Example 1. $y^{\prime}=-2 x$.

Example 2. Verify that $y=c e^{2 x}$ (c is any real number) are solutions for the differential equation $y^{\prime}=2 y$.

Example 3. One model for the growth of a population

$$
\frac{d P}{d t}=k P
$$

where k is a constant number, t is the time (independent variable) and P is the number of individuals in the population (dependent variable).

Example 4. Verify that $y=a \sin 3 x+b \cos 3 x$ (where, a, b are any real numbers) are solutions for the differential equation $y^{\prime \prime}=-9 y$.

Example 5. (1) For what values of r does the function $y=e^{r x}$ a solution for $y^{\prime \prime}-y^{\prime}-2 y=0$?
(2) If r_{1} and r_{2} are the values of r that you found in part (1), show that every member of the family of functions $y=a e^{r_{1} x}+b e^{r_{2} x}$ is a solution for $y^{\prime \prime}-y^{\prime}-2 y=0$.

Example 6. (1) For what values of r does the function $y=e^{x^{r}}$ a solution for $y^{\prime}=3 x^{2} y$?
(2) Show that every member of the family of functions $y=k e^{x^{3}}$ is a solution for $y^{\prime}=3 x^{2} y$. Here, k is any real number.
(3) Find a solution of differential equation $y^{\prime}=3 x^{2} y$ with initial condition $y(0)=2$.

Example 7. [Pierre-Francois Verhulst, 1840s] The world population growth is modeled by the differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

where M is the carrying capacity.
Let us see what can we obtain from this model.

