§8.1 Arc Length

We know how to calculate the length of a line segment between $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ by Pythagorean Theorem:

$$
|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Question: How to calculate the length of a curve C defined by equation $y=f(x)$, with $a \leq x \leq b ?$

§8.1 Arc Length

The length L of C is approximately the sum of the lengths of line segments

$$
L \approx \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

$L \approx \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|$.Here,

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}} \\
& =\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x_{i}}\right)^{2}} \Delta x_{i} \\
& \approx \sqrt{1+\left[f^{\prime}\left(x_{i}\right)\right]^{2}} \Delta x_{i}
\end{aligned}
$$

The more line segments, the better approximating. To make it precise, we take the limit:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right| \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}\right)\right]^{2}} \Delta x_{i} \\
& =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

Theorem (The Arc Length Formula)

If $f^{\prime}(x)$ is continuous on $[a, b]$, then the length of the curve $y=f(x)$ on $[a, b]$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Similarly,
Theorem
If $x=g^{\prime}(y)$ is continuous on $c \leq y \leq d$, then the length of the curve $x=g(y)$ on $c \leq y \leq d$ is

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

It is useful to define a function $s(x)$ measuring the arc length of a curve from starting point $t=a$ to any other point $t=x$ on the curve C.

The Arc Length Function

If $y=f^{\prime}(t)$ is continuous on $[a, b]$, then the the Arc Length Function is defined as

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Here, x is the variable for the arc length function. The Fundamental Theorem of Calculus gives

$$
\frac{d s}{d x}=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

Take squares both sides, It can also be written as

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}
$$

