§9.3 Separable Equations

A differential equation of the form

$$
\frac{d y}{d x}=f(x) g(y)
$$

is called a separable equation.
If $g\left(y_{0}\right)=0$, then $y=y_{0}$ is an equilibrium solution.
If $g(y) \neq 0$, we can write the equation as

$$
\frac{d y}{g(y)}=f(x) d x
$$

Integrate both sides, we have

$$
\int \frac{d y}{g(y)}=\int f(x) d x
$$

We can solve y from the last equation.

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family orthogonally (or perpendicularly, or at right angles).

Example 6. Find the orthogonal trajectories of the family of curves $y=k x$ for $k \in \mathbb{R}$.

Example 7. Find the orthogonal trajectories of the family of curves $y=k x^{2}$ for $k \in \mathbb{R}$.

