- A polynomial is a function with variable x of the form

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{n}, \cdots, a_{1}, a_{0}$ are real numbers.

- If $a_{n} \neq 0$, we say the degree of $p(x)$ is n.
- A ratio of polynomials $f(x)=\frac{p(x)}{q(x)}$ is called a rational function.
- If the degree $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, we say that the rational function $f(x)=\frac{p(x)}{q(x)}$ is improper.
- On the other side, if the degree $\operatorname{deg}(p(x))<\operatorname{deg}(q(x))$, we say that the rational function $f(x)=\frac{p(x)}{q(x)}$ is proper.

We can simplify an improper rational function $f(x)=\frac{p(x)}{q(x)}$ as the sum of a polynomial and a proper rational function:

$$
f(x)=s(x)+\frac{r(x)}{q(x)}
$$

such that $\operatorname{deg}(r(x))<\operatorname{deg}(q(x))$.
In this section, the title is $\S 7.4$ Integration of Rational Functions (by Partial Fractions.)

The integration of a polynomial function $s(x)$ is easy. So, we only focus on solving Integration of Proper Rational Functions $\frac{r(x)}{q(x)}$.

We can always express a simple rational function $f(x)=\frac{r(x)}{q(x)}$ as a sum of simpler fractions, called partial fractions:

$$
\text { Type (I): } \frac{A}{(a x+b)^{m}} \quad \text { or } \quad \text { Type (II): } \frac{A x+B}{\left(a x^{2}+b x+c\right)^{n}}
$$

In Type (II), $b^{2}-4 a c<0$.
Case 1. The sum only involves the first type of partial fractions.

Partial fraction technique: Express a simple rational function $f(x)=\frac{r(x)}{q(x)}$ as a sum of partial fractions.
(1) Any polynomial can be decomposed as the products of powers of linear functions $(a x+b)^{m}$ and powers of quadratic polynomials $\left(a x^{2}+b x+c\right)^{n}$.
(2) Then we can suppose the partial fraction decomposition is the sum of

$$
\text { Type (I): } \frac{A}{(a x+b)^{m}} \quad \text { or } \quad \text { Type (II): } \frac{B x+C}{\left(a x^{2}+b x+c\right)^{n}}
$$

Then, solve all A, B, C in the decomposition.

Case 2. The sum involves partial fractions of Type (II).
We need to use the result

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
$$

or the substitution by $x=a \tan \theta$.

