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1. Multilinear algebra

2. Metric space/Hilbert Spaces
3. Wavelet transform

4. Application or differential equations
5. Algebraic graph theory
6. Topological vector space

7. Topological data analysis (homology)
8. Module-Vector space over ring

9. Quantum Mechanics/Quantum computing
10.Random Matrix Theory
11.Optimization-Linear Programming

12.Statistical and Machine learning
13.More real-world applications – e.g., 2d/3d images

14.… 

For future (Each topic is a advance graduate course): 



1. Multi-linear algebra

We have talked about several vector spaces: 

• Subspaces

• Intersection

• Sum and Direct Sum

• Quotient space

• Space of linear transformations

• Dual Space

Now, let us look at another two classes of vector spaces:

• Exterior product

• Tensor product



q Tensor product

Definition: The tensor product 𝑉⨂𝑊 is defined as quotient of 

Let	𝑉	𝑎𝑛𝑑	𝑊 be vector spaces over a field 𝐹(e. g. , ℝ)

Span �⃗�	⨂	𝑤	|�⃗� ∈ 𝑉	𝑎𝑛𝑑 𝑤 ∈ 𝑊

such that

1) �⃗� ⊗ 𝑤! + 𝑤" = �⃗� ⊗𝑤! + �⃗� ⊗𝑤"
2) �⃗�! + �⃗�" ⊗𝑤	 = �⃗�!⊗𝑤	 + �⃗�"⊗𝑤	
3) 𝑎 �⃗� 	⨂𝑤 = 𝑎�⃗� 	⨂𝑤 = �⃗� 	⨂𝑎𝑤

for all �⃗� ∈ 𝑉 , 𝑤 ∈ 𝑊	and 𝑎 ∈ ℝ



Theorem:  A basis for 𝑉⨂𝑊	is given by 

Let 𝒜 = �⃗�!, �⃗�", … , �⃗�$  be a basis of 𝑉.

�⃗�% ⊗ 𝑏& 	 |	1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

Proposition: 

dim 𝑉 ⊗𝑊 = 𝑚𝑛

Basis and dimension:

Let ℬ = 𝑏!, 𝑏", … , 𝑏'  be a basis of 𝑊.



Example ℝ$⊗ℝ' 	≅ ℝ$×'

For any �⃗� =
𝑣!
⋮
𝑣$

∈ ℝ$	𝑎𝑛𝑑 𝑤 =
𝑤!
⋮
𝑤'

∈ ℝ', define the isomorphism map 

�⃗� ⊗ 𝑤 	⟶
𝑣!𝑤! ⋯ 𝑣!𝑤'
⋮ ⋱ ⋮

𝑣$𝑤! ⋯ 𝑣$𝑤'
∈ ℝ$×'

ℝ$⊗ℝ' ⟶ℝ$×'



q Exterior product

Let	𝑉	 be a vector space over a field 𝐹(e. g. , ℝ)

Definition: The 2ed wedge product (exterior power) ⋀ "𝑉 ≔ 𝑉⋀𝑉  is a 
vector space as quotient of   

Span �⃗� ∧ 𝑤	|�⃗�, 𝑤 ∈ 𝑉
such that

1) �⃗� ∧ �⃗� = 0	
2) �⃗� ∧ 𝑤 = 𝑤 ∧ �⃗�	

3) 𝑎�⃗� + 𝑏𝑤 ∧ 𝑢 = 𝑎�⃗� ∧ 𝑢 + 𝑏𝑤 ∧ 𝑢

for all �⃗� ∈ 𝑉 and 𝑎, 𝑏 ∈ ℝ



Theorem:  A basis for ⋀ "𝑉 is given by 

Let ℬ = 𝑏!, 𝑏", … , 𝑏'  be a basis of 𝑉.

𝑏% ∧ 𝑏& 	|	 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

Proposition: 

dim ⋀"𝑉 =
𝑛
2

Basis and dimension:



q Direct product vector spaces:  

Definition: Let	𝑉	𝑎𝑛𝑑	𝑊 be vector spaces over a field 𝐹 e. g. , ℝ .	The direct 
product 𝑉×𝑊	is the Cartesian product as set and satisfying linear properties:  

For any two sets 𝑉	𝑎𝑛𝑑	𝑊, the Cartesian product is defined by ordered pairs 

𝑉×𝑊 ≔ 𝑣,𝑤 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊}

𝑣!, 𝑤! + 𝑣", 𝑤" = (𝑣! + 𝑣", 𝑤! + 𝑤")

and 
𝑘 𝑣, 𝑤 = (𝑘𝑣, 𝑘𝑤)

Remark: 
• If 𝑉	𝑎𝑛𝑑	𝑊 are subspaces of some vector space 𝑈, then direct product is the 

same (isomorphic) as our direct sum.
• Definition of direct product works on infinite many vector spaces ∏𝑉%, which 

contains all infinite tuples. 
• Generalization of direct sum to infinite many vector spaces ∐𝑉% 	 ,which contains 

all finite tuples. 



q 𝒌-linear map

Let 𝑉) be the direct product power with all 𝑘-tuples.

Definition: A function 𝑇: 𝑉) → 𝑊 is 𝒌-linear if it is linear in the 𝑖-th 
variable for each 𝑖, that is, 

Let	𝑉	𝑎𝑛𝑑	𝑊 be vector spaces.

when we fix vectors �⃗�!, … , �⃗�%*!	, �⃗�%+!	, … , �⃗�) , the map 𝑇%: 𝑉 → 𝑊  

𝑇% �⃗� = 𝑇(�⃗�!, … , �⃗�%*!	, �⃗�, �⃗�%+!	, … , �⃗�))

is linear. 

For example, a multilinear map of one variable (𝑘 = 1) is a linear map, and 
of two variables (𝑘 = 2) is a bilinear map.



Examples: 

1. Any inner product 	, : ℝ×ℝ	 → ℝ on a vector space is a multilinear map.

2. Determinant function 𝑑𝑒𝑡: ℝ'×' → ℝ is a (alternating) multilinear 
function of the columns (or rows) of a square matrix.

A map 𝑓: 𝑉) → 𝑊 is called alternating if

𝑓 �⃗�!, … , �⃗�) = 0 when ever �⃗�% = �⃗�&  for some 𝑖 ≠ 𝑗.



The universal definition (without basis or element) of tensor by universal properties: 

𝑉×𝑊 𝑉⨂𝑊	

𝑍

Universal properties of tensor product

ℎ

𝜙

The tensor product of two vector spaces 𝑉	𝑎𝑛𝑑	𝑊 is a vector space, denoted by 
𝑉⨂𝑊 ,  together with a bilinear map 𝜙 �⃗�, 𝑤 = �⃗� ⊗ 𝑤  such that 

For every bilinear map ℎ, there exists a unique linear map fℎ that makes the 
diagram commutative, i.e., fℎ ∘ 𝜙 = ℎ 

fℎ



There is a natural one-to-one correspondence between multilinear maps

ℎ: 	𝑉×𝑊 → 𝑍  and fℎ: 𝑉⨂𝑊 → 𝑍	

ℎ �⃗�, 𝑤 = fℎ �⃗� ⊗ 𝑤

by formula



The universal definition (without basis or element) of tensor by universal properties: 

𝑉×𝑊 𝑉 ∧𝑊

𝑍

Universal properties of exterior product

ℎ

𝜓

The tensor product of two vector spaces 𝑉	𝑎𝑛𝑑	𝑊 is a vector space, denoted by 
𝑉 ∧𝑊,  together with a alternating bilinear map 𝜓 �⃗�, 𝑤 = �⃗� ∧ 𝑤  such that 

For every alternating bilinear map ℎ, there exists a unique linear map fℎ that 
makes the diagram commutative, i.e., fℎ ∘ 𝜓 = ℎ.

fℎ



Multilinear algebra is a foundational mathematical tool 

in engineering, machine learning, physics, and mathematics.

Application: 

https://en.wikipedia.org/wiki/Multilinear_algebra 

https://en.wikipedia.org/wiki/Multilinear_algebra


Set

Topological Space

Ø Spaces



Definition (Metric). Let 𝑆 be a set. A metric(distance) on 𝑆 is a binary
function

𝑑: 𝑆×𝑆	 ⟶ ℝ
such that for vectors 𝑢, �⃗�, 𝑤 ∈ 𝑆 and a scalar 𝑐 ∈ ℝ, the following hold:

(1.)  𝑑(𝑢, �⃗�) = 𝑑(�⃗�, 𝑢)
(2.)  𝑑 𝑢, �⃗� = 0 if and only if 𝑢 = �⃗�
(3.)  𝑑 𝑢, 𝑤 ≤ 𝑑 𝑢, �⃗� + 𝑑(�⃗�, 𝑤)

We call 𝑆 a metric space with metric function 𝑑.

Examples: 

1. The discrete metric on 𝑺, where 𝑑(𝑥, 𝑦) = 0  if   𝑥 = 𝑦  and   
𝑑(𝑥, 𝑦) = 1 otherwise.
2. The positive real numbers with distance function 𝑑 𝑥, 𝑦 = | log(𝑦/𝑥)	| 
is a metric space. 
3. If 𝑆 is a vector space, metric is equivalent to norm.

2. Metric Space and Hilbert Spaces

This is short introduction in real/functional analysis. 



Definition: The sequence 𝑥' ',!
-  is called Cauchy sequence, if for 

every 𝜖 ∈ ℝ, there is a positive integer 𝑁 such that 𝑑(𝑥$, 𝑥') < 𝜖 all 
natural numbers 𝑚, 𝑛 > 𝑁.  

q Cauchy sequence

Let 𝑥!, 𝑥", … , 𝑥', … be a sequence of elements in a metric space 𝑆.  

Informally, the Cauchy sequence 𝑥' are getting closer and closer.

https://en.wikipedia.org/wiki/Cauchy_sequence 

https://en.wikipedia.org/wiki/Cauchy_sequence


Examples: 

1. Real numbers	ℝ is complete under the metric induced by the usual absolute value. 

2. Rational numbers ℚ is not complete. (e.g., 𝑎' = 1 + !
'

'
 converge to 𝑒). 

3. Open interval (0,1) is not complete. (e.g., 𝑎' =
!
'
	converge to	0). 

Definition: The metric space 𝑆 is called complete if the limit of every 
Cauchy sequences {𝑥'} is in the space 𝑆,	i.e., lim

'→-
𝑥' = 𝑥 ∈ 𝑆. 

Any convergent sequence is a Cauchy sequence, but a Cauchy 
sequence is not necessarily convergent to an element in 𝑆. 

q Complete metric space



Definition (Norm). Let 𝑉 be a real vector space. A norm on 𝑉 is a function
− : 	𝑉	 ⟶ ℝ

such that for vectors 𝑢, �⃗� ∈ 𝑉 and a scalar 𝑐 ∈ ℝ, the following hold:
(1.) 𝑢 ≥ 0 
(2.) 𝑢 = 0 if and only if 𝑢 = 0
(3.)  𝑐𝑢 = 𝑐 𝑢  
(4.) The triangle inequality 𝑢 + �⃗� ≤ 𝑢 + �⃗�

We call 𝑉 an normed space with norm − .

Example: 𝑙/-norm on ℝ' 

q Normed Space

Definition: A complete normed vector space is called Banach space.



q Inner product Space

Let 𝑉 be a real vector space (finite or infinite dimensional).  

Definition (Inner Product). An inner product on 𝑉 is a binary function
−,− : 𝑉×𝑉	 ⟶ ℝ

such that for vectors 𝑢, �⃗�, 𝑤 ∈ 𝑉 and a scalar 𝑐 ∈ ℝ, the following hold:
(1.)  𝑢, �⃗� = �⃗�, 𝑢
(2.)  𝑢 + �⃗�, 𝑤 = 𝑢,𝑤 + �⃗�, 𝑤
(3.)  𝑐𝑢, �⃗� = 𝑐 �⃗�, 𝑢
(4.)  𝑢, 𝑢 ≥ 0
(5.)  𝑢, 𝑢 = 0 if and only if 𝑢 = 0

We call 𝑉 an inner product space with inner product −,− .

2. {Random Variables 𝑋	|	𝐸 𝑋" < ∞} with inner product 𝑋, 𝑌 ≔ 𝐸(𝑋𝑌)

More examples: 

1. ℝ'×' with inner product 𝐴, 𝐵 ≔ 𝑡𝑟(𝐴𝐵0)  



Theorem: An normed induced by an inner product if and only if 

𝑢 + �⃗� " + 𝑢 − �⃗� " = 2 𝑢 " + 2 �⃗� "



q Hilbert Space

Definition: A complete inner product space is called Hilbert space.

Examples: 

1. Euclidean inner product space ℝ' (with dot product) is a Hilbert space.

2. Sequence space (ℝ- or ℂ-) 

all	in�inite	sequences	𝑧 = 𝑧!, … , 𝑧', … 	 �
',!

-

𝑧' " < ∞}

The inner product is defined by 

𝑧, 𝑤 := �
',!

-

𝑧'𝑤'

Q: Orthonormal basis? 



Theorem (Orthogonal Projection Theorem)

Let ℋ be a Hilbert space, ℳ be a closed linear subspace of ℋ, and �⃗� ∈ ℋ.

�⃗�

ℳ

There exist an unique point 𝑃𝑟𝑜𝑗ℳ�⃗� ∈ ℳ such that

𝑃𝑟𝑜𝑗ℳ�⃗�

1. �⃗� − 𝑃𝑟𝑜𝑗ℳ�⃗� ≤ 𝑤 − �⃗�  for any 𝑤 ∈ ℳ

2. �⃗� − 𝑃𝑟𝑜𝑗ℳ�⃗�, 𝑤 = 0 for any 𝑤 ∈ ℳ 

�⃗� − 𝑃𝑟𝑜𝑗ℳ�⃗�

q Orthogonal projection and least squares



Notation: in infinite dimensions, we don’t use the arrow notation. 

Definitions of span, linear independence, basis same as finite dimension linear 
algebra except we now allow infinite sums.

Infinite dimension remarks

Infinite linear combinations:

�
%,!

-

𝑐%𝑣% = 𝑢 iff lim
'→-

�
%,!

-

𝑐%𝑣% − 𝑢 = 0

Many properties from linear algebra are true for infinite dimension Hilbert 
Space. Details can be found in a real/functional analysis textbook. 

Theorem: If a collection of vectors {𝑣!, 𝑣", … } is orthonormal then it is 
automatically linearly independent.



Consider the vectors 𝑣$ defined by the partial sums of the Taylor series 
of 𝑒2

Functional space 𝑃 ={all polynomials on [0,1]} with inner product  

𝑓, 𝑔 ≔ �
3

!
𝑓 𝑡 𝑔 𝑡 	𝑑𝑡

is  not a Hilbert space. 

q Incomplete Inner product space example.

𝑣$ = �
),3

$
𝑥)

𝑘!

Proof: 



Claim 1. 𝑣!, 𝑣", …  is a Cauchy sequence.

𝑣' − 𝑣$ = �
),$+!

'
𝑥)

𝑘! ≤ �
),$+!

'
𝑥)

𝑘!

𝑥)

𝑘! =
1
𝑘! 𝑥

) =
1
𝑘! �

3

!
𝑥") 	𝑑𝑥

!/"

=
1
𝑘!

1
2𝑘 + 1

!/"

Since

So, �
),!

-
𝑥)

𝑘! < ∞

So, 𝑣' − 𝑣$ → 0	𝑤ℎ𝑒𝑛	𝑛,𝑚 → ∞



Claim 3. A sequence of functions can't converge to two different functions.

Claim 2. 

By Taylor series, 𝑣$ → 𝑒2 when 𝑚 → ∞ uniformly on [0,1] 

So 𝑣$ will not converge to a polynomial.   

So 𝑣$ will not converge to a element in 𝑃.   

So, 𝑃	is not complete. 

Remark: The set 𝑃" = {𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠	𝑜𝑓	𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 2	𝑜𝑛	[0,1]} is a Hilbert space.



Ø Measurable functions and Lebesgue integrals

Let 𝐶 be the set of continuous functions on ℝ. Let 𝑀 be the set of measurable 
functions:

Definition: The set  𝑀  of measurable functions on ℝ (or an interval of ℝ) is 
the set of functions that are limits of continuous functions, i.e.

𝑀 = 𝑓 𝑥 |	𝑓 𝑥 = lim
'→-

𝑓'(𝑥) ,

where 𝑓' 𝑥 	is continuous for all x ∈ ℝ 

For example, the function 𝑓 𝑥  as a limit of continuous functions



In fact, lots of functions (even discontinuous ones) can be viewed as 
limits of continuous functions.

For example

Measurable functions

is a discontinuous but measurable function

Note: ordinary notion of integral is difficult to use for functions as 
complicated as measurable functions.

To integrate measurable functions (Lebesgue integral):



Lebesgue integral

Theorem: Given a non-negative measurable function	𝑓: ℝ/ → ℝ, there is 
always an increasing sequence  𝑓' �⃗� ',!

-  of continuous functions (i.e. with 
the property that 𝑓' �⃗� ≥ 𝑓'*! �⃗� for all �⃗�) which converges to  𝑓(�⃗�).

Definition: If 𝑓 �⃗� ≥ 0 is a positive measurable function, define

where 𝑓' �⃗�  is any increasing sequence of continuous functions which 
converges to 𝑓(�⃗�).

Limit of ordinary Riemann integrals



To find the integral of a negative measurable function 𝑓(𝑥), we just compute the 
integral of −𝑓(𝑥) (which is positive), and put a minus sign in front of it. 

Since every function 𝑓(𝑥) is the sum of a positive plus a negative function

𝑓 𝑥 = 𝑓! 𝑥 + 𝑓"(𝑥)

the integral of 𝑓(𝑥) is defined as

�
*-

-
𝑓 𝑥 𝑑𝑥 = �

*-

-
𝑓! 𝑥 𝑑𝑥 + �

*-

-
𝑓" 𝑥 𝑑𝑥

Integral of an arbitrary function



Example. 𝑓(𝑥) has positive and negative part

Then integral of 𝑓(𝑥)  is integral of a positive plus a negative function:



All the properties of integrals we are used to also hold for this more general 
Lebesgue integral. 

For example, we still have linear properties: 

�
*-

-
𝑓 𝑥 + 𝑔(𝑥)𝑑𝑥 = �

*-

-
𝑓 𝑥 𝑑𝑥 + �

*-

-
𝑔 𝑥 𝑑𝑥



Consider the space

Ø Hilbert spaces of functions

𝐻 = 𝐿" −𝜋, 𝜋

= measurable real funcbons	𝑓 𝑥 𝑜𝑛 −𝜋, 𝜋 	with�
*5

5
𝑓	 " 𝑥 𝑑𝑥 < ∞

Theorem: H	is a Hilbert space

we always consider two measurable functions the same if they differ 
just at a finite number of points

Can show that 𝐻 is complete (i.e., every Cauchy sequence   converges to a 
function 𝑓 in 𝐻).



same integral



Ref: 

What is a tensor?
https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17117.pdf
https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17145.pdf  

Tensor Methods and Emerging Applications to the Physical and Data Sciences 
Tutorials
https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-
emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule 

https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17116.pdf 

https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17117.pdf
https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17145.pdf
https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule
https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule
https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17116.pdf

