Two important examples.

1. Geometric Series.

(1.) If |r| < 1, the geometric series ∑ arⁿ⁻¹ is convergent and ∑ arⁿ⁻¹ = a/(1-r).
(2). If |r| ≥ 1, then the geometric series ∑ arⁿ⁻¹ is divergent.

2. p-series

(1.) If
$$p > 1$$
, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent.
(2.) If $p \le 1$, the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent.

Given a series $\sum a_n$, we have several tests. Which one does one use?

- 1. Divergence Test. (First try.)
- **2. Integral Test.** For a nice function f(x) such that $a_n = f(n)$.
- \triangleright For Positive Series
- 3. Comparison Test.

4. Limit Comparison Test.

- \triangleright For Alternating Series:
- 5. Test for alternating series.
- \triangleright Absolutely Convergent
- 6. Ratio Test (With form r^n or n!)
- 7. Root Test*