MATH 5110 - Applied Linear Algebra and Matrix Analysis

More Metric Spaces

--Distances between objects of different dimensions

Instructor: He Wang
Department of Mathematics
Northeastern University

Motivation:

k objects: genes, tweets, images, etc.
n features: expression levels, term frequencies, frames, etc
j-th object described by feature vector $\vec{a}_{1} \in \mathbb{R}^{n}$
Data set is described as $A=\left[\vec{a}_{1} \ldots \vec{a}_{k}\right] \in \mathbb{R}^{n \times k}$ (transposed from machine learning)

Often what is important is subspace defined by A, e.g., im A or principal subspaces of A defined by eigenvectors of covariance matrix.

Problem:

Suppose $\vec{a}_{1} \ldots \vec{a}_{k} \in \mathbb{R}^{n}$ and $\vec{b}_{1} \ldots \vec{b}_{k} \in \mathbb{R}^{n}$ two collections of k linearly independent vectors.

We want measure of separation of subspace $\operatorname{span}\left(\vec{a}_{1} \ldots \vec{a}_{k}\right)$ and $\operatorname{span}\left(\vec{b}_{1} \ldots \vec{b}_{k}\right)$

Solution: distances or angles between subspaces of the same dimension. (equivalent)

Question: What is the distance between two linear subspaces?

Example: Dimension 1 Subspaces in \mathbb{R}^{2}.

We can take the angle.

Higher-dimensional

> Grassmann manifold

As a set, the Grassmannian is defined as the set of all k-dimensional subspaces of \mathbb{R}^{n},

$$
\operatorname{Gr}(k, n):=\left\{k-\operatorname{dim} \text { subspaces of } \mathbb{R}^{n}\right\}
$$

Suppose $\vec{a}_{1} \ldots \vec{a}_{k} \in \mathbb{R}^{n}$ and $\vec{b}_{1} \ldots \vec{b}_{k} \in \mathbb{R}^{n}$ two collections of k linearly independent vectors.

Write subspace $\mathrm{U}=\operatorname{span}\left(\vec{a}_{1} \ldots \vec{a}_{k}\right)$ and $W=\operatorname{span}\left(\vec{b}_{1} \ldots \vec{b}_{k}\right)$. Both V and W are points of the Grassmannian.

Grassmann manifold

Stiefel manifold:

$$
V(k, n):=\{n \times k \text { orthonormal matrices }\} \subset \mathbb{R}^{n \times k}
$$

The set of $\mathrm{k} \times k$ orthogonal matrices (i.e., $A A^{T}=A^{T} A=I$) general orthogonal group and is usually denoted by $O(k)$.

Grassmann manifold is the quotient

$$
\operatorname{Gr}(k, n)=V(k, n) / O(k) .
$$

The natural right action of $O(k)$ on $V(k, n)$ is by rotates a k-frame in the space it spans.

Rich geometry on $\operatorname{Gr}(k, n)$: smooth Riemannian manifold, algebraic variety, homogeneous space, geodesic orbit space
> Principal vectors and angles
Recall angle θ between two unit vectors \vec{u} and \vec{v} is defined by

$$
\cos \theta=\frac{\vec{u}^{T} \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\vec{u}^{T} \vec{v}
$$

Standard way to measure deviation between two subspaces U and W is using Principal vectors.

$$
\mathrm{U}=\operatorname{span}\left(\vec{u}_{1} \ldots \vec{u}_{k}\right) \text { and } W=\operatorname{span}\left(\vec{w}_{1} \ldots \vec{w}_{k}\right)
$$

Principal angles between subspaces

Define principal vectors $\left(\vec{a}_{j}^{*}, \vec{b}_{j}^{*}\right)$ recursively as the solutions to the optimization problem:

Maximize: $\vec{a}^{T} \vec{b} \quad$ (minimize angle between \vec{a} and \vec{b})
subject to

$$
\begin{align*}
& \text { Unit vectors } \vec{a} \in U \text { and } \vec{b} \in W \\
& \vec{a}^{\mathrm{T}} \vec{a}_{1}=\vec{a}^{\mathrm{T}} \vec{a}_{2}=\cdots=\vec{a}^{\mathrm{T}} \vec{a}_{j-1}=0 \tag{orthogonal}\\
& \vec{a}^{\mathrm{T}} \vec{a}_{1}=\vec{a}^{\mathrm{T}} \vec{a}_{2}=\cdots=\vec{a}^{\mathrm{T}} \vec{a}_{j-1}=0
\end{align*}
$$

Principle angles θ_{j} defined by

$$
\cos \theta_{j}:=\vec{a}_{j}^{* T} \vec{b}_{j}^{*} \quad \text { for } j=1,2, \ldots, k
$$

Property: $\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{k}$

More generally, principle angles θ_{j} can be computed using QR and SVD

Åke Björck and Gene H. Golub https://www.jstor.org/stable/2005662

Grassmann distance

The Grassmann distance between the linear subspaces U and W is given by:

$$
\operatorname{dist}(U, W):=\left[\sum_{i=1}^{k} \theta_{i}^{2}\right]^{1 / 2}
$$

This defines the geodesic distance on the Grassmann manifold:
It is intrinsic, i.e., does not depend on any embedding

Recall the definition of metric

Definition (Metric). Let S be a set. A metric(distance) on S is a binary function

$$
d: S \times S \rightarrow \mathbb{R}
$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in S$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $d(\vec{u}, \vec{v})=d(\vec{v}, \vec{u})$
(2.) $d(\vec{u}, \vec{v})=0$ if and only if $\vec{u}=\vec{v}$
(3.) $d(\vec{u}, \vec{w}) \leq d(\vec{u}, \vec{v})+d(\vec{v}, \vec{w})$

We call S a metric space metric function d.

Grassmann distance
Asimov distance
Binet-Cauchy distance $d_{\operatorname{Gr}(k, n)}^{\beta}(\mathbb{A}, \mathbb{B})=\left(1-\prod_{i=1}^{k} \cos ^{2} \theta_{i}\right)^{1 / 2}$
Chordal distance
Fubini-Study distance
Martin distance
Procrustes distance
Projection distance
Spectral distance

$$
\begin{aligned}
& d_{\mathrm{Gr}(k, n)}(\mathbb{A}, \mathbb{B})=\left(\sum_{i=1}^{k} \theta_{i}^{2}\right)^{1 / 2} \\
& d_{\mathrm{Gr}(k, n)}^{\alpha}(\mathbb{A}, \mathbb{B})=\theta_{k}
\end{aligned}
$$

$$
d_{\mathrm{Gr}(k, n)}^{\beta}(\mathbb{A}, \mathbb{B})=\left(1-\prod_{i=1}^{k} \cos ^{2} \theta_{i}\right)^{1 / 2}
$$

$$
d_{\mathrm{Gr}(k, n)}^{\kappa}(\mathbb{A}, \mathbb{B})=\left(\sum_{i=1}^{k} \sin ^{2} \theta_{i}\right)^{1 / 2^{\prime}}
$$

$$
d_{\mathrm{Gr}(k, n)}^{\phi}(\mathbb{A}, \mathbb{B})=\cos ^{-1}\left(\prod_{i=1}^{k} \cos \theta_{i}\right)
$$

$$
d_{G r(k, n)}^{\mu}(\mathbb{A}, \mathbb{B})=\left(\log \prod_{i=1}^{k} 1 / \cos ^{2} \theta_{i}\right)^{1 / 2}
$$

$$
d_{G r(k, n)}^{\rho}(\mathbb{A}, \mathbb{B})=2\left(\sum_{i=1}^{k} \sin ^{2}\left(\theta_{i} / 2\right)\right)^{1 / 2}
$$

$$
d_{G r(k, n)}^{\pi}(\mathbb{A}, \mathbb{B})=\sin \theta_{k}
$$

$$
d_{\mathrm{Gr}(k, n)}^{\sigma}(\mathbb{A}, \mathbb{B})=2 \sin \left(\theta_{k} / 2\right)
$$

Computing principal angles

- Take orthonormal bases for subspaces and store them as columns of matrices $A, B \in \mathbb{R}^{n \times k}$ (e.g., $Q R$)
- Then, compute the singular value decomposition (SVD):

$$
A^{T} B=U \Sigma V^{T}
$$

Note that singular values $0 \leq \sigma_{j} \leq 1$ by orthonormality of columns of A and B

- The principal angles then satisfy
- $\cos \theta_{j}=\sigma_{j}$
- Principal vectors given by the columns

$$
A U=\left[p_{1} \ldots p_{k}\right] \quad B V=\left[q_{1} \ldots q_{k}\right]
$$

Åke Björck and Gene H. Golub
https://www.jstor.org/stable/2005662

Application:

By separating images into three regions:
2 images of someone's face $\rightarrow \vec{u}, \vec{v} \in \mathbb{R}^{3}$

If \vec{u}, \vec{v} are linearly independent, we get a plane $F=\operatorname{span}(\vec{u}, \vec{v})$:

For two new photos of someone, again we get a plane and we can take the distance to F as a way to compare to the original photos.

But what if I only have one picture of someone, and I want to compare it to the two I started with?

Questions: Distances between non-equi-dimensional subsapces?

Wong, 1967; Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci., 57, no. 3, pp. 589-594

Ye-LHL, Schubert varieties and distances between subspaces of different dimensions," SIAM J. Matrix Anal. Appl., 37 (2016), no. 3, pp. 1176-1197.
L.-H. Lim, R. Sepulchre, and K. Ye, Geometric distance between positive defnite matrices of different dimensions," IEEE Trans. Inform. Theory, 2019

The grassmannian of affine subspaces
https://arxiv.org/abs/1807.10883
Lek-Heng Lim, Ken Sze-Wai Wong, and Ke Ye, (2018)

The distance can be generalized to Affine subspaces (shifted vector
subspaces), or more generally, Ellipsoids (higher-dimensional ellipses) in the same dimension or different dimensions. .

Reference:

Book: Matrix Computations. by Gene H. Golub and Charles F. Van Loan (fourth edition)

Lecture notes:

https://helper.ipam.ucla.edu/publications/glws1/glws1 15465.pdf
https://web.ma.utexas.edu/users/vandyke/notes/deep learning presentation/pres entation.pdf

Papers:

Schubert varieties and distances between subspaces of different dimensions https://www.stat.uchicago.edu/~lekheng/work/schubert.pdf

Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning https://arxiv.org/pdf/1808.02229.pdf

Analysis of Temporal Tensor Datasets on Product Grassmann Manifold https://ieeexplore.ieee.org/document/9856982
Quantum Algorithm for Computing Distances Between Subspaces https://arxiv.org/abs/2308.15432

