MATH 5110 - Applied Linear Algebra and Matrix Analysis

* Inner Product Space

Instructor: He Wang
Department of Mathematics
Northeastern University

Matlab code for orthogonal projection

Here's an example MATLAB code that demonstrates orthogonal projection:
\% Define the vector to be projected $\mathrm{v}=[1 ; 2 ; 3]$;
\% Define the projection matrix
$A=[1,0,0$;
$0,1,0]$;
\% Calculate the orthogonal projection
projection = A * ((A' * A)
(A' * v));
\% Display the result
disp('Orthogonal Projection:');
disp(projection);

If you want to perform an orthogonal projection onto an arbitrary basis, you can use the Gram-Schmidt process to orthogonalize the basis vectors.

```
% Define the vector to be projected
v = [1; 2; 3];
% Define the basis vectors
u1 = [1; 1; 0];
u2 = [1; -1; 1];
% Apply Gram-Schmidt process to orthogonalize the basis vectors
w1 = u1 / norm(u1);
w2 = u2 - dot(u2, w1) * w1;
w2 = w2 / norm(w2);
% Calculate the coefficients of the projection
coefficients = [dot(v, w1); dot(v, w2)];
% Calculate the orthogonal projection
projection = w1 * coefficients(1) + w2 * coefficients(2);
% Display the result
disp('Orthogonal Projection:');
disp(projection);
```

If you want to perform an orthogonal projection onto an orthonormal basis,
\% Define the vector to be projected v = 1 ; $2 ; 3]$;
\% Define the subspace basis vectors
u1 = $[1 ; 0 ; 0]$;
u2 $=[0 ; 1 ; 0]$;
\% Calculate the coefficients of the projection
coefficients = [dot(v, u1); $\operatorname{dot}(\mathrm{v}, \mathrm{u} 2)]$;
\% Calculate the orthogonal projection
projection = u1 * coefficients(1) + u2 * coefficients(2);
\% Display the result
disp('Orthogonal Projection:');
disp(projection);

