$\S9.2$ Slope Fields and Euler's Method

1. Graphical approach (Slope fields, or direction fields)

If y = f(x) is a solution for the differential equation $\frac{dy}{dx} = F(x, y)$, then the slope of curve y = f(x) at (x, y) is F(x, y). At each point (x, y) draw a line segment with slope F(x, y). The solution

is the curve tangent at this point.

Example 1. $\frac{dy}{dx} = x - y$ (Use slope fields).

2. Numerical approach (Euler's Method)

Find approximating solution for the differential equation $\frac{dy}{dx} = F(x, y)$ with initial value $y(x_0) = y_0$ using Euler's Method with step size h:

- (1). Set step size h; (the smaller h, the better estimation.)
- (2). Start with point (x_0, y_0) ;
- (3). Define a sequence $x_n = x_{n-1} + h$;
- (4). Then y_n is computed by the sequence

$$y_n = y_{n-1} + hF(x_{n-1}, y_{n-1})$$

Example 2. Use Euler's method with step size h = 0.5 to solve $\frac{dy}{dx} = x - y$ with initial value y(0) = 1.

