ i // D∗,∗

j{{
E∗,∗

k

cc

By Theorem 1.8, this yields a spectral sequence with cohomology type.
The converging part is difficult. (See [2] Ch2 and 3, or [7] Ch9) 2

The homology type of the above theorem is the following theorem.

Theorem 1.14. (Homology type) Each increasing filtrated differential graded
module (A, d, F ∗) of degree −1 determines a spectral sequence, {Er

∗,∗, dr}, with
dr of bidegree (−r, r − 1) and

E1
p,q
∼= Hp+q(F

pA/F p−1A).

Moreover, if the filtration F ∗ is convergent, then the spectral sequence con-
verges to H∗(A, d), that is

E∞p,q
∼= F pHp+q(A, d)/F p−1Hp+q(A, d)

The filtration on Hp+q(A) is given by

F p(Hp+q(A)) = im[Hp+q(F
pA)→ Hp+q(A)].

2

Example 1.15. [1]. If K = ⊕p,q≥0Kp,q is a double complex with horizontal
δ and vertical operator d, we can form a single complex out of it in the
usual way, by letting K = ⊕Ck, where Ck = ⊕p+q=kKp,q, and defining the
differential operator D : Ck → Ck+1 to be

D = δ + (−1)pd.

Then the sequence of subcomplexes indicated below is a decreasing filtration
on K:

Kp =
⊕
i≥p

⊕
q≥0

Ki,q

10
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6

-

K1

K2

q

p0 1 2 3 4

|

|

Theorem 1.16. [1]. Given a double complex K = ⊕p,q≥0Kp,q there is a
spectral sequence {Er, dr} converging to the total cohomology HD(K) such
that dr has bidegree (r, 1− r), and

Ep,q
1 = Hp,q

d (K),

Ep,q
2 = Hp,q

δ Hd(K);

furthermore,
Ep,q
∞ = F pHp+q

D /F p+1Hp+q
D

Proof: See [1]. 2

Example 1.17. [4]. Let (C∗, d) and (C ′∗, d
′) be two DGMs over R, the tensor

product (C∗ ⊗ C ′∗, ∂) of these two DGMs over R is defined by

(C ⊗ C ′)k =
⊕
i+j=k

Ci ⊗ C ′j

and the differential is defined by

∂(a⊗ b) = (da)⊗ b+ (−1)ia⊗ (d′b).

11
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To compute the homology of C ⊗ C ′, define a filtration on it by

F p(C ⊗ C ′)k =
⊕
i≤p

Ci ⊗ Ck−i.

Verify the following results

E0
p,q = Cp ⊗ C ′q, d0 = (−1)p ⊗ ∂′;

E1
p,q = Cp ⊗Hq(C

′
∗), d1 = d⊗ 1;

E2
p,q = Hp(C∗ ⊗Hq(C

′
∗)), d2 = 0;

E∞p,q = E2
p,q.

2 Spectral sequence in Topology

2.1 General method

Let X be a topological space with a increasing filtration {Xq}: that is,
the Xq are closed subspaces of X such that Xq ⊂ Xq+1, X = ∪qXq, Xq = ∅
for q < 0 and every compact subset of X is contained in some Xq.

(I) Homology. The filtration on X gives a increasing filtration on C∗(X)
by F pC∗(X) = C∗(X

p). The filtration F of C∗ induce a filtration on H∗(C∗)
defined by

F p(H(C∗)) = im[H(F pC∗)→ H(C∗)].

Because the homology functor commutes with direct limits, if F ∗ is a conver-
gent filtration of C∗, it follows that ∪sF sH∗(C∗) = H∗(C∗). But in general
∩sF sH(C∗) = 0 may NOT true. However, if F is convergent and bounded
below on C∗ as in our case, that is F t(n)Cn

∗ = 0 for any n, the same is true
of the induced filtration on H∗(C∗).

(II) Cohomology. Similar with homology case.(See [7] for details.) The
filtration on X gives a decreasing filtration on C∗(X) by

F pC∗(X) = Ann(F p−1C∗).

The filtration on H∗(C∗) is defined by

F s(H∗) = ker[H∗(C∗)→ H∗(F s−1C∗)].

12
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Go back to homology case.
For each filtration degree p, there is a short exact sequence of graded

modules

0→ C∗(X
p−1)→ C∗(X

p)→ C∗(X
p)/C∗(X

p−1)→ 0

When we apply the homology functor, we obtain, for each p, the long exact
sequence

· · ·Hp+q(X
p−1)

i−→ Hp+q(X
p)

j−→ Hp+q(X
p, Xp−1)

k−→

Hp+q−1(X
p−1)

i−→ Hp+q−1(X
p)

j−→ · · ·

Define
Ep,q = Hp+q(X

p, Xp−1) and Dp,q = Hp+q(X
p).

Then we have the long exact sequence

· · ·Dp−1,q+1
i−→ Dp,q

j−→ Ep,q
k−→ Dp−1,q

i−→ Dp,q−1
j−→ · · ·

with i of bidegree (1,−1), j of bidegree (0, 0) and k of bidegree (−1, 0). This
gives an exact couple

D∗,∗
i // D∗,∗

j||
E∗,∗

k

bb

Theorem 2.1. Let X be a topological space with a increasing filtration {Xq},
then there is a spectral sequence, {Er

∗,∗, dr}, with dr of bidegree (−r, r − 1)
and

E1
p,q
∼= Hp+q(X

p, Xp−1).

The spectral sequence converges to H∗(X, d), that is

Ep,q
∞
∼= F pHp+q(X)/F p−1Hp+q(X)

The filtration on Hp+q(X) is given by F p(Hp+q(X)) = im[Hp+q(X
p) →

Hp+q(X)].

13
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Proof: This follows from Theorem 1.14, since the filtration F ∗ on chain
complex is convergent.

In fact, people can construct Zr
s,t and Br

s,t directly by

Zr
s,t = k−1(im[ir−1 : Hs+t−1(X

s−r)→ Hs+t−1(X
s−1)])

Br
s,t = j(ker[ir−1 : Hs+t(X

s)→ Hs+t(Xs+r−1)]).

Another method to define Zr
s,t and Br

s,t is in [6] 2

The cohomology version of this theorem is similar from 1.13.

Example 2.2 (Cellular homology). Let X be a CW-complex. Then X has
a natural filtration by the p-skeleton Xp. By theorem 2.1, we have a spectral
sequence, {Er

∗,∗, dr} converging to H∗(X, d), with

E1
p,q
∼= Hp+q(X

p, Xp−1).

Recall that

Hp+q(X
p, Xp−1) ∼=

{
Ccell
p (X), q = 0,

0, q 6= 0.

So, the E1
∗,∗ is

q

p

E1
p,q

- - - - - - -
d1

C0

0

0

0

0

C1

0

0

0

0

C2

0

0

0

0

C3

0

0

0

0

C4

0

0

0

0

C5

0

0

0

0

C6

0

0

0

0

And the first differential d1 : Ep,0 → E1
p−1,0 is the same as the cellular

differential

d : Ccell
p (X) = Hp(X

p, Xp−1)→ Ccell
p−1(X) = Hp−1(X

p−1, Xp−2)

14
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This cellular can be seen as two equivalent ways: (1) the boundary map
of the long exact sequence of the triple (Xp, Xp−1, Xp−2). (2) The composi-

tion of Hp(X
p, Xp−1)

k−→ Hp−1(X
p−1)

j−→ Hp−1(X
p−1, Xp−2). The equivalence

follows from the commutative diagram.

// Hp(X
p, Xp−1) k // Hp−1(X

p−1)

j

��

i //

// Hp(X
p, Xp−1) d // Hp−1(X

p−1, Xp−2) i //

Therefore, E2 is given in terms of the cellular homology by

E2
p,q
∼=
{
Hcell
p (X), q = 0,

0, q 6= 0.

6

-

E2
p,q

q

p

HH
HHHH

HH
HHHH

H
HHH

HH

jj

j

d2

H0

0

0

0

H1

0

0

0

H2

0

0

0

H3

0

0

0

H4

0

0

0

H5

0

0

0

H6

0

0

0

So, dr = o for r ≥ 2. Then Er
p,q = E2

p,q for r ≥ 2. So, Hp(X) = Hcell
p (X).

2.2 Leray-Serre spectral sequence

Suppose F ↪→ X
π−→ B is a fibration, where B is a path-connected CW-

complex. We can filter X by the subspaces Xp = π−1(Bp), Bp being the
p-skeleton of B.

All fibers Fb = π−1(b) are homotopy equivalent to a fixed fiber since each
path γ in B lifts to a homotopy equivalence Lγ : Fγ(0) → Fγ(1) between the
fibers over the endpoints of γ. In particular, a loop γ at a basepoint of B
gives homotopy equivalence Lγ : F → F for F the fiber over the base point.
The association γ → Lγ∗ defines an action of π1(B) on H∗(F ). We may

15
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assume that this action is trivial in the following theorem, meaning that Lγ∗
is the identity for all loops γ. Then the fibration is called orientable (This
is a generalization of the concept of orientability of a sphere bundle).

Theorem 2.3. [the homology Leray-Serre spectral sequence]
Suppose F ↪→ E

π−→ B is a fibration, where B is path-connected. If π1(B)
acts trivially on H∗(F ), then there is a spectral sequence {Er

p,q, dr} converging
to H∗, with

E2
p,q
∼= Hp(B;Hq(F )).

Furthermore, this spectral is natural with respect to fibre-preserving maps of
fibrations.

Sketch of proof: WhenB is a CW-complex, E1
p,q = Hp+q(π

−1(Bp), π−1(Bp−1)).
Calculate this relative homology as a direct sum over the p-cells σ : Dp → B
of Hp+q(σ

∗E, (σ|Sp−1)∗E) to find that

Ep,q = Ccell
p (B;Hq(Ex)).

Similar with the cellular homology, try to find the differential to be the
cellular differential.

When B is not a CW-complex, use CW approximation to B. ([3] for
detail.) 2

Remark 2.4. (1) When X = B × F , we can compute H∗(X) by Künneth
formula. In general, H∗(B × F ) provides an upper bound on the size of
H∗(X).

(2) Since (Bp, Bp−1) is (p − 1)-connected, the homotopy lifting property
implies that (Xp, Xp−1) is also (p−1)-connected. Hence, E1

p,q = Hp+q(X
p, Xp−1)

are nonzero only when p ≥ 0 and q ≥ 0(first quadrant spectral sequence).
(3) If the action is not trivial, the theorem is also true by regarding the

homology with local coefficients.
(4) The theorem is also true for fiber bundles.

Example 2.5. Consider orientable fibrationK(Z, 1) ↪→ PK(Z, 2)→ K(Z, 2),
where PK(Z, 2) is the space of paths of K(Z, 2) starting at the base point,
hence contractible. This is a spectral case of Gysin sequence in the following.

Also consider the general case K(Z, n) ↪→ PK(Z, 2)→ K(Z, n+ 1).

Next consider the Leray-Serre spectral sequence for cohomology.

16
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Theorem 2.6. [the cohomology Leray-Serre spectral sequence]
Consider the cohomology with coefficients in a ring R. Suppose F ↪→

E
π−→ B is a fibration, where B is path-connected. If π1(B) acts trivially on

H∗(F ;R), then there is a spectral sequence {Ep,q
r , dr} converging to H∗, with

Ep,q
2
∼= Hp(B;Hq(F ;R)).

This spectral is natural with respect to fibre-preserving maps of fibrations.

Remark 2.7. It becomes much more powerful when cup products are brought
into the picture. Consider the cohomology with coefficients in a ring R rather
than just an abelian group. We think the cup product as the composition

H∗(X;R)×H∗(X;R)
×−→ H∗(X ×X;R)

M∗−→ H∗(X;R)

of cross product with the map induced by the diagonal map M: X → X×X.
If α, β ∈ H∗(X;R), represented by two homomorphisms f : C∗ → R and
g : C∗ → R, then α× β is represented by homomorphism

C∗(X ×X)
δ−→ C∗(X)⊗ C∗(X)

f⊗g−−→ R⊗R −→ R.

Proposition 2.8. The Leray-Serre spectral sequence for cohomology can be
provided with bilinear products Ep,q

r × Es,t
r

?r−→ Ep+s,q+t
r satisfying

1. dr(x ?r y) = (drx) ?r y + (−1)p+qx ?r (dry) for x ∈ Ep,q
r and y ∈ Es,t

r .

2. ?r+1 is the product on the homology of (Er, dr) induced by ?r.

3. x?2y = (−1)qsx∪y, for x ∈ Ep,q
2 and y ∈ Es,t

2 , where the coefficients are
multiplied via the cup product Hq(F ;R)×H t(F ;R)→ Hq+t(F ;R).

4. The cup product in H∗(X;R) restricts to maps F pHm × F sHn →
F p+sHm+n. These induce quotient maps

F pHm/F p+1Hm × F sHn/F s+1Hn → F p+sHm+n/F p+s+1Hm+n.

that coincide with the products Ep,m−p
∞ × Es,n−s

∞ → Ep+s,m+n−p−s
∞ .

17
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2.3 Application of Leray-Serre spectral sequence

Example 2.9. An orientable fibration F ↪→ E
π−→ B with fiber an n-sphere,

n > 0, is called spherical fibration. Then

Hq(F ;R) =

{
R, if q = 0, n;
0, otherwise.

Thus, in Leray-Serre spectral sequence,

Ep,q
2 = Hp(B;Hq(F ;R))

{
Hp(B;R), if q = 0, n;
0, otherwise.

The bidegree of dr is (r, 1 − r), so the only non-trivial differential is dn+1.
Hence,

Ep,q
2 = Ep,q

3 = · · · = Ep,q
n = Ep,q

n+1

and
Ep,q
n+2 = Ep,q

n+3 = · · · = Ep,q
∞

6

-

q

p

Ep,q
n+1

@
@

@
@

@
@R

@
@

@
@

@
@R0

n

dn+1 (n+ 1,−n)

•

•

•

•

•

•

F

F

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Ep−n−1,n
n+1

Ep,0
n+1

Ep,n
n+1

Ep+n+1,0
n+1

Clearly,
Ep,n
n+2 = ker[dn+1 : Ep,n

n+1 → Ep+n+1,0
n+1 ]

Ep,0
n+2 = coker[dn+1 : Ep−n−1,n

n+1 → Ep,0
n+1].

So, we have exact sequence

0→ Ep,n
n+2 → Ep,n

n+1

dn+1−−−→ Ep+n+1,0
n+1 → Ep+n+1,0

n+2 → 0.

18
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That is

0→ Ep,n
∞ → Ep,n

2

dn+1−−−→ Ep+n+1,0
2 → Ep+n+1,0

∞ → 0. (2.1)

The only nontrivial E∞-term are Ep,0
∞ and Ep,n

∞ for p ≥ 0. And,

Ep,q
∞
∼= F pHp+q/F p+1Hp+q.

Consider Hm(E;R), we have the only two nontrivial E∞-term{
Em,0
∞ = FmHm/Fm+1Hm

Em−n,n
∞ = Fm−nHm/Fm−n+1Hm

Then the filtration on Hm(E;R) have the form

Hm = · · · = Fm−nHm ⊃ Fm−n+1Hm = · · · = FmHm ⊃ Fm+1Hm = · · · = {0}.

Then we have {
Em,0
∞ = FmHm

Em−n,n
∞ = Hm/Fm−n+1Hm

This yields a short exact sequence

0→ Em,0
∞ → Hm(E;R)→ Em−n,n

∞ → 0. (2.2)

Gluing exact sequence (2.1) and (2.2), and recalling that

Ep,0
2 = Ep,n

2 = Hp(B;R),

We get a long exact sequence

· · · → Hm(E;R)
φ−→ Hm−n(B;R)

dn+1−−−→ Hm+1(B;R)
π∗−→ Hm+1(E;R)→ · · · ,

(2.3)
which is called Gysin sequence of a spherical fibration π : E → B. (In
fact, for n = 0, Gysin sequence is also true, but it need another proof.)

The following formula explain how the gluing works

0→ Em,0
∞ → Hm(E;R)→ Em−n,n

∞ → 0

0→ Em−n,n
∞ → Em−n,n

2

dn+1−−−→ Em+1,0
2 → Em+1,0

∞ → 0.
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The map π∗ need some argument. (See [6].) We are more interested in
map dn+1, which can be described in another useful way.

Ep,n
2 = Hp(B;H0(Sn;R)) ∼= Hp(B;R)⊗R Hn(Sn;R)

Ep,0
2 = Hp(B;H0(Sn;R)) ∼= Hp(B;R)

6

-

q

p

Ep,q
2

@
@

@
@
@
@R

@
@
@
@
@
@R

@
@
@
@
@
@R E∗,02 = H∗(B;R)

E∗,n2 = H∗(B;R)⊗R Hn(Sn;R)

0

n

dn+1

•

F

•

•

F

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
u ∈ E0,n

2

e ∈ En+1,0
2

Ep,0
2

Ep,n
2

Ep+n+1,0
2

Let u ∈ Hn(Sn;R) be a generator, we can also regard u as lying in E0,n
2 =

H0(B;Hn(Sn;R)) ∼= Hn(Sn;R). Let

e = dn+1u ∈ En+1,0
2 = Hn+1(B;H0(Sn;R)) ∼= Hn+1(B;R).

e is called the Euler class of the spherical fibration. We may regard elements
of Ep,n

2 as being of the form u?x, where x ∈ Hp(B;R) ∼= Hp(B;H0(Sn;R)) =
Ep,0

2 . Thus, by Proposition 2.8,

dn+1(u ? x) = (dn+1u) ? x+ (−1)nu ? dn+1(x) = e ? x = e ∪ x.

Thus,
dn+1 : Hm−n(B;R)→ Hm+1(B;R)

is simply cup-product with the class x→ e ∪ x.

Example 2.10. The cohomology ring of CP n and CP∞ by Gysin sequence.
Consider Hopf fibration S1 ↪→ S2n+1 → CP n for every n ≥ 1. The fiberation
is orientable because π1(CP n, ∗) = 0. The Euler class e ∈ H2(CP n) and for
0 < m < 2n, Gysin sequence 2.3 becomes

0→ Hm−1(CP n;R)
∪e−−→ Hm+1(CP n;R)→ 0.

20



H.Wang Notes on spectral Sequence 21

We know that H1(CP n;R) = 0, and hence

H2n(CP n;R) ∼= H2n−2(CP n;R) ∼= · · · ∼= H2(CP n;R) ∼= H0(CP n;R) ∼= R;

H2n−1(CP n;R) ∼= H2n−3(CP n;R) ∼= · · · ∼= H3(CP n;R) ∼= H1(CP n;R) ∼= 0.

and H2r(CP n;R) is generated by er. Thus

H∗(CP n;R) ∼= R[e]/(en+1),

a truncated polynomial algebra, where e ∈ H2(CP n;R).
Similarly H∗(CP∞;R) ∼= R[e].

Example 2.11. If the base B is a sphere Sn for n > 0 in an orientable
fibration F ↪→ E

π−→ B, Then

Hp(B;R) =

{
R, if p = 0, n;
0, otherwise.

Thus, in Leray-Serre spectral sequence,

Ep,q
2 = Hp(B;Hq(F ;R))

{
Hq(F ;R), if p = 0, n;
0, otherwise.

6

-

q

p

Ep,q
2 HH

HHHH

j

HHH
HHH

j0 n

dn (n, 1− n)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

21



H.Wang Notes on spectral Sequence 22

By the similar method of getting the Gysin sequence, we can get Wang
Sequence.

· · · → Hm(E)
i∗−→ Hm(F )

dn−→ Hm−n+1(F )→ Hm+1(E)→ · · · .

where i : F → E is the inclusion.

Example 2.12. Using Gysin sequence and Wang sequence to compute the
cohomology of Heisenberg manifold, and compare this two methods. (Exer-
cise.)

Example 2.13. The Serre exact sequence. (Exercise.) [2] [6].

Theorem 2.14. (Leray-Hirsch) Let F ↪→ E
p−→ B be a fiber bundle such

that, for some commutative coefficient ring R:

1. Hn(F ;R) is a finitely generated free R-module for each n.

2. There exist classes cj ∈ Hkj(E;R) whose restrictions i∗(cj) form a
basis for H∗(F ;R) as module in each fiber F , where i : F → E is the
inclusion.

Then, the map

Φ : H∗(B;R)⊗R H∗(F ;R)→ H∗(E;R),

given by
Σijbi ⊗ i∗(cj)→ Σijp

∗(bi) ∪ ci
is an isomorphism.

Sketch of proof: (I didn’t find a suitable proof for this theorem by Leray-
Serre spectral sequence. In books[2] P148 and [6]P365, there are stronger
and weaker proof. I change a little McCleary’s proof in the following.)

We need to show that the Leray-Serre spectral sequence for this fiber
bundle collapses at E2-term.
Claim: (See [2] P147) The composite

Hq(E;R)� E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

2 = Hq(F ;R)

is the homomorphism i∗ : Hq(E;R) → Hq(F ;R) induced by inclusion i :
F ↪→ E.
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6
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q

p
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2
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2
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2 E2,0
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2 Ep,0
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By assumption (2), i∗ : Hq(E;R) → Hq(F ;R) is surjective. So, all the
inclusion must be equalities, and hence dr = 0 when restricted to the q-axis.
At E2, by assumption (1), Hn(F ;R) is a finitely generated free R-module for
each n, so,

Ep,q
2 = Hp(B;Hq(F ;R)) ∼= Hp(B;R)⊗R Hq(F ;R) = Ep,0

2 ⊗ E
0,q
2 .

Since, d2 is zero on Ep,0 already because of the degree reason and the spectral
sequence is the first quadrant spectral sequence. So, d2 = 0 and E2 = E3.
The same argument can be applied on E3 and so on. We have shown that
the spectral sequence collapses at E2.

2

In other words, H∗(E;R) is a free H∗(B;R)-module with basis {c}, where
we view H∗(E;R) as a module over the ring H∗(B;R) by defining scalar
multiplication by bc = p∗(b) ∪ c for b ∈ H∗(B;R) and c ∈ H∗(E;R).

If p : E → B Fiber bundle and E ′ is a subspace of E, then (E,E ′) is a
Fiber bundle pair if there is a subspace F ′ of the fiber F such that E ′ is an
F ′-bundle over B, and the local trivializations for E ′ are given by restrictions
from E.

Remark 2.15. There are relative versions of Leray-Serre spectral sequence.
In particular, suppose that Ė ⊂ E is a subset such that (p|Ė) : Ė → B is
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also a fibration. Let Ḟ = F ∩ Ė. Then there is a spectral sequence with

Ep,q
2
∼= Hp(B;Hq(F, Ḟ ;R))

and converging to H∗(E, Ė).

Theorem 2.16. (Leray-Hirsch theorem for fiber bundle pair) Suppose that

(F, F ′) → (E,E ′)
p−→ B is a fiber bundle pair such that H∗(F, F ′;R) is a

free R-module, finitely generated in each dimension. If there exist classes
cj ∈ H∗(E,E ′;R) whose restrictions form a basis for H∗(F, F ′;R) in each
fiber (F, F ′), then H∗(E,E ′;R), as a module over H∗(B;R), is free with basis
{cj}. 2

For disk bundle (Dn, Sn−1) ↪→ (E,E ′)
p−→ B, an element t ∈ Hn(E,E ′;R)

whose restriction to each fiber (Dn, Sn−1) is a generator ofHn(Dn, Sn−1;R) ∼=
R is called a Thom class for the bundle.

Theorem 2.17. (Thom Isomorphism Theorem) If the disk bundle (Dn, Sn−1) ↪→
(E,E ′)

p−→ B has a Thom class t ∈ Hn(E,E ′;R), then the map Φ : H i(B;R)→
H i+n(E,E ′;R), Φ(b) = p∗(b) ∪ t, is an isomorphism for all i ≥ 0, and
H i(E,E ′;R) = 0 for i < n.

Proof: This is special case of Leray-Hirsch theorem for bundle pairs for
j = 1. 2

Remark 2.18. We can also derive the Gysin sequence for a sphere bundle
Sn−1 ↪→ E

p−→ B by considering the mapping cylinder Mp, which is a disk

bundle Dn ↪→Mp
p−→ B with E as its boundary sphere bundle.

References

[1] R.Bott and L.Tu, Differential Forms in Algebraic Topology, Springer,
(1982).

[2] J.McCleary, A user’s guide to spectral sequences, second edition, Cam-
bridge University Press, Cambridge, (2001).

[3] A.Hatcher, Spectral Sequences in Algebraic Topology,
http://www.math.cornell.edu/~hatcher/

24



H.Wang Notes on spectral Sequence 25

[4] M.Huntchings, Introduction to spectral sequence,
http://math.berkeley.edu/~hutching/teach/215b-2011/ss.pdf

[5] S-T-Hu, Homotopy theory, Academic Pr, (1959).

[6] R.Switzer, Algebraic Topology Homology and Homotopy, Springer,
(1975).

[7] E.Spanier, Algebraic Topology, Springer, (1966).

25


