§8.3 Applications to Physics and Engineering

We already used definite integral to compute areas and volumes.
The general procedure of applications of definite integral is the following
(1) divide the problem into n small parts;
(2) for each small part, we know how to find a formula for the problem;
(3) then we take the sum and limit to get a definite integral.

Goal of this section: Find the point (fulcrum, or centroid) on which a thin plate of any given shape balances horizontally.

Moments and Centers of Mass

Case 1. We first look at an easy case: (only two mass points m_{1} and m_{2})

Archimedes' Law of the Lever tells us:

$$
m_{1} d_{1}=m_{2} d_{2}
$$

Look at it in x-axis with m_{1} at x_{1} and m_{2} at x_{2}. The center of the mass is at \bar{x}.

$$
m_{1}\left(\bar{x}-x_{1}\right)=m_{2}\left(x_{2}-\bar{x}\right)
$$

The center of the mass is

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Case 2. Suppose we have n mass points $m_{1}, m_{2}, \ldots, m_{n}$ at points $x_{1}, x_{2}, \ldots, x_{n}$.

The center of the mass is

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}}{m_{1}+m_{2}+\cdots+m_{n}}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{m}
$$

Here, $\sum_{i=1}^{n} m_{i} x_{i}$ is the moment of the system about the origin.
The total mass of the system is $m=\sum_{i=1}^{n} m_{i}$.

Case 3. More generally, suppose we have n mass points $m_{1}, m_{2}, \ldots, m_{n}$ at points $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ in the $x y$-plane.

Case 3. More generally, suppose we have n mass points $m_{1}, m_{2}, \ldots, m_{n}$ at points $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ in the $x y$-plane.

The moment of the system about the y-axis is

$$
M_{y}=\sum_{i=1}^{n} m_{i} x_{i}
$$

The moment of the system about the x-axis is

$$
M_{x}=\sum_{i=1}^{n} m_{i} y_{i}
$$

The coordinates (\bar{x}, \bar{y}) of the center of the mass are given by

$$
\bar{x}=\frac{M_{y}}{m} \quad \bar{y}=\frac{M_{x}}{m}
$$

- Up to now, we only considered finite number of mass points.
- We have not used the technique of Calculus yet.
- Now, let us solve our original problem:

Consider a flat plate (called a lamina) with a fixed density ρ that on a region R of the plane.

- Calculate the center of mass of the plate (called the centroid of R).
- Suppose the region R is below a function $y=f(x)$ on the interval [a, b].

We divide the interval $[a, b]$ into n subintervals, hence, divide the region R into n rectangles.

For each rectangle R_{i}, the centroid of R_{i} is $\left(\bar{x}_{i}, \bar{y}_{i}\right)$ where

$$
\bar{y}_{i}=\frac{1}{2} f\left(\bar{x}_{i}\right) .
$$

The area of the rectangle R_{i} is $A_{i}=f\left(\bar{x}_{i}\right) \Delta x$ and so the mass of R_{i} is

$$
m_{i}=\rho A_{i}=\rho f\left(\bar{x}_{i}\right) \Delta x
$$

Now, we think our problem as in Case 3: n mass points m_{1}, \ldots, m_{n} at $\left(\bar{x}_{1}, \bar{y}_{1}\right), \ldots,\left(\bar{x}_{n}, \bar{y}_{n}\right)$.

The moment of R about the y-axis is approximated by

$$
M_{y} \approx \sum_{i=1}^{n} m_{i} x_{i}=\sum_{i=1}^{n} \rho \bar{x}_{i} f\left(\bar{x}_{i}\right) \Delta x
$$

The moment of R about the y-axis: is

$$
M_{y}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho \bar{x}_{i} f\left(\bar{x}_{i}\right) \Delta x=\rho \int_{a}^{b} x f(x) d x
$$

The moment of R about the x-axis is approximated by

$$
M_{x} \approx \sum_{i=1}^{n} m_{i} y_{i}=\sum_{i=1}^{n} \rho \frac{1}{2}\left[f\left(\bar{x}_{i}\right)\right]^{2} \Delta x
$$

The moment of R about the x-axis: is

$$
M_{x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho \frac{1}{2}\left[f\left(\bar{x}_{i}\right)\right]^{2} \Delta x=\frac{1}{2} \rho \int_{a}^{b}[f(x)]^{2} d x
$$

The mass of the plate R is the product of its density ρ and its area $A=\int_{a}^{b} f(x) d x$:

$$
m=\rho A=\rho \int_{a}^{b} f(x) d x
$$

The center of mass (centroid (\bar{x}, \bar{y})) of the plate R is

$$
\bar{x}=\frac{M_{y}}{m}=\frac{1}{A} \int_{a}^{b} x f(x) d x \quad \bar{y}=\frac{M_{x}}{m}=\frac{1}{2 A} \int_{a}^{b}[f(x)]^{2} d x
$$

Remark: The density ρ is cancelled in the formula of the centroid.

If the region R lies between two curves $y=f(x)$ and $y=g(x)$ for $f(x) \geq g(x)$,

then the center of mass (centroid (\bar{x}, \bar{y})) is

$$
\begin{gathered}
\bar{x}=\frac{1}{A} \int_{a}^{b} x[f(x)-g(x)] d x \\
\bar{y}=\frac{1}{2 A} \int_{a}^{b}[f(x)]^{2}-[g(x)]^{2} d x
\end{gathered}
$$

Here A is the area of R calculated by $A=\int_{a}^{b}[f(x)-g(x)] d x$.

