
Lab 1 - Introduction to Matlab

Contents

1 Linear Algebra in MATLAB 1
1.1 Introduction: . 2
1.2 Vectors . 4
1.3 Matrices . 5
1.4 Constructing Vectors and Matrices . 6
1.5 Visualization with MATLAB . 7

1.5.1 2D Plotting . 10
1.6 Some Basic Looping . 11

2 Solving Systems Of Equations Using MATLAB 12
2.1 Problems: Linear Systems Of Mixed Rank . 16

3 Linear Problem With Unknown Variables 16
3.0.1 Example: Computing Net Force At A Point . 18

3.1 Problem: . 21

1 Linear Algebra in MATLAB

MATLAB, or the MATrix LABoratory, has been built from the ground up to run matrix computa-
tions quickly and efficiently. Although most computationally intensive tasks are eventually ported
to C, MATLAB serves as a rapid prototyping language; easier than C and able to provide a quick
proof of concept. In addition, its many plugins mean that MATLAB is an out of the box solution
for many scientific computing and engineering tasks, from solving differential equations to signal
processing, to interfacing with ARDUINO boards.

In this first tutorial, we will run through the basics of linear algebra in MATLAB. We will talk
about visualizing data, constructing matrices, and using matrices as linear transforms, and using
matrices to solve equations. This lab consists of two parts: A follow along coding section where
with exercises that will not be turned in, and a set of questions. If you are already familiar with
MATLAB, you may skip to section 2 where we begin solving linear systems.

To install an activate MATLAB as a Northeastern student, follow the information found here:
https://northeastern.service-now.com/kb_view.do?sysparm_article=KB0012568. You only
need to download MATLAB and SIMULINK for this course, but you may add any other packages
your are interested in.

1

https://northeastern.service-now.com/kb_view.do?sysparm_article=KB0012568
NI527
Rectangle

1.1 Introduction:

Upon opening MATLAB, you’ll be greeted by a four part screen as below:

This screen contains

• Current Folder: The directory where your scripts and data will be stored.
• Editor: For editing scripts and storing code. If this does not appear click "New" and then

"Script."
• Workspace: A list of the currently initialized variables.
• Command Window: A place to enter single commands, like one a calculator.

First steps: MATLAB as a giant calculator At its simplest, MATLAB’s command window can
be used as a giant calculator. To start, enter

>> 1+1

in the command window and press Enter. Two things will happen: First, MATLAB will return

ans =

2

and second a new variable will appear in the workspace called ans with the value 2. The
ans variable will always contain the result of the last computation performed on the command
window.

If you want to store the result of a computation for later use, you can assign a variable to the
result using = as so:

>> myvar = 5 + 7 + 9

After you hit Enter, myvar will appear in the workspace containing the result of the calculation
5 + 7 + 9. If you may then use myvar in any future computation

2

>> myvar*8

or assign a new value to it MATLAB >> myvar = 5 + 7 + 9 ``````MATLAB >> myvar = 400/20

or both

>> myvar = myvar/100

Question: What are the results of each of the computations above? If you perform them in a
different order, do you get the same result?

Operators and Order of Operations: MATLAB has the following common operators:

Symbol Name

+ Addition
- Negation and Subtraction
* Multiplication
/,\ Division
- Exponentiation

The precedence of the order of operations from highest to lowest is (), �, - negation, *,/,\,,
then +,-. Take a moment to think about how

>> -10^-4/2+(10+2^1*2)

will evaluate, then check your answer.

Command Window vs Editor While all commands can be typed into the command window,
it’s often better to use the script editor for longer scripts. Click New and then Script to bring up
a blank script. All commands can be typed into the script editor, and then run all together by
pressing Run.

3

1.2 Vectors

A vector in MATLAB is just a list of numbers separated by spaces or ,’s for row vectors,

>> vec1 = [1 2 3 4]

>> vec2 = [7, 10, 30, 50]

or by semicolons ; for column vectors,

>> vec3 = [-1; -4; -9; -16]

A column vector can be switched to a row vector (and visa versa) by transposition using the
apostrophe '

>> vec3'

ans =

-1 -4 -9 -16

You can access the elements of a vector using their position starting at 1, so vec2(1) is 7 and
vec3(4) is 16.

Vector Operations Vectors of compatible dimensions can be added

>> vec1 + vec2

multiplied by scalars

>> vec1*4

have a scalar uniformly added to them

>> vec2 + 4

Note that trying to add vectors of incompatible dimensions produces something strange:

>> vec1 + vec3

ans =

0 1 2 3

-3 -2 -1 0

-8 -7 -6 -5

-15 -14 -13 -12

What has happened here is that MATLAB is constructing a matrix by adding each row entry
of vec1 to the each column of vec3. This is rarely used, but can be a convenient way to construct
a matrix.

What about vector multiplication? MATLAB is built for matrices, so it will always assume that
multiplication like vec1*vec2 is matrix multiplication. Try running

4

>> vec1 * vec2

and note the error that you get: Error using * Incorrect dimensions for matrix

multiplication. It’s telling you exactly what has gone wrong, that is that your matrix multi-
plication has incorrect dimensions. The error messages in MATLAB are quite informative, always
remember to read them.

Finally, if we want component-wise multiplication we need to use a .*:

>> vec1 *. vec3

Question: With vec1, vec2 and vec3 defined as above, which multiplications, for example

>> vec1 *. vec2

>> vec1 * vec2

will produce valid results? Check you answer with MATLAB.

1.3 Matrices

(See also: https: // www. mathworks. com/ help/ matlab/ learn_ matlab/ matrices-and-arrays.

html)
A matrix in MATLAB is just a two dimensional vector, and is defined by specifying it’s entires

row by row. For example, the 2× 3 matrix(
1 3 5
7 9 11

)
can be constructed in MATLAB by

>> mat1 = [1,3,5;7,9,11]

It is also common to construct a matrix as a vector of vectors:

>> mat2 = [[2,4,6];[8,10,12]]

As before, we can specify the elements by their position so mat2(1,1) is 2, while mat2(2,3) is
12.

Given a matrix, we can get the number of elements using the numel function and the dimen-
sions using the size function:

>> numel(mat1)

>> size(mat1)

Note that size itself returns a vector, a 1× 2 row vector [COLUMNS, ROWS].
MATLAB allows the basic matrix operations on a matrix M:

• M* - Matrix multiplication, provided dimensions are compatible.
• M.* - Component-wise multiplication, provided dimensions are compatible.
• M' - Matrix transpose.
• inv(M) - Matrix inversion, provided matrix is square and invertible.

For example, given our matrices above we can compute the inverse of mat1 times the transpose
of mat2 by

>> A = inv(mat1 * mat2')

Question: What is the result of multiplying A by mat1?

5

https://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html
https://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html

1.4 Constructing Vectors and Matrices

MATLAB has some builtin ways to make matrix construction easier:

Sequences The code 3:10 will return the vector containing all integers from 3 to 10 as a row
vector:

>> vec1 = 3:10

Similarly, the code 3:4:20 will count starting at 3 and adding 4 each time until it is above 20,
returning a vector of all the numbers in the count less than or equal to 20. In this case,

>> vec2 = 3:4:20

vec2 =

3 7 11 15 19

It does not contain 20, because 20 is not a multiple of 4 more than 3, 20 just serves as an end
point. However,

>> vec3 = 0:4:20

vec3 =

0 4 8 12 16 20

will contain 20.
We can also count down, for example

>> vec4 = 20:-2:1

returns the numbers we get when, starting from 20, we add -2 until we are less than 1.

Matrix Construction Functions MATLAB also has some basic matrix construction functions:

• zeros(N,M) - Produces an N by M matrix of 0’s.
• ones(N,M) - Produces an N by M matrix of 1’s.
• rand(N,M) - Produces an N by M matrix of uniformly distributed random numbers between

0 and 1.

Additionally, you can use sequences to build matrix columns. For example, we can make the
matrix 1 2 3 4 5

2 4 6 8 10
4 4 4 4 4

by

>> mat = [1:5 ; 2:2:10 ; 4*ones(1,5)]

6

Question: Try using matrix addition, multiplication, and the matrix construction functions
above to build * A 2× 5 matrix with -1 in the first row and the odd numbers starting at 5 in the
second row. * A random matrix with all numbers between 20 and 30. * (Challenge) Multiply two
vectors to produce a 100 by 100 matrix

1 2 3
2 4 6 . . .
3 6 9

...
. . .

1.5 Visualization with MATLAB

MATLAB’s plot function can be used to display a wide verity of 2D visual information, and we
will use it frequently in this course to generate graphs and display linear transforms. The plot

function displays a sequence of points in 2d connected by lines. The markers for each point and
the line styles can be edited, or turned off completely.

To plot points (x1, y1), (x2, y2), ..., (xn, yn), we must supply the plot function with a list of the
x-values, X = [x_1, ..., x_n] and a list of the y-values Y = [y_1, ... , y_n]. For example, to
plot a graph of a function like sine or cosine from 1 to 10 we write

>> X = 1:10

>> Y = sin(X)

>> plot(X,Y)

Question: Looking at X and Y, we are only plotting 10 data points: (1, sin(1)), (2, sin(2)),
etc. Make the plot smoother by plotting all the points from 1 to 10 up to two decimal places, for
example (1.01, sin(1.01)).

7

The plot function has many options the are detailed in the documentation (https://www.
mathworks.com/help/matlab/ref/plot.html). All attributes can be explicitly defined using prop-
erty flags like LineWidth, but many can also be defined using a character vector, with

Line Style Description Line Style Description

- Solid line (default) -- Dashed line
: Dotted line -. Dash-dot line

Marker Description Marker Description

o Circle + Plus sign
. Point x Cross
d Diamond ˆ Upward-pointing triangle
> Right-pointing triangle < Left-pointing triangle
h Hexagram

Color Description Color Description

y yellow m magenta
r red g green
w white k black

For example, to plot a red dashed line with crosses for markers we would use

>> X = 1:10

>> Y = sin(X)

>> plot(X,Y,'r--x')

If you don’t specify a line style, MATLAB will not plot the line.

>> X = 1:10

>> Y = sin(X)

>> plot(X,Y,'rx')

Question: Plot cosine from −π to π with blue point markers and no connecting lines. You
may use pi for the value of π.

Titles and Labels To make our plots readable, we should always include at least a title, and if
applicable axis labels and a legend.

• title('Plot Title') - Add a plot title.
• xlabel('X-Axis Label') - Add a label to the horizontal axis.
• ylabel('Y-Axis Label') - Add a label to the vertical axis.

For example, use

8

https://www.mathworks.com/help/matlab/ref/plot.html
https://www.mathworks.com/help/matlab/ref/plot.html

>> plot(X,Y,'rx')

>> title('Cosine Function')

>> xlabel('Independent Variable')

>> ylabel('Dependant Variable')

to plot and label the cosine function.

Figures and Multiple Plots Each plot in MATLAB lives inside a figure. A figure is the window
containing the plot.

The figure function creates a new figure. You can create multiple figures if you want to gen-
erate multiple plots, or you can plot multiple things to the same figure. For example, to plot two
functions on different axis, we use

>> f1 = figure

>> plot(X, sin(X))

>> title("Sine")

>> f2 = figure

>> plot(X, cos(X))

>> title("Cosine")

After we create a new figure, all of the actions we perform will be on that figure. If we want to
return to the figure with sin(x) and change something there, we use figure(f1) to reactive it:

>> f1 = figure

>> plot(X, sin(X))

>> title("Sine")

>> f2 = figure

>> plot(X, cos(X))

>> title("Cosine")

>> figure(f1)

>> xlabel('The Domain')

You may have noticed that each time we call plot it erases the previous plot. What if we want
to plot two charts on the same axis? There are two options: We can specify multiple charts within
the plot function by listing them as plot(x,f_1(x), x, f_2(x),...)

9

>> f1 = figure

>> plot(X, sin(X), X, cos(X))

or use hold on to hold the current contents of the axis while we draw to it:

>> f1 = figure

>> hold on

>> plot(X, sin(X))

>> plot(X, X.^2)

>> hold off

In the above hold off tell MATLAB to stop holding the contents of the current axis. Note
that X.�2 computes x2, the .� tells MATLAB to exponentiate each component instead of trying
to exponentiate as a matrix. For more examples take a look here (https://www.mathworks.com/
help/matlab/creating_plots/combine-multiple-plots.html)

Question: Plot the function x/(x2 + 1) and the function cos(1/x) from 1 to 4 on the same plot.

1.5.1 2D Plotting

In addition to plotting graphs of functions, we can perform 2D plotting by specifying the x and
y coordinates of points. For example, we can draw the diamond with points at (1,0), (0,1), (-1,0),
(0,-1) by writing the x coordinates in one vector X and the y coordinates in another vector Y and
passing them to the plot function:

>> X = [1,0,-1,0]

>> Y = [0,1,0,-1]

>> plot(X, Y)

Notice that MATLAB doesn’t complete the square because we didn’t tell it to connect the last
point back to the first. To do so we just add another copy of (1, 0) at the end:

>> X = [1,0,-1,0,1]

>> Y = [0,1,0,-1,0]

>> plot(X, Y)

Question: Plot a 3x3 grid with no connective lines and circle markers. Can you find a clever
way to define the vectors X and Y that makes the code simple?

Axis Boundaries Often, it’s alright to let MATLAB figure out the axis boundaries itself, but (as
you may have noticed in the question above) sometime we want to choose the axis boundaries
ourselves. To do so, we have use axis function:

• axis([x_min, x_max, y_min, y_max]) - Sets the axis so that the horizontal view runs
between [xmin, xmax] and the vertical view runs between [ymin, ymax].

For example, to display our square on a scale with x from−2 to 2 and y from−1 to 1, we write

>> X = [1,0,-1,0,1]

>> Y = [0,1,0,-1,0]

>> plot(X, Y)

>> axis([-2,2,-1,1])

10

https://www.mathworks.com/help/matlab/creating_plots/combine-multiple-plots.html
https://www.mathworks.com/help/matlab/creating_plots/combine-multiple-plots.html

Labels With 2D plotting we often want to add labels. The labels support some latex and can be
used to annotate points:

• text(x,y,'My Text','left') - Add the text My Text with the left anchor at the point
(x, y). You may specify 'right' or 'center' as well for alignments, and if nothing is
specified left is assumed. (https://www.mathworks.com/help/matlab/creating_plots/
add-text-to-specific-points-on-graph.html)

For example, lets add labels to the points in the diamond:

>> X = [1,0,-1,0,1]

>> Y = [0,1,0,-1,0]

>> plot(X, Y)

>> axis([-2,2,-1,1])

>> text(1,0,'(1,0)')

1.6 Some Basic Looping

Looping allow us to go through a list one element at a time and perform an action for each element
in the list. The basic syntax is

for var = list

Do Something

Do Something Else

Etc

end

Notice that we have dropped the >>. While loops work in the command window they are
much easier to write up as scripts. From here on out we will assume script notation.

For example, we could square all of the numbers from 1 to 10:

for i = 1:10

i^2

end

For another example, we could plot sin(x + n) where n = 0, 1, 2, . . . , 20 on the same plot using
hold on:

X = 0:.01:30

hold on

for n = 0:20

plot(X, sin(X + n))

end

Finally, for our diamond above we can label the axes by accessing each of the four coordi-
nates. MATLAB allows us to concatenate stings together using +, so "Help" + "Me" would yield
"HelpMe". For each of the coordinates X(i), Y(i), we can construct the label by "(" + X(i) +

"," + Y(i) + ")". For example, if X(i) is 4 and Y(i) is 3, then this becomes "(4,3)". The final
code looks like

11

https://www.mathworks.com/help/matlab/creating_plots/add-text-to-specific-points-on-graph.html
https://www.mathworks.com/help/matlab/creating_plots/add-text-to-specific-points-on-graph.html

X = [1,0,-1,0,1]

Y = [0,1,0,-1,0]

plot(X, Y)

axis([-2,2,-1,1])

for i = 1:4

label = "(" + X(i) + "," + Y(i) + ")"

text(X(i),Y(i),label)

end

Question Modify your grid code to add a coordinate label to each point of the grid.
Question Use a for loop and hold on to draw the lines connecting (0, n) to (10 − n, 0) for

n = 0, 1, . . . , 10 as below.

2 Solving Systems Of Equations Using MATLAB

We want to use MATLAB to solve systems of linear equations. Let us recall the standard setup.
Consider a system of k linear equations in n unknowns

a11x1 + . . . + a1nxn = b1 (1)
... (2)

ak1x1 + . . . + aknxn = bk (3)

In the standard matrix notation, we would write this equation as Ax = b, where

A =

a11 . . . a1n
...

. . .
...

ak1 . . . akn

 , x =

x1
...

xn

 , b =

b1
...

bk

 .

Example: Invertible Matrix Concretely, consider the following system of linear equations:

2x1 − 2x2 = 1 , (4)
x1 + 4x2 = 3 . (5)

In MATLAB, we can solve the equation using basic linear algebra and inverting the matrix:

12

>> A = [2, -2; 1, 4]

>> b = [1;3]

>> x = inv(A)*b

Here, inv(A) is A−1. There are two reasons that this is not the correct way to do this computa-
tion in MATLAB:

1. If A is not square (or is square but not invertible) then the matrix isn’t invertible.
2. Inverting matrices is slower than using Gaussian elimination, so this method is not applica-

tion to large systems of equations.

Instead, we should put the augmented matrix [A | x] in reduced row echelon form using the
function rref().

>> Aug = [A, b]

>> rref(Aug)

ans =

1.0000 0 1.0000

0 1.0000 0.5000

Recall what this means in terms of the system of linear equations. By putting the augmented
matrix in reduced row echelon form we have shown the original system is equivalent to

x1 = 1 , (6)
x2 = .5 . (7)

Equivalently, MATLAB uses the matrix division notation A\b, returning the result of the Gaus-
sian elimination.

>> A\b

ans =

1.0000

0.5000

Example: Under-determined Systems Consider the following under determined system:

2x1 − 2x2 + 4x3 = 1 , (8)
x1 + 4x2 − x3 = 3 . (9)

We have chosen this system to have more than one solution. Lets put the augmented matrix into
reduced row echelon form.

>> A = [2, -2, 4; 1, 4, -1]

>> b = [1;3]

>> rref([A, b])

13

ans =

1.0000 0 1.4000 1.0000

0 1.0000 -0.6000 0.5000

The Gaussian elimination gives us a unique way to write the solution space

x =

1
.5
0

+ t

−1.4
.6
1

 , for t ∈ R.

Contrast this to the result of using the shorthand

>> A\b

ans =

0

0.9286

0.7143

The shorthand returns a single solution, normalized so that the first n vectors are 0. The Gaus-
sian elimination solution is more complete, in particular the A\b solution does not indicate that
the system is under determined. However we can get the null space using the function null(A):

>> null(A)

ans =

-0.7683

0.3293

0.5488

MATLAB naturally normalizes the null space to have unit length [-0.7683, 0.3293, 0.5488]

= 0.5488*[-1.4,.6,1].

Example: Over-determined Systems Now, lets look at the following over determined system:

2x1 − 2x2 = 1 , (10)
x1 + 4x2 = 3 , (11)

4x1 − 7x2 = 2 . (12)

Putting the system in reduced row echelon form yields

>> A = [2, -2; 1, 4; 4, -7]

>> b = [1;3;2]

>> rref([A, b])

14

ans =

1 0 0

0 1 0

0 0 1

The reduced row echelon form indicates to us immediately that there is no solution, the last
line indicating 0=1. If we try to use the shorthand A\b MATLAB will return an answer

>> A\b

ans =

1.1805

0.4211

This is MATLAB’s best approximation of a solution.
Now, consider the system

2x1 − 2x2 = 1 , (13)
x1 + 4x2 = 3 , (14)

3x1 + 2x2 = 2 . (15)

Computing the reduced row echelon form we have

>> A = [2, -2; 1, 4; 3, -2]

>> b = [1;3;2]

>> rref([A, b])

ans =

1.0000 0 1.0000

0 1.0000 0.5000

0 0 0

The solution space is then a single point [1,.5]. Alternatively, we can find a single solution
and the null space:

>> A\b

>> null(A)

ans =

1.0000

0.5000

ans =

2×0 empty double matrix

15

The result of the second computation is telling us that there is no null space, so there is only a
single solution.

2.1 Problems: Linear Systems Of Mixed Rank

Use MATLAB to find the full solution space of the following equations

(a)

x1 − x2 + 2x3 = 1 , (16)
2x1 − 2x2 + 4x3 = 1 , (17)
−3x1 + 3x2 − 6x3 = 1 . (18)

(b)

x1 − x2 + 2x3 = 1 , (19)
x1 − 4x2 + x3 = −1 , (20)

3x1 + 3x2 − 2x3 = 2 . (21)

(c)

x1 − x2 + 2x3 = 1 , (22)
4x1 − 2x2 + x3 = 1 , (23)

2x1 − 3x3 = −1 . (24)

3 Linear Problem With Unknown Variables

Often linear systems depend not on constants but on parameters that are either measured from
the outside world, or that must be determined by computation. For example, let us consider a
simple example of economic computation.

In statics and construction physics, support placement and force allocation in trusses is a prob-
lem of linear algebra. Consider the 2D truss structure with vertices at (-1,0), (1,0) and (1,

√
2):

16

In the diagram above, the points of connection are called verticies and the lines connecting
them represent trusses. In the free body diagram above, there are three kinds of forces working:

• ~f - The downward force of gravity and pressure on the structure.
• ~Ri - The upward forces of the ground on the structure.
• ~Tj - The forces passing through each truss.

Each force is a 2 dimensional vector. We will denote the magnitude of each force by it’s unvec-
tored symbol, that is f := ||~f ||, Ri = ||~Ri|| and Tj = ||~Tj||.

Inner-truss Forces The force being exerted by each truss depends on weather the truss is in ten-
sion or compression. If the truss is compressed, it exerts a force against both of the connected
vertices, pushing them apart. If the truss is in tension, it exerts a force pulling both vertices to-
gether.

When we solve a problem, we will always start out assuming that all forces are in tension,
that way any force that ends up negative will be in compression.

Principles of Static Analysis Since the system is static (not moving) all of these forces must
cancel out. Practically, the following must hold:

• The net force on the entire structure, that is the sum of all external forces, must be the 0
vector. That is ~f + ~R1 + ~R2 =~0.

17

• Since the net force is~0, the x component and y component of the total force must also be 0,
that is ~fx + (~R1)x + (~R2)x = 0.

In addition, none of the vertexes are moving, so * At each vertex A, B and C, the net force must
be 0. For example, at A we must have ~T1 + ~T3 + ~R1 = ~0. * Since the net force at each vertex is~0,
both the x component and the y component of each force is 0 at each vertex.

3.0.1 Example: Computing Net Force At A Point

We will construct a linear system by write equations enforcing the static force balancing at each
vertex. Remember that we assume that all inner-truss forces are tension, with the view to correct
any negative forces to compression.

Force Equations at A:

Lets look at vertex A. The vertical force on A will be the sum of the y components, (~R1)y +

(~T1)y = 0. By convention, we will always add forces as if their arrow points out of the vertex,
using the angle from the horizontal axis. The components of ~T1 = (T1 cos π/3, T1 sin π/3) so we
have the following vertical and horizontal forces

T3 + (0.5)T1 = 0, Horiz. (25)
−R1 + (0.8660)T1 = 0, Vert. (26)

Similarly, we can find the force equations at B and C:
Force Equations at C:

−T3 − (0.5)T2 = 0, Horiz. (27)
−R2 + (0.8660)T2 = 0, Vert. (28)

Force Equations at B:

18

Finally, we want to treat f as a variable so we will write the equations around B with f on the
right hand size.

−(0.5)T1 + (0.5)T2 = 0, Horiz. (29)
−(0.8660)T1 − (0.8660)T3 = f , Vert. (30)

A Linear System: Putting all of these equations together, we get the following linear system:

(0.5)T1 +T3 = 0
−R1 +(0.8660)T1 = 0

−(0.5)T2 −T3 = 0
−R2 +(0.8660)T2 = 0

−(0.8660)T1 −(0.8660)T2 = f
−(0.5)T1 +0.5)T2 = 0

In matrix form this becomes

0 0 0.5 0 1
−1 0 0.8660 0 0
0 0 0 −0.5 −1
0 −1 0 0.8660 0
0 0 −0.8660 −0.8660 0
0 0 −0.5 0.5 0

R1
R2
T1
T2
T3

 =

0
0
0
0
f
0

In a script, you can separate the definition a matrix on different lines. Lets define varaibles

c=cos(pi/3) and s=sin(pi/3) to make the matrix construction cleaner:

A = [0, 0, c, 0, 1;

-1, 0, s, 0, 0;

0, 0, 0,-c,-1;

0,-1, 0, s, 0;

0, 0,-s,-s, 0;

0, 0,-c, c, 0]

Example: Assume that a force of 1000 N is applied downward on vertex B. What is the horizontal force
on exerted by truss T3? Is it a compressing force or a tension force?

We just need to define the B vector for f = 1000 and ten perform the matrix division. We expect
the system to have a single solution, we expect that R1 = R2 and that T1 = T2:

19

B = [0;0;0;0;1000;0]

A\B

ans =

-500.0000

-500.0000

-577.3503

-577.3503

288.6751

If you get different results check you code. Since T1 and T2 are negative, both trusses carry
compressive forces. In addition, we see that R1 and R2 act in the opposite direction to our free
body diagram and indeed we would expect them to exert an upward force. We can annotate the
free body diagram with these forces:

Example: What does the force f have to be for the force on T3 to be 1000 N?
There are two ways to solve this problem that don’t include trial and error: The simplest is to

remember that the dependence of the forces is linear, so if we scale f by 1000/288.6751 we will
have the required solution.

However, assume that you didn’t remember that f was linear, of if the dependence on f was
more complicated. MATLAB can create a symbolic variable that doesn’t take on a strict value,
just like a mathematical variable. We define f to be symbolic by using syms f:

syms f

B = [0;0;0;0;f;0]

A\B

ans =

20

-f/2

-f/2

-(3^(1/2)*f)/3

-(3^(1/2)*f)/3

(3^(1/2)*f)/6

Notice that this gives us the exact coefficient of proportionality between f and T3, and that√
3/6 ≈ 0.2887 ≈ 288.6751/1000.

3.1 Problem:

Consider the following truss structure, where all internal angles are π/3 radians.

1. Construct and solve the system of equations for the truss when f1 = 100 and f2 = 1000.
2. Assume f1 = 100. What must f2 be for the force T3 to have magnitude 1000?
3. Assume the maximum force that can be applied along T3 is 1000. Give an equation relating

the forces f1 and f2 when T3 = 1000.

21

	Linear Algebra in MATLAB
	Introduction:
	Vectors
	Matrices
	Constructing Vectors and Matrices
	Visualization with MATLAB
	2D Plotting

	Some Basic Looping

	Solving Systems Of Equations Using MATLAB
	Problems: Linear Systems Of Mixed Rank

	Linear Problem With Unknown Variables
	Example: Computing Net Force At A Point
	Problem:

