Example 1. Let S be a cone of radius r and height h. Show that the volume of S is $V=\frac{1}{3} \pi r^{2} h$.

Example 2. Let S be a solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 2 .

Example 3. Let S be a solid obtained by rotating about the y-axis the region bounded by $y=x^{4}$ and $y=4$.

Example 4. The region R is in the first quadrant enclosed by the curves $y=x$ and $y=x^{3}$. Find the volume of the solid obtained by rotating R about the x-axis.

Example 5. Find the volume of the solid obtained by rotating the region in Example 4 about the line $y=2$.

Example 6. Find the volume of the solid obtained by rotating the region in Example 4 about y-axis.

Example 7. Find the volume of the solid obtained by rotating the region in Example 4 about the line $x=1$.

