Type I: Infinite integrals

Definition (improper integral of Type I)

(1.) If $\int_a^t f(x) dx$ exists for all $t \ge a$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

(2.) If $\int_t^b f(x) dx$ exists for all $t \le b$, then

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \ dx$$

The improper integral is called **convergent** if the limit exists (as a finite number) and **divergent** if the limit does not exist.

(3.) If $\int_a^{\infty} f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx$$

Type II: discontinuous integrals

Definition (improper integral of Type II)

(1.) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx$$

(2.) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_a^b f(x) \ dx = \lim_{t \to a+} \int_t^b f(x) \ dx$$

The improper integral is called **convergent** if the limit exists (as a finite number) and **divergent** if the limit does not exist.

(3.) If f is a discontinuity at c, where a < c < b, and both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ convergent, then

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

Theorem (Comparison Theorem)

Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for x on $[a, \infty]$. (1) If $\int_{-\infty}^{\infty} f(x) dx$ is convergent, then $\int_{-\infty}^{\infty} g(x) dx$ is convergent.

(2) If
$$\int_{a}^{\infty} g(x) dx$$
 is divergent, then $\int_{a}^{\infty} f(x) dx$ is divergent.