MATH 5110 – Applied Linear Algebra and Matrix Analysis

Further Studies relating to linear algebra

Instructor: He Wang Department of Mathematics Northeastern University

https://hewang.sites.northeastern.edu/

For future (Each topic is a advance graduate course):

- 1. Multilinear algebra
- 2. Metric space/Hilbert Spaces
- 3. Wavelet transform
- 4. Application or differential equations
- 5. Algebraic graph theory
- 6. Topological vector space
- 7. Topological data analysis (homology)
- 8. Module-Vector space over ring
- 9. Quantum Mechanics/Quantum computing
- 10. Random Matrix Theory
- 11. Optimization-Linear Programming
- 12. Statistical and Machine learning
- 13. More real-world applications e.g., 2d/3d images

14....

1. Multi-linear algebra

We have talked about several vector spaces:

- Subspaces
- Intersection
- Sum and Direct Sum
- Quotient space
- Space of linear transformations
- Dual Space

Now, let us look at another two classes of vector spaces:

- Exterior product
- Tensor product

Tensor product

Let *V* and *W* be vector spaces over a field $F(e. g., \mathbb{R})$

Definition: The **tensor product** $V \otimes W$ is defined as quotient of

 $\operatorname{Span}\{\vec{v} \otimes \overline{w} \mid \vec{v} \in V \text{ and } \vec{w} \in W\}$

such that

1)
$$\vec{v} \otimes (\vec{w}_1 + \vec{w}_2) = \vec{v} \otimes \vec{w}_1 + \vec{v} \otimes \vec{w}_2$$

2) $(\vec{v}_1 + \vec{v}_2) \otimes \vec{w} = \vec{v}_1 \otimes \vec{w} + \vec{v}_2 \otimes \vec{w}$
3) $a(\vec{v} \otimes \vec{w}) = a\vec{v} \otimes \vec{w} = \vec{v} \otimes a\vec{w}$

for all $\vec{v} \in V$, $\vec{w} \in W$ and $a \in \mathbb{R}$

Basis and dimension:

Let
$$\mathcal{A} = \{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m\}$$
 be a basis of V.

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis of W.

Theorem: A basis for $V \otimes W$ is given by

$$\left\{ \vec{a}_i \otimes \vec{b}_j \mid 1 \le i \le m, 1 \le j \le n \right\}$$

Proposition:

 $\dim(V\otimes W)=mn$

Example

$$\mathbb{R}^m \otimes \mathbb{R}^n \cong \mathbb{R}^{m \times n}$$

For any
$$\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} \in \mathbb{R}^m$$
 and $\vec{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{R}^n$, define the isomorphism map

$$\mathbb{R}^m \otimes \mathbb{R}^n \to \mathbb{R}^{m \times n}$$

$$\vec{v} \otimes \vec{w} \to \begin{bmatrix} v_1 w_1 & \cdots & v_1 w_n \\ \vdots & \ddots & \vdots \\ v_m w_1 & \cdots & v_m w_n \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Exterior product

Let V be a vector space over a field $F(e. g., \mathbb{R})$

Definition: The **2ed wedge product (exterior power)** $\Lambda^2 V \coloneqq V \wedge V$ is a vector space as quotient of

$$\operatorname{Span}\{\vec{v} \wedge \vec{w} \mid \vec{v}, \vec{w} \in V\}$$

such that

1)
$$\vec{v} \wedge \vec{v} = 0$$

2) $\vec{v} \wedge \vec{w} = \vec{w} \wedge \vec{v}$
3) $(a\vec{v} + b\vec{w}) \wedge \vec{u} = a\vec{v} \wedge \vec{u} + b\vec{w} \wedge \vec{u}$

for all $\vec{v} \in V$ and $a, b \in \mathbb{R}$

Basis and dimension:

Let
$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$$
 be a basis of V.

Theorem: A basis for $\bigwedge {}^2V$ is given by

$$\left\{ \vec{b}_i \land \ \vec{b}_j \mid \ 1 \leq i < j \leq n \right\}$$

Proposition:

$$\dim(\Lambda^2 V) = \binom{n}{2}$$

Direct product vector spaces:

For any two **sets** *V* and *W*, the **Cartesian product** is defined by ordered pairs

$$V \times W \coloneqq \{(v, w) | v \in V, w \in W\}$$

Definition: Let *V* and *W* be vector spaces over a field $F(e.g., \mathbb{R})$. The **direct** product $V \times W$ is the Cartesian product as set and satisfying linear properties:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

and

$$k(v,w) = (kv,kw)$$

Remark:

- If *V* and *W* are subspaces of some vector space *U*, then direct product is the same (isomorphic) as our direct sum.
- Definition of direct product works on infinite many vector spaces $\prod V_i$, which contains all infinite tuples.
- Generalization of direct sum to infinite many vector spaces $\coprod V_i$, which contains all finite tuples.

□ *k*-linear map

Let *V* and *W* be vector spaces.

Let V^k be the direct product power with all k-tuples.

Definition: A function $T: V^k \to W$ is *k*-linear if it is linear in the *i*-th variable for each *i*, that is,

when we fix vectors $\vec{v}_1, \dots, \vec{v}_{i-1}$, $\vec{v}_{i+1}, \dots, \vec{v}_k$, the map $T_i: V \to W$

$$T_i(\vec{\boldsymbol{v}}) = T(\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{\boldsymbol{v}}, \vec{v}_{i+1}, \dots, \vec{v}_k)$$

is linear.

For example, a multilinear map of one variable (k = 1) is a linear map, and of two variables (k = 2) is a bilinear map.

Examples:

- 1. Any inner product $\langle , \rangle : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ on a vector space is a multilinear map.
- 2. Determinant function $det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is a (alternating) multilinear function of the columns (or rows) of a square matrix.

A map $f: V^k \to W$ is called **alternating** if

$$f(\vec{v}_1, ..., \vec{v}_k) = 0$$
 when ever $\vec{v}_i = \vec{v}_j$ for some $i \neq j$.

Universal properties of tensor product

The universal definition (without basis or element) of tensor by universal properties:

The tensor product of two vector spaces V and W is a vector space, denoted by $V \otimes W$, together with a bilinear map $\phi(\vec{v}, \vec{w}) = \vec{v} \otimes \vec{w}$ such that

For every bilinear map h, there **exists** a **unique** linear map \tilde{h} that makes the diagram commutative, i.e., $\tilde{h} \circ \phi = h$

There is a natural one-to-one correspondence between multilinear maps

$$h: V \times W \to Z$$
 and $\tilde{h}: V \otimes W \to Z$

by formula

$$h(\vec{v},\vec{w}) = \tilde{h}(\vec{v}\otimes\vec{w})$$

Universal properties of exterior product

The universal definition (without basis or element) of tensor by **universal properties**:

The tensor product of two vector spaces V and W is a vector space, denoted by $V \wedge W$, together with a **alternating bilinear** map $\psi(\vec{v}, \vec{w}) = \vec{v} \wedge \vec{w}$ such that

For every alternating bilinear map h, there exists a unique linear map \tilde{h} that makes the diagram commutative, i.e., $\tilde{h} \circ \psi = h$.

Application:

Multilinear algebra is a foundational mathematical tool in engineering, machine learning, physics, and mathematics.

https://en.wikipedia.org/wiki/Multilinear_algebra

2. Metric Space and Hilbert Spaces

This is short introduction in real/functional analysis.

Definition (Metric). Let *S* be a **set**. A **metric**(distance) on *S* is a binary function

 $d:S \times S \longrightarrow \mathbb{R}$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in S$ and a scalar $c \in \mathbb{R}$, the following hold:

(1.)
$$d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$$

(2.)
$$d(\vec{u}, \vec{v}) = 0$$
 if and only if $\vec{u} = \vec{v}$

(3.)
$$d(\vec{u}, \vec{w}) \le d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w})$$

We call S a metric space with metric function d.

Examples:

1. The **discrete metric on** *S*, where d(x, y) = 0 if x = y and

d(x, y) = 1 otherwise.

2. The **positive real numbers** with distance function $d(x, y) = |\log(y/x)|$ is a metric space.

3. If *S* is a vector space, metric is equivalent to norm.

□ Cauchy sequence

Let $x_1, x_2, ..., x_n, ...$ be a sequence of elements in a metric space S.

Definition: The sequence $\{x_n\}_{n=1}^{\infty}$ is called **Cauchy sequence**, if for every $\epsilon \in \mathbb{R}$, there is a positive integer *N* such that $d(x_m, x_n) < \epsilon$ all natural numbers m, n > N.

Informally, the Cauchy sequence x_n are getting closer and closer.

Complete metric space

Any convergent sequence is a Cauchy sequence, but a Cauchy sequence is not necessarily convergent to an element in *S*.

Definition: The metric space *S* is called **complete** if the limit of every Cauchy sequences $\{x_n\}$ is in the space *S*, i.e., $\lim_{n \to \infty} x_n = x \in S$.

Examples:

- 1. Real numbers \mathbb{R} is complete under the metric induced by the usual absolute value.
- 2. Rational numbers \mathbb{Q} is not complete. (e.g., $a_n = \left(1 + \frac{1}{n}\right)^n$ converge to e).

3. Open interval (0,1) is not complete. (e.g., $a_n = \frac{1}{n}$ converge to 0).

Normed Space

Definition (Norm). Let V be a real vector space. A **norm** on V is a function $\|-\|: V \to \mathbb{R}$ such that for vectors $\vec{u}, \vec{v} \in V$ and a scalar $c \in \mathbb{R}$, the following hold: (1.) $\|\vec{u}\| \ge 0$ (2.) $\|\vec{u}\| = 0$ if and only if $\vec{u} = \vec{0}$ (3.) $\|c\vec{u}\| = c \|\vec{u}\|$ (4.) The triangle inequality $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ We call V an normed space with norm $\|-\|$.

Example: l_p -norm on \mathbb{R}^n

Definition: A complete normed vector space is called **Banach space**.

□ Inner product Space

Let *V* be a real vector space (finite or infinite dimensional).

Definition (Inner Product). An **inner product** on *V* is a binary function $\langle -, - \rangle : V \times V \longrightarrow \mathbb{R}$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:

(1.)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

(2.) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$
(3.) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{v}, \vec{u} \rangle$
(4.) $\langle \vec{u}, \vec{u} \rangle \ge 0$
(5.) $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = \vec{0}$

We call *V* an **inner product space** with inner product $\langle -, - \rangle$.

More examples:

1. $\mathbb{R}^{n \times n}$ with inner product $\langle A, B \rangle \coloneqq tr(AB^T)$

2. {Random Variables $X | E(X^2) < \infty$ } with inner product $\langle X, Y \rangle \coloneqq E(XY)$

Theorem: An normed induced by an inner product if and only if

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

Hilbert Space

Definition: A complete inner product space is called **Hilbert space**.

Examples:

1. Euclidean inner product space \mathbb{R}^n (with dot product) is a Hilbert space.

~~

2. Sequence space (\mathbb{R}^{∞} or \mathbb{C}^{∞})

{all infinite sequences
$$z = (z_1, ..., z_n, ...) | \sum_{n=1}^{\infty} |z_n|^2 < \infty$$
}

The inner product is defined by

$$\langle z, w \rangle := \sum_{n=1}^{\infty} z_n \overline{w_n}$$

Q: Orthonormal basis?

Orthogonal projection and least squares

Theorem (Orthogonal Projection Theorem)

Let \mathcal{H} be a Hilbert space, \mathcal{M} be a *closed* linear subspace of \mathcal{H} , and $\vec{y} \in \mathcal{H}$. There exist an **unique** point $Proj_{\mathcal{M}}\vec{y} \in \mathcal{M}$ such that

1. $\|\vec{y} - Proj_{\mathcal{M}}\vec{y}\| \le \|\vec{w} - \vec{y}\|$ for any $\vec{w} \in \mathcal{M}$

2. $\langle \vec{y} - Proj_{\mathcal{M}}\vec{y}, \vec{w} \rangle = 0$ for any $\vec{w} \in \mathcal{M}$

Notation: in infinite dimensions, we don't use the arrow notation.

Definitions of span, linear independence, basis same as finite dimension linear algebra except we now allow infinite sums.

Infinite linear combinations:

$$\sum_{i=1}^{\infty} c_i v_i = u \qquad \text{iff} \qquad \lim_{n \to \infty} \left\| \sum_{i=1}^{\infty} c_i v_i - u \right\| = 0$$

Many properties from linear algebra are true for infinite dimension Hilbert Space. Details can be found in a real/functional analysis textbook.

Theorem: If a collection of vectors $\{v_1, v_2, ...\}$ is orthonormal then it is automatically linearly independent.

□ Incomplete Inner product space example.

Functional space *P* ={all **polynomials** on [0,1]} with inner product

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t) \, dt$$

is **not** a Hilbert space.

Proof:

Consider the vectors v_m defined by the partial sums of the Taylor series of e^x

$$\nu_m = \sum_{k=0}^m \frac{x^k}{k!}$$

Claim 1. $\{v_1, v_2, ...\}$ is a Cauchy sequence.

$$\|v_n - v_m\| = \left\|\sum_{k=m+1}^n \frac{x^k}{k!}\right\| \le \sum_{k=m+1}^n \left\|\frac{x^k}{k!}\right\|$$

Since

$$\left\|\frac{x^{k}}{k!}\right\| = \frac{1}{k!} \left\|x^{k}\right\| = \frac{1}{k!} \left(\int_{0}^{1} x^{2k} dx\right)^{1/2} = \frac{1}{k!} \left(\frac{1}{2k+1}\right)^{1/2}$$

So,
$$\sum_{k=1}^{\infty} \left\| \frac{x^k}{k!} \right\| < \infty$$

So,
$$||v_n - v_m|| \to 0$$
 when $n, m \to \infty$

Claim 2.

By Taylor series, $v_m \rightarrow e^x$ when $m \rightarrow \infty$ uniformly on [0,1]

Claim 3. A sequence of functions can't converge to two different functions.

So v_m will not converge to a polynomial.

So v_m will not converge to a element in *P*.

So, *P* is not complete.

Remark: The set $P_2 = \{polynomials of degree \le 2 \text{ on } [0,1]\}$ is a Hilbert space.

Measurable functions and Lebesgue integrals

Let *C* be the set of continuous functions on \mathbb{R} . Let *M* be the set of measurable functions:

Definition: The set M of **measurable functions** on \mathbb{R} (or an interval of \mathbb{R}) is the set of functions that are limits of continuous functions, i.e.

$$M = \left\{ f(x) \mid f(x) = \lim_{n \to \infty} f_n(x) \right\},$$

where $f_n(x)$ is continuous for all $x \in \mathbb{R}$

For example, the function f(x) as a limit of continuous functions

Measurable functions

In fact, lots of functions (even discontinuous ones) can be viewed as limits of continuous functions.

For example

$$f(x) = \chi_{[0,1]}(x) = \begin{cases} 1 & \text{if } x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

is a discontinuous but measurable function

Note: ordinary notion of integral is difficult to use for functions as complicated as measurable functions.

To integrate measurable functions (Lebesgue integral):

Lebesgue integral

Theorem: Given a non-negative measurable function $f: \mathbb{R}^p \to \mathbb{R}$, there is always an *increasing* sequence $\{f_n(\vec{x})\}_{n=1}^{\infty}$ of continuous functions (i.e. with the property that $f_n(\vec{x}) \ge f_{n-1}(\vec{x})$ for all \vec{x}) which converges to $f(\vec{x})$.

Definition: If $f(\vec{x}) \ge 0$ is a positive measurable function, define

$$\int_{\mathbb{R}^p} f(x) \, dx = \lim_{n \to \infty} \int_{\mathbb{R}^p} f_n(x) \, dx \qquad \text{Limit of ordinary Riemann integrals}$$

where $f_n(\vec{x})$ is any increasing sequence of continuous functions which converges to $f(\vec{x})$.

Integral of an arbitrary function

To find the integral of a negative measurable function f(x), we just compute the integral of -f(x) (which is positive), and put a minus sign in front of it.

Since **every** function f(x) is the sum of a positive plus a negative function

$$f(x) = f_1(x) + f_2(x)$$

the integral of f(x) is defined as

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f_1(x)dx + \int_{-\infty}^{\infty} f_2(x)dx$$

Example. f(x) has positive and negative part

Then integral of f(x) is integral of a positive plus a negative function:

All the properties of integrals we are used to also hold for this more general **Lebesgue** integral.

For example, we still have linear properties:

$$\int_{-\infty}^{\infty} f(x) + g(x)dx = \int_{-\infty}^{\infty} f(x)dx + \int_{-\infty}^{\infty} g(x)dx$$

Hilbert spaces of functions

Consider the space

$$H = L^{2}[-\pi, \pi]$$

= $\left\{ \text{measurable real functions } f(x)on[-\pi, \pi] \text{ with } \int_{-\pi}^{\pi} f^{2}(x)dx < \infty \right\}$

Can show that H is complete (i.e., every Cauchy sequence converges to a function f in H).

Theorem: H is a Hilbert space

we always consider two measurable functions the same if they differ just at a finite number of points

same integral

$$\int |f_1 - f_2| \, dx = 0$$

Ref:

What is a tensor? <u>https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17117.pdf</u> <u>https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17145.pdf</u>

Tensor Methods and Emerging Applications to the Physical and Data Sciences Tutorials <u>https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-</u> <u>emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule</u>

https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17116.pdf