MATH 5110 - Applied Linear Algebra and Matrix Analysis

* Determinant - Class Work

Instructor: He Wang
Department of Mathematics
Northeastern University

Determinant of block matrices

Let M be a matrix written a as 2×2 block matrix

$$
M=\left[\begin{array}{ll}
A & B \\
\mathbf{0} & D
\end{array}\right]
$$

Here, A, D have the dimension $m \times m$, and $n \times n$.

By a direct proof or by Schur complement, we can show that

$$
\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(D)
$$

More generally, let M be a matrix written a as 2×2 block matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Here, A, D have the dimension $m \times m$, and $n \times n$.

By Schur complement, we can show that

$$
\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right) \text { if } A \text { is invertible }
$$

and

$$
\operatorname{det}(M)=\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right) \text { if } D \text { is invertible }
$$

Question: Do we have the formula in general?

$$
\operatorname{det}\left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right)=\operatorname{det}(A D-B C)
$$

\square Matrix determinant lemma

Suppose A is an $n \times n$ invertible matrix and \vec{u}, \vec{v} are vectors in \mathbb{R}^{n}. Then

$$
\operatorname{det}\left(A+\vec{u} \vec{v}^{T}\right)=\left(1+\vec{v}^{T} A^{-1} \vec{u}\right) \operatorname{det}(A)
$$

Proof:

$$
\left(\begin{array}{cc}
I & 0 \\
\vec{v}^{\top} & 1
\end{array}\right)\left(\begin{array}{cc}
I+\overrightarrow{u v}^{\top} & \vec{u} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-\vec{v}^{\top} & 1
\end{array}\right)=\left(\begin{array}{cc}
I & \vec{u} \\
0 & 1+\vec{v}^{\top} \vec{u}
\end{array}\right) .
$$

So,

$$
\operatorname{det}\left(I+\vec{u} \vec{v}^{T}\right)=1+\vec{v}^{T} \vec{u}
$$

The general case is

$$
\operatorname{det}\left(A+\vec{u} \vec{v}^{T}\right)=\operatorname{det}\left(A\left(I+A^{-1} \vec{u} \vec{v}^{T}\right)\right)=\operatorname{det}\left(I+\left(A^{-1} \vec{u}\right) \vec{v}^{T}\right) \operatorname{det}(A)=\cdots
$$

If A is not invertible, it is possible to use adjugate matrix of A to compute

$$
\operatorname{det}\left(A+\vec{u} \vec{v}^{T}\right)=\operatorname{det}(A)+\vec{v}^{T}(\operatorname{adj}(A)) \vec{u}
$$

More generally, for two $n \times m$ matrices U and V,

$$
\operatorname{det}\left(A+U V^{T}\right)=\operatorname{det}\left(I+\vec{V}^{T} A^{-1} U\right) \operatorname{det}(A)
$$

When $A=I$, we have the Weinstein-Aronszajn identity

$$
\operatorname{det}\left(I+U V^{T}\right)=\operatorname{det}\left(I+\vec{V}^{T} U\right)
$$

If $\lambda \neq 0$, then we have

$$
\operatorname{det}\left(U V^{T}-\lambda I\right)=(-\lambda)^{\mathrm{m}-\mathrm{n}} \operatorname{det}\left(\vec{V}^{T} U-\lambda I\right)
$$

- This shows the that $U V^{T}$ and $\vec{V}^{T} U$ have the same non-zero eigenvalues.
- It is useful in developing a Bayes estimator for multivariate Gaussian distributions.
- Applications in random matrix theory by relating determinants of large matrices to determinants of smaller ones.

An Introduction to Grids, Graphs, and Networks, Pozrikidis, C., Oxford University Press. (Appendix B:The Sherman-Morrison and Woodbury formulas.)
https://cran.r-project.org/web/packages/WoodburyMatrix/vignettes/WoodburyMatrix.html
https://en.wikipedia.org/wiki/Weinstein\�\�\�Aronszajn identity

