MATH 5110 - Applied Linear Algebra and Matrix Analysis

* Further Studies relating to linear algebra

Instructor: He Wang
Department of Mathematics
Northeastern University

For future (Each topic is a advance graduate course):

1. Multilinear algebra
2. Metric space/Hilbert Spaces
3. Wavelet transform
4. Application or differential equations
5. Algebraic graph theory
6. Topological vector space
7. Topological data analysis (homology)
8. Module-Vector space over ring
9. Quantum Mechanics/Quantum computing
10. Random Matrix Theory
11. Optimization-Linear Programming
12. Statistical and Machine learning
13. More real-world applications - e.g., 2d/3d images
14....

1. Multi-linear algebra

We have talked about several vector spaces:

- Subspaces
- Intersection
- Sum and Direct Sum
- Quotient space
- Space of linear transformations
- Dual Space

Now, let us look at another two classes of vector spaces:

- Exterior product
- Tensor product

Let V and W be vector spaces over a field F (e.g., \mathbb{R})

Definition: The tensor product $V \otimes W$ is defined as quotient of

$$
\operatorname{Span}\{\vec{v} \otimes \vec{w} \mid \vec{v} \in V \text { and } \vec{w} \in W\}
$$

such that

$$
\begin{aligned}
& \text { 1) } \vec{v} \otimes\left(\vec{w}_{1}+\vec{w}_{2}\right)=\vec{v} \otimes \vec{w}_{1}+\vec{v} \otimes \vec{w}_{2} \\
& \text { 2) }\left(\vec{v}_{1}+\vec{v}_{2}\right) \otimes \vec{w}=\vec{v}_{1} \otimes \vec{w}+\vec{v}_{2} \otimes \vec{w} \\
& \text { 3) } a(\vec{v} \otimes \vec{w})=a \vec{v} \otimes \vec{w}=\vec{v} \otimes a \vec{w}
\end{aligned}
$$

for all $\vec{v} \in V, \vec{w} \in W$ and $a \in \mathbb{R}$

Basis and dimension:

Let $\mathcal{A}=\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}\right\}$ be a basis of V.

Let $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$ be a basis of W.

Theorem: A basis for $V \otimes W$ is given by

$$
\left\{\vec{a}_{i} \otimes \vec{b}_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Proposition:

$$
\operatorname{dim}(V \otimes W)=m n
$$

Example

$\mathbb{R}^{m} \otimes \mathbb{R}^{n} \cong \mathbb{R}^{m \times n}$

$$
\begin{gathered}
\text { For any } \vec{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right] \in \mathbb{R}^{m} \text { and } \vec{w}=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \in \mathbb{R}^{n} \text {, define the isomorphism map } \\
\mathbb{R}^{m} \otimes \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}
\end{gathered}
$$

$$
\vec{v} \otimes \vec{w} \rightarrow\left[\begin{array}{ccc}
v_{1} w_{1} & \cdots & v_{1} w_{n} \\
\vdots & \ddots & \vdots \\
v_{m} w_{1} & \cdots & v_{m} w_{n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Let V be a vector space over a field F (e. g. , \mathbb{R})

Definition: The 2ed wedge product (exterior power) $\wedge^{2} V:=V \wedge V$ is a vector space as quotient of

$$
\operatorname{Span}\{\vec{v} \wedge \vec{w} \mid \vec{v}, \vec{w} \in V\}
$$

such that

$$
\begin{aligned}
& \text { 1) } \vec{v} \wedge \vec{v}=0 \\
& \text { 2) } \vec{v} \wedge \vec{w}=\vec{w} \wedge \vec{v} \\
& \text { 3) }(a \vec{v}+b \vec{w}) \wedge \vec{u}=a \vec{v} \wedge \vec{u}+b \vec{w} \wedge \vec{u}
\end{aligned}
$$

for all $\vec{v} \in V$ and $a, b \in \mathbb{R}$

Basis and dimension:

$$
\text { Let } \mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\} \text { be a basis of } V \text {. }
$$

Theorem: A basis for $\Lambda^{2} V$ is given by

$$
\left\{\vec{b}_{i} \wedge \vec{b}_{j} \mid 1 \leq i<j \leq n\right\}
$$

Proposition:

$$
\operatorname{dim}\left(\Lambda^{2} V\right)=\binom{n}{2}
$$

For any two sets V and W, the Cartesian product is defined by ordered pairs

$$
V \times W:=\{(v, w) \mid v \in V, w \in W\}
$$

Definition: Let V and W be vector spaces over a field F (e.g. , \mathbb{R}). The direct product $V \times W$ is the Cartesian product as set and satisfying linear properties:

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)
$$

and

$$
k(v, w)=(k v, k w)
$$

Remark:

- If V and W are subspaces of some vector space U, then direct product is the same (isomorphic) as our direct sum.
- Definition of direct product works on infinite many vector spaces ΠV_{i}, which contains all infinite tuples.
- Generalization of direct sum to infinite many vector spaces $\amalg V_{i}$, which contains all finite tuples.
$\square k$-linear map

Let V and W be vector spaces.
Let V^{k} be the direct product power with all k-tuples.

Definition: A function $T: V^{k} \rightarrow W$ is k-linear if it is linear in the i-th variable for each i, that is,
when we fix vectors $\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}$, the map $T_{i}: V \rightarrow W$

$$
T_{i}(\vec{v})=T\left(\vec{v}_{1}, \ldots, \vec{v}_{i-1}, \vec{v}, \vec{v}_{i+1}, \ldots, \vec{v}_{k}\right)
$$

is linear.

For example, a multilinear map of one variable $(k=1)$ is a linear map, and of two variables $(k=2)$ is a bilinear map.

Examples:

1. Any inner product $\langle\rangle:, \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ on a vector space is a multilinear map.
2. Determinant function det: $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a (alternating) multilinear function of the columns (or rows) of a square matrix.

A map $f: V^{k} \rightarrow W$ is called alternating if

$$
f\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)=0 \text { when ever } \vec{v}_{i}=\vec{v}_{j} \text { for some } i \neq j
$$

Universal properties of tensor product

The universal definition (without basis or element) of tensor by universal properties:

The tensor product of two vector spaces V and W is a vector space, denoted by $V \otimes W$, together with a bilinear map $\phi(\vec{v}, \vec{w})=\vec{v} \otimes \vec{w}$ such that

For every bilinear map h, there exists a unique linear map \tilde{h} that makes the diagram commutative, i.e., $\tilde{h} \circ \phi=h$

There is a natural one-to-one correspondence between multilinear maps

$$
h: V \times W \rightarrow Z \text { and } \tilde{h}: V \otimes W \rightarrow Z
$$

by formula

$$
h(\vec{v}, \vec{w})=\tilde{h}(\vec{v} \otimes \vec{w})
$$

Universal properties of exterior product

The universal definition (without basis or element) of tensor by universal properties:

The tensor product of two vector spaces V and W is a vector space, denoted by $V \wedge W$, together with a alternating bilinear map $\psi(\vec{v}, \vec{w})=\vec{v} \wedge \vec{w}$ such that

For every alternating bilinear map h, there exists a unique linear map \tilde{h} that makes the diagram commutative, i.e., $\tilde{h} \circ \psi=h$.

Application:

Multilinear algebra is a foundational mathematical tool in engineering, machine learning, physics, and mathematics.
https://en.wikipedia.org/wiki/Multilinear algebra

2. Metric Space and Hilbert Spaces

This is short introduction in real/functional analysis.

Definition (Metric). Let S be a set. A metric(distance) on S is a binary function

$$
d: S \times S \rightarrow \mathbb{R}
$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in S$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $d(\vec{u}, \vec{v})=d(\vec{v}, \vec{u})$
(2.) $d(\vec{u}, \vec{v})=0$ if and only if $\vec{u}=\vec{v}$
(3.) $d(\vec{u}, \vec{w}) \leq d(\vec{u}, \vec{v})+d(\vec{v}, \vec{w})$

We call S a metric space with metric function d.

Examples:

1. The discrete metric on S, where $d(x, y)=0$ if $x=y$ and $d(x, y)=1$ otherwise.
2. The positive real numbers with distance function $d(x, y)=|\log (y / x)|$ is a metric space.
3. If S is a vector space, metric is equivalent to norm.

Cauchy sequence

Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be a sequence of elements in a metric space S.

Definition: The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is called Cauchy sequence, if for every $\epsilon \in \mathbb{R}$, there is a positive integer N such that $d\left(x_{m}, x_{n}\right)<\epsilon$ all natural numbers $m, n>N$.

Informally, the Cauchy sequence x_{n} are getting closer and closer.

\square Complete metric space

Any convergent sequence is a Cauchy sequence, but a Cauchy sequence is not necessarily convergent to an element in S.

Definition: The metric space S is called complete if the limit of every Cauchy sequences $\left\{x_{n}\right\}$ is in the space S, i.e., $\lim _{n \rightarrow \infty} x_{n}=x \in S$.

Examples:

1. Real numbers \mathbb{R} is complete under the metric induced by the usual absolute value.
2. Rational numbers \mathbb{Q} is not complete. (e.g., $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ converge to e).
3. Open interval $(0,1)$ is not complete. (e.g., $a_{n}=\frac{1}{n}$ converge to 0).
\square Normed Space

Definition (Norm). Let V be a real vector space. A norm on V is a function

$$
\|-\|: V \rightarrow \mathbb{R}
$$

such that for vectors $\vec{u}, \vec{v} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\|\vec{u}\| \geq 0$
(2.) $\|\vec{u}\|=0$ if and only if $\vec{u}=\overrightarrow{0}$
(3.) $\|c \vec{u}\|=c\|\vec{u}\|$
(4.) The triangle inequality $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$

We call V an normed space with norm $\|-\|$.

Example: l_{p}-norm on \mathbb{R}^{n}

Definition: A complete normed vector space is called Banach space.

Let V be a real vector space (finite or infinite dimensional).
Definition (Inner Product). An inner product on V is a binary function

$$
\langle-,-\rangle: V \times V \rightarrow \mathbb{R}
$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$
(2.) $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$
(3.) $\langle c \vec{u}, \vec{v}\rangle=c\langle\vec{v}, \vec{u}\rangle$
(4.) $\langle\vec{u}, \vec{u}\rangle \geq 0$
(5.) $\langle\vec{u}, \vec{u}\rangle=0$ if and only if $\vec{u}=\overrightarrow{0}$

We call V an inner product space with inner product $\langle-,-\rangle$.

More examples:

1. $\mathbb{R}^{n \times n}$ with inner product $\langle A, B\rangle:=\operatorname{tr}\left(A B^{T}\right)$
2. $\left\{\right.$ Random Variables $\left.X \mid E\left(X^{2}\right)<\infty\right\}$ with inner product $\langle X, Y\rangle:=E(X Y)$

Theorem: An normed induced by an inner product if and only if

$$
\|\vec{u}+\vec{v}\|^{2}+\|\vec{u}-\vec{v}\|^{2}=2\|\vec{u}\|^{2}+2\|\vec{v}\|^{2}
$$

Definition: A complete inner product space is called Hilbert space.

Examples:

1. Euclidean inner product space \mathbb{R}^{n} (with dot product) is a Hilbert space.
2. Sequence space $\left(\mathbb{R}^{\infty}\right.$ or $\left.\mathbb{C}^{\infty}\right)$

$$
\left\{\text { all infinite sequences } z=\left.\left(z_{1}, \ldots, z_{n}, \ldots\right)\left|\sum_{n=1}^{\infty}\right| z_{n}\right|^{2}<\infty\right\}
$$

The inner product is defined by

$$
\langle z, w\rangle:=\sum_{n=1}^{\infty} z_{n} \overline{w_{n}}
$$

Q: Orthonormal basis?
\square Orthogonal projection and least squares

Theorem (Orthogonal Projection Theorem)
Let \mathcal{H} be a Hilbert space, \mathcal{M} be a closed linear subspace of \mathcal{H}, and $\vec{y} \in \mathcal{H}$.
There exist an unique point $\operatorname{Proj}_{\mathcal{M}} \overrightarrow{\mathcal{Y}} \in \mathcal{M}$ such that

1. $\left\|\vec{y}-\operatorname{Proj}_{\mathcal{M}} \vec{y}\right\| \leq\|\vec{w}-\vec{y}\|$ for any $\vec{w} \in \mathcal{M}$
2. $\left\langle\vec{y}-\operatorname{Proj}_{\mathcal{M}} \vec{y}, \vec{w}\right\rangle=0$ for any $\vec{w} \in \mathcal{M}$

Infinite dimension remarks

Notation: in infinite dimensions, we don't use the arrow notation.
Definitions of span, linear independence, basis same as finite dimension linear algebra except we now allow infinite sums.

Infinite linear combinations:

$$
\sum_{i=1}^{\infty} c_{i} v_{i}=u \quad \text { iff } \quad \lim _{n \rightarrow \infty}\left\|\sum_{i=1}^{\infty} c_{i} v_{i}-u\right\|=0
$$

Many properties from linear algebra are true for infinite dimension Hilbert Space. Details can be found in a real/functional analysis textbook.

Theorem: If a collection of vectors $\left\{v_{1}, v_{2}, \ldots\right\}$ is orthonormal then it is automatically linearly independent.

Incomplete Inner product space example.

Functional space $P=\{$ all polynomials on $[0,1]\}$ with inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t
$$

is not a Hilbert space.

Proof:

Consider the vectors v_{m} defined by the partial sums of the Taylor series of e^{x}

$$
v_{m}=\sum_{k=0}^{m} \frac{x^{k}}{k!}
$$

Claim 1. $\left\{v_{1}, v_{2}, \ldots\right\}$ is a Cauchy sequence.

$$
\left\|v_{n}-v_{m}\right\|=\left\|\sum_{k=m+1}^{n} \frac{x^{k}}{k!}\right\| \leq \sum_{k=m+1}^{n}\left\|\frac{x^{k}}{k!}\right\|
$$

Since

$$
\left\|\frac{x^{k}}{k!}\right\|=\frac{1}{k!}\left\|x^{k}\right\|=\frac{1}{k!}\left(\int_{0}^{1} x^{2 k} d x\right)^{1 / 2}=\frac{1}{k!}\left(\frac{1}{2 k+1}\right)^{1 / 2}
$$

So, $\quad \sum_{k=1}^{\infty}\left\|\frac{x^{k}}{k!}\right\|<\infty$
So, $\left\|v_{n}-v_{m}\right\| \rightarrow 0$ when $n, m \rightarrow \infty$

Claim 2.
By Taylor series, $v_{m} \rightarrow e^{x}$ when $m \rightarrow \infty$ uniformly on [0,1]

Claim 3. A sequence of functions can't converge to two different functions.

So v_{m} will not converge to a polynomial.

So v_{m} will not converge to a element in P.

So, P is not complete.

Remark: The set $P_{2}=\{$ polynomials of degree ≤ 2 on $[0,1]\}$ is a Hilbert space.

Let C be the set of continuous functions on \mathbb{R}. Let M be the set of measurable functions:

Definition: The set M of measurable functions on \mathbb{R} (or an interval of \mathbb{R}) is the set of functions that are limits of continuous functions, i.e.

$$
M=\left\{f(x) \mid f(x)=\lim _{n \rightarrow \infty} f_{n}(x)\right\}
$$

where $f_{n}(x)$ is continuous for all $\mathrm{x} \in \mathbb{R}$

For example, the function $f(x)$ as a limit of continuous functions

Measurable functions

In fact, lots of functions (even discontinuous ones) can be viewed as limits of continuous functions.

For example

$$
f(x)=\chi_{[0,1]}(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

is a discontinuous but measurable function

Note: ordinary notion of integral is difficult to use for functions as complicated as measurable functions.

To integrate measurable functions (Lebesgue integral):

Lebesgue integral

Theorem: Given a non-negative measurable function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there is always an increasing sequence $\left\{f_{n}(\vec{x})\right\}_{n=1}^{\infty}$ of continuous functions (i.e. with the property that $f_{n}(\vec{x}) \geq f_{n-1}(\vec{x})$ for all $\left.\vec{x}\right)$ which converges to $f(\vec{x})$.

Definition: If $f(\vec{x}) \geq 0$ is a positive measurable function, define

$$
\int_{\mathbb{R}^{p}} f(x) d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{p}} f_{n}(x) d x \quad \text { Limit of ordinary Riemann integrals }
$$

where $f_{n}(\vec{x})$ is any increasing sequence of continuous functions which converges to $f(\vec{x})$.

Integral of an arbitrary function

To find the integral of a negative measurable function $f(x)$, we just compute the integral of $-f(x)$ (which is positive), and put a minus sign in front of it.

Since every function $f(x)$ is the sum of a positive plus a negative function

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

the integral of $f(x)$ is defined as

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f_{1}(x) d x+\int_{-\infty}^{\infty} f_{2}(x) d x
$$

Example. $f(x)$ has positive and negative part

Then integral of $f(x)$ is integral of a positive plus a negative function:

All the properties of integrals we are used to also hold for this more general Lebesgue integral.

For example, we still have linear properties:

$$
\int_{-\infty}^{\infty} f(x)+g(x) d x=\int_{-\infty}^{\infty} f(x) d x+\int_{-\infty}^{\infty} g(x) d x
$$

$>$ Hilbert spaces of functions

Consider the space

$$
\begin{aligned}
H & =L^{2}[-\pi, \pi] \\
& =\left\{\text { measurable real functions } f(x) \text { on }[-\pi, \pi] \text { with } \int_{-\pi}^{\pi} f^{2}(x) d x<\infty\right\}
\end{aligned}
$$

Can show that H is complete (i.e., every Cauchy sequence converges to a function f in H).

Theorem: H is a Hilbert space
we always consider two measurable functions the same if they differ just at a finite number of points

same integral

$$
\int\left|f_{1}-f_{2}\right| d x=0
$$

Ref:

What is a tensor?
https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17117.pdf
https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17145.pdf

Tensor Methods and Emerging Applications to the Physical and Data Sciences Tutorials
https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-
emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule
https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17116.pdf

