Example 1. The region R is in the first quadrant enclosed by the curves $y=3 x^{2}-x^{3}$ and $y=0$. Find the volume of the solid obtained by rotating R about the y-axis.

Example 2. The region R is in the first quadrant enclosed by the curves $y=x$ and $y=x^{3}$. Use cylindrical shells, find the volume of the solid obtained by rotating R about the y-axis.

Example 3. The region R is enclosed by the curves $x=2 y^{2}-y^{3}$ and $x=0$. Use cylindrical shells, find the volume of the solid obtained by rotating R about the x-axis.

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y=$ $2 x-x^{2}$ and $y=0$ about the line $x=3$.

Example 5. The region R is in the first quadrant enclosed by the curves $x y=2, x=0, y=3$, $y=4$. Use cylindrical shells method to find the volume of the solid obtained by rotating R about the x-axis.

