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For future (Each topic is a advance graduate course):

—h

. Multilinear algebra

Metric space/Hilbert Spaces

Wavelet transform

Application or differential equations
Algebraic graph theory

Topological vector space

Topological data analysis (homology)

Module-Vector space over ring

© o N o 0o & 0D

Quantum Mechanics/Quantum computing
10.Random Matrix Theory

11. Optimization-Linear Programming

12. Statistical and Machine learning

13. More real-world applications — e.g., 2d/3d images
14. ...



1. Multi-linear algebra

We have talked about several vector spaces:

e Subspaces

* Intersection

* Sum and Direct Sum

* Quotient space

e Space of linear transformations

e Dual Space

Now, let us look at another two classes of vector spaces:

e Exterior product

* Tensor product



1 Tensor product

Let V and W be vector spaces over a field F(e. g., R)

Definition: The tensor product I/ @ W is defined as quotient of

Span{v Qw |V € Vand w € W}

such that
1) 1_7>®(V_V)1‘|‘V_V)2):7}>®_)1‘|‘77®W2
3)alv QW) =av QwW =70 Q aw

forallv eV ,weWanda € R



Basis and dimension:

Let A = {d,, d,, ..., d,, } be a basis of V.

Let B = {Bl, 1_52, ...,En} be a basis of WV.

Theorem: A basis for V@ W is given by

(3@ b |1<i<m1<j<n]

Proposition:

dim(V Q W) = mn



Example R™ Q@ R* = R™X"

%1

Forany ¥ = [ 5
vm

W1
ER™andw = | :
WTl

€ R", define the isomorphism map

IRm ® Rn N Ran

v1W1 U1Wn

13®v7—>[ e RM*n

vm Wl e vm Wn



O Exterior product

Let V be a vector space over a field F(e.g., R)

Definition: The 2ed wedge product (exterior power) A 2V := VAV isa
vector space as quotient of

Span{v AW |U,w € V}

such that
1) BAB=0
2) BAW=WAD
3) (ab+bW) AL =ab Al +bWAL

forall € Vanda,b € R



Basis and dimension:
Let B = {I;l, 52, ) En} be a basis of V.

Theorem: A basis for A ?V is given by

Proposition:

dim(A%V) = (;)



] Direct product vector spaces:

For any two sets V and W, the Cartesian product is defined by ordered pairs

VXW = {(v,w)|lveV,weW}

Definition: Let IV and W be vector spaces over a field F(e.g., R). The direct
product VXW is the Cartesian product as set and satisfying linear properties:

(v, wy) + (v, wy) = (V1 + v, Wy + W)

and
k(v,w) = (kv, kw)

Remark:

 IfV and W are subspaces of some vector space U, then direct product is the
same (isomorphic) as our direct sum.

 Definition of direct product works on infinite many vector spaces [] V;, which
contains all infinite tuples.

* Generalization of direct sum to infinite many vector spaces [ [ V; ,which contains

all finite tuples.



O k-linear map

Let V and W be vector spaces.

Let V¥ be the direct product power with all k-tuples.

Definition: A function T: V¥ - W is k-linear if it is linear in the i-th
variable for each i, that is,

when we fix vectors vy, ..., V;_1 , Vjp1, ., Vg, the map T;:V - W

Tl(’!_}) == T(ﬁl, e ) ﬁi—l ) 1_7), 6i+1 ) wrey 13]()

is linear.

For example, a multilinear map of one variable (k = 1) is a linear map, and
of two variables (k = 2) is a bilinear map.



Examples:

1. Anyinner product (,): RXR — R on a vector space is a multilinear map.

2. Determinant function det: R™*"™ — R is a (alternating) multilinear

function of the columns (or rows) of a square matrix.

A map f: V¥ — W is called alternating if

U1, ...,Ur) = 0 when ever v; = ¥; for some i # j.
1 k l J



Universal properties of tensor product

The universal definition (without basis or element) of tensor by universal properties:

¢
Vxw VW

The tensor product of two vector spaces V and W is a vector space, denoted by
V@ W, together with a bilinear map ¢(vV,w) = ¥ @ w such that

For every bilinear map h, there exists a unique linear map h that makes the
diagram commutative, i.e., ho¢p =h



There is a natural one-to-one correspondence between multilinear maps
h: VXW - Z and :V@QW — Z

by formula

h(B,W) = h(¥ @ W)



Universal properties of exterior product

The universal definition (without basis or element) of tensor by universal properties:

¥
Vxw - VAW

The tensor product of two vector spaces IV and W is a vector space, denoted by
V AW, together with a alternating bilinear map ¥ (v, w) = ¥ AW such that

For every alternating bilinear map h, there exists a unique linear map h that
makes the diagram commutative, i.e., hoy = h.



Application:

Multilinear algebra is a foundational mathematical tool

in engineering, machine learning, physics, and mathematics.

https://en.wikipedia.org/wiki/Multilinear algebra
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2. Metric Space and Hilbert Spaces

This is short introduction in real/functional analysis.

Definition (Metric). Let S be a set. A metric(distance) on S is a binary

function
d:Sx§5 — R

such that for vectors U, U, w € S and a scalar ¢ € R, the following hold:
(1.) d(u,v) = d(v,U)
(2.) d(u,v) = 0ifand only ifu = v
3. d(@,w) < d(@, D) + d(B, W)

We call S a metric space with metric function d.

Examples:

1. The discrete metricon S, where d(x,y) =0 if x =y and
d(x,y) = 1 otherwise.
2. The positive real numbers with distance function d(x,y) = |log(y/x) |

is a metric space.
3. If S is a vector space, metric is equivalent to norm.



0 Cauchy sequence

Let xq, x5, ..., X, ... D€ @ SEQUENCE Of elements in a metric space S.

Definition: The sequence {x, };-; is called Cauchy sequence, if for
every € € R, there is a positive integer N such that d(x,,, x,,) < € all

natural numbers m,n > N.
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Informally, the Cauchy sequence x,, are getting closer and closer.

https://en.wikipedia.org/wiki/Cauchy sequence



https://en.wikipedia.org/wiki/Cauchy_sequence

1 Complete metric space

Any convergent sequence is a Cauchy sequence, but a Cauchy
sequence is not necessarily convergent to an elementin S.

Definition: The metric space S is called complete if the limit of every

Cauchy sequences {x,} is in the space S, i.e., lim x,, = x € S.
n—->00

Examples:

1. Real numbers R is complete under the metric induced by the usual absolute value.
1 n
2. Rational numbers Q is not complete. (e.g., a,, = (1 + ;) converge to e).

3. Open interval (0,1) is not complete. (e.g., a,, = :—lconverge to 0).



(d Normed Space

Definition (Norm). Let V be a real vector space. A norm on V is a function
I=ll: v — R
such that for vectors 1, v € V and a scalar ¢ € R, the following hold:
(1) Il = 0 )
2.) |IE|l = 0 if and only if % = O
(3.) llcill = c [[ul|
(4.) The triangle inequality ||u + ?|| < |[ull + ||7]|
We call V an normed space with norm ||—||.

Example: [,-norm on R"

Definition: A complete normed vector space is called Banach space.



O Inner product Space

Let IV be a real vector space (finite or infinite dimensional).

Definition (Inner Product). An inner product on V is a binary function
(—, =) VxV — R
such that for vectors 1, U, w € V and a scalar ¢ € R, the following hold:
(1) (4, v) = (v, u)
2) (u+v, w)={Uw)+ (V,w)
(3.) {cu, V) = (v, u)
4.) (L,u)=0
(5.) (4,u) = 0ifand onlyif % = 0

We call V an inner product space with inner product (—, —).

More examples:
1. R™ ™ with inner product (4, B) := tr(AB")

2. {Random Variables X | E(X?) < oo} with inner product (X,Y) := E(XY)



Theorem: An normed induced by an inner product if and only if

12+ B1° + [lu — B11* = 2[|@ll* + 2|91




O Hilbert Space

Definition: A complete inner product space is called Hilbert space.

Examples:

1. Euclidean inner product space R™ (with dot product) is a Hilbert space.

2. Sequence space (R* or C®)

00
{all infinite sequences z = (z4, ..., Z,,, ... ) | Z |2, | < oo}
n=1

The inner product is defined by

(0.0)

(zwh= ) 2,0,

n=1

Q: Orthonormal basis?



O Orthogonal projection and least squares

Theorem (Orthogonal Projection Theorem)

Let H be a Hilbert space, M be a closed linear subspace of /', and y € H.

There exist an unique point Proj,y € M such that
1. ||y — Projyll < |[W — y|| foranyw € M

2. (y — Projyy,w) = 0foranyw € M




Infinite dimension remarks

Notation: in infinite dimensions, we don’t use the arrow notation.

Definitions of span, linear independence, basis same as finite dimension linear
algebra except we now allow infinite sums.

Infinite linear combinations:

Z Gvi =1u iff lim
n—>0o

i=1

(0.0)

Zcivi —Uu

=1

=0

Many properties from linear algebra are true for infinite dimension Hilbert
Space. Details can be found in a real/functional analysis textbook.

Theorem: If a collection of vectors {v4, v,, ... } is orthonormal then it is
automatically linearly independent.



U Incomplete Inner product space example.

Functional space P ={all polynomials on [0,1]} with inner product

1
(f,g) = jo F(Dg(®) dt

is not a Hilbert space.

Proof:

Consider the vectors v, defined by the partial sums of the Taylor series

of e*
m
Zx_
_k



Claim 1. {v,, v,, ... } is a Cauchy sequence.

= xk u xk
o —vmll = || > < D |
k=m+1 k=m+1
Since
Xk 1 1/ 1 1/2 1 \1/2
= ek = 2k _
al| = k'(fx dx) k!(2k+1)
o k
X
So, 2 F <
k=1

So, ||lv, — vl @ 0 whenn,m — oo



Claim 2.

By Taylor series, v,,, = e* when m — oo uniformly on [0,1]

Claim 3. A sequence of functions can't converge to two different functions.

So v,,, will not converge to a polynomial.

So v,,, will not converge to a elementin P.

So, P is not complete.

Remark: The set P, = {polynomials of degree < 2 on [0,1]} is a Hilbert space.



» Measurable functions and Lebesgue integrals

Let C be the set of continuous functions on R. Let M be the set of measurable
functions:

Definition: The set M of measurable functions on R (or an interval of R) is
the set of functions that are limits of continuous functions, i.e.

M = {f £C) = lim £, (0},

where f,,(x) is continuous for allx € R

For example, the function f(x) as a limit of continuous functions




Measurable functions

In fact, lots of functions (even discontinuous ones) can be viewed as
limits of continuous functions.

For example

1 ifxe]0,1]
0 otherwise

f(z) = XJ0,1] (z) =

is a discontinuous but measurable function

Note: ordinary notion of integral is difficult to use for functions as
complicated as measurable functions.

To integrate measurable functions (Lebesgue integral):



Lebesgue integral

Theorem: Given a non-negative measurable function f: RP — R, there is
always an increasing sequence {f, (¥)}n-, of continuous functions (i.e. with
the property that £, (X) = f,,_; (xX)for all X) which converges to f(xX).

Definition: If f(X) = 0 is a positive measurable function, define

(x)dr = lim fn(x)dxz  Limit of ordinary Riemann integrals
RP n—x JRe

where f,,(X) is any increasing sequence of continuous functions which
converges to f(X). y




Integral of an arbitrary function

To find the integral of a negative measurable function f(x), we just compute the
integral of —f (x) (which is positive), and put a minus sign in front of it.

Since every function f(x) is the sum of a positive plus a negative function

f(x) = fi(x) + fo(x)

the integral of f(x) is defined as

j_o:of(x)dx = f:fl(x)dx + J_O:ofz(x)dx



Example. f(x) has positive and negative part

/

N

N

Then integral of f(x) is integral of a positive plus a negative function:

e AN

1\

\_—




All the properties of integrals we are used to also hold for this more general
Lebesgue integral.

For example, we still have linear properties:

J_O:of(x) + g(x)dx = J_O:of(x)dx + Jo:og(x)dx



» Hilbert spaces of functions

Consider the space
H = L?[-m, ]

T
= {measurable real functions f(x)on|[—m, 7] Withf f2(x)dx < 00}
-

Can show that H is complete (i.e., every Cauchy sequence converges to a
function f in H).

Theorem: H is a Hilbert space

we always consider two measurable functions the same if they differ
just at a finite number of points



same integral

f|f1—f2|d5’320



Ref:

What is a tensor?

https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17117.pdf
https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17145.pdf

Tensor Methods and Emerging Applications to the Physical and Data Sciences
Tutorials

https://www.ipam.ucla.edu/programs/workshops/tensor-methods-and-
emerging-applications-to-the-physical-and-data-sciences-tutorials/?tab=schedule

https://helper.ipam.ucla.edu/publications/tmtut/tmtut 17116.pdf
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https://helper.ipam.ucla.edu/publications/tmtut/tmtut_17116.pdf

