MATH 5110 – Applied Linear Algebra and Matrix Analysis

Class Work-Basis

Instructor: He Wang Department of Mathematics Northeastern University Subspace *P* of polynomials in $\mathbb{R}[X]$ of degree at most n.

1. The polynomials 1; X; X^2 , ... ; X^n form a canornical basis.

2. The Bernstein polynomials

$$\binom{n}{k} (1-X)^{n-k} X^k \text{ for } k = 0, \dots, n,$$

also form a basis of that space P. These polynomials play a major role in the theory of spline curves.

Example: Bases for \mathbb{R}^4

1. Standard basis $\mathbf{U} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\}$

2. We already know that any **four independent vectors** in \mathbb{R}^4 form a basis for \mathbb{R}^4 .

3. In particular, the following set W of vectors forms a basis of \mathbb{R}^4 known as the **Haar basis**.

$$\vec{w}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \vec{w}_2 = \begin{bmatrix} 1\\1\\-1\\-1 \\-1 \end{bmatrix}, \vec{w}_c = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \vec{w}_4 = \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}$$

These vectors are pairwise orthogonal, so they are indeed linearly independent.

This basis and its generalization to dimension 2^n are crucial in **wavelet theory**, which play an important role in audio and video signal processing.

The **change of basis matrix** *P* from U to W is given by

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$$

we easily find that the inverse of P by scale of P^T

$$P^{-1} = \begin{bmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So, for example, the vector
$$\vec{v} = \begin{bmatrix} 6\\4\\5\\1 \end{bmatrix}$$
 over basis U , becomes $\vec{c} = P^{-1}\vec{v} = \begin{bmatrix} 4\\1\\1\\2 \end{bmatrix}$
$$\begin{pmatrix} 4\\1\\1\\2 \end{pmatrix} = \begin{pmatrix} 1/4 & 0 & 0 & 0\\0 & 1/4 & 0 & 0\\0 & 0 & 1/2 & 0\\0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1\\1 & 1 & -1 & -1\\1 & -1 & 0 & 0\\0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 6\\4\\5\\1 \end{pmatrix}$$
Given a signal $\vec{v} = \begin{bmatrix} v_1\\v_2\\v_3\\v_4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} v_1\\v_2\\v_3\\v_4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} c_1\\c_2\\c_3\\c_4 \end{bmatrix}$ over the Haar basis by computing

 $\vec{c} = P^{-1}\vec{v}.$

Observe that

$$c_1 = \frac{v_1 + v_2 + v_3 + v_4}{4}$$

is the overall **average** value of the signal \vec{v} . The coefficient c_1 corresponds to the background of the image (or of the sound).

Then,

 c_2 gives the coarse details of \vec{v} , c_3 gives the details in the first part of \vec{v} , c_4 gives the details in the second half of \vec{v} .

Reconstruction of the signal

$$\vec{v} = P\vec{c}$$

Compression

The trick for good compression is similar as SVD, FFT.

We throw away some of the coefficients of \vec{c} (set them to zero), obtaining a **compressed signal** $\hat{\vec{c}}$, and still retain enough crucial information so that the reconstructed signal

$$\hat{\vec{v}} = P\hat{\vec{c}}$$

looks almost as good as the original signal \vec{v} .

Compression Process:

- Input signal \vec{v}
- Coefficients $\vec{c} = P^{-1}\vec{v}$
- Compressed Coefficients $\hat{\vec{c}}$,
- Compressed signal $\hat{\vec{v}} = P\hat{\vec{c}}$

This kind of compression scheme makes modern video conferencing possible.

Similarly as Fast Fourier Transform (FFT), it turns out that there is a **faster** way to find $\vec{c} = P^{-1}\vec{v}$, without actually using P^{-1} (**amazing**!).

This has to do with the multiscale nature of Haar wavelets.