§9.2 Slope Fields and Euler's Method

1. Graphical approach (Slope fields, or direction fields)

If $y=f(x)$ is a solution for the differential equation $\frac{d y}{d x}=F(x, y)$, then the slope of curve $y=f(x)$ at (x, y) is $F(x, y)$.
At each point (x, y) draw a line segment with slope $F(x, y)$. The solution is the curve tangent at this point.
Example 1. $\frac{d y}{d x}=x-y$ (Use slope fields).

2. Numerical approach (Euler's Method)

Find approximating solution for the differential equation $\frac{d y}{d x}=F(x, y)$ with initial value $y\left(x_{0}\right)=y_{0}$ using Euler's Method with step size h :
(1). Set step size h; (the smaller h, the better estimation.)
(2). Start with point $\left(x_{0}, y_{0}\right)$;
(3). Define a sequence $x_{n}=x_{n-1}+h$;
(4). Then y_{n} is computed by the sequence

$$
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
$$

Example 2. Use Euler's method with step size $h=0.5$ to solve $\frac{d y}{d x}=x-y$ with initial value $y(0)=1$.

