§6.3 Volumes by Cylindrical Shells

Example 1. Region is closed by $y=3 x^{2}-x^{3}$ and $y=0$.

$\S 6.3$ Volumes by Cylindrical Shells

$\S 6.3$ Volumes by Cylindrical Shells

§6.3 Volumes by Cylindrical Shells

$$
V \approx \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x
$$

$\S 6.3$ Volumes by Cylindrical Shells

The volume of the solid S obtained by rotating about the y-axis the region R under the curve $y=f(x)$ from a to b, is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x
$$

Hence, using the definition of definite integral

Definition (Volume by Cylindrical Shells)

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

