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Subspace P of polynomials in R[X] of degree at most n.

1. The polynomials 1; X; X?, ... ; X" form a canornical basis.

2. The Bernstein polynomials

also form a basis of that space P. These polynomials play a
major role in the theory of spline curves.



Example: Bases for R*

1. Standard basis U = {é,, ¢,, €3, €,}

2. We already know that any four independent vectors in R* form a basis for R*.

3. In particular, the following set W of vectors forms a basis of R* known as
the Haar basis.
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These vectors are pairwise orthogonal, so they are indeed linearly independent.

This basis and its generalization to dimension 2™ are crucial in wavelet
theory, which play an important role in audio and video signal processing.



The change of basis matrix P from U to W is given by
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we easily find that the inverse of P by scale of PT
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So, for example, the vector v = g over basis U, becomes ¢ = P~1v = i
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Given a signal v = ,
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We first transform ¥ into its coefficients ¢ = over the Haar basis by computing

¢ =P v



Observe that

V1 + V2 + V3 + Vg
C1 — 4

is the overall average value of the signal . The coefficient ¢; corresponds to the
background of the image (or of the sound).

Then,

c, gives the coarse details of 7,

5 gives the details in the first part of 7,

c, gives the details in the second half of v.

Reconstruction of the signal

v = P¢C



Compression

The trick for good compression is similar as SVD, FFT.

We throw away some of the coefficients of ¢ (set them to zero), obtaining a

compressed signal 3, and still retain enough crucial information so that the
reconstructed signal
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looks almost as good as the original signal v.

Compression Process:

* Input signal v

« Coefficients ¢ = P71%
 Compressed Coefficients 3,
 Compressed signal U =P¢

This kind of compression scheme makes modern video conferencing possible.



Similarly as Fast Fourier Transform (FFT), it turns out that there is a faster way
to find ¢ = P~1¥, without actually using P~1 (amazing!).

This has to do with the multiscale nature of Haar wavelets.



