§6.1 Areas Between Curves

We can use definite integral $\int_{a}^{b} f(x) d x$ to calculate area of region under the graph of a positive function $f(x)$ and above the x-axis.

Now, we use integral to calculate area of region that lies between the graphs of two continuous functions $f(x)$ and $g(x)$. If $f(x) \geq g(x)$ in the interval $[a, b]$, we can use the following formula to calculate the area.

Areas Between Curves

If $f(x) \geq g(x)$ in the interval $[a, b]$, the area A of the region bounded by the curves $f(x), g(x)$ and the lines $x=a, x=b$ can be computed by

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

§6.1 Areas Between Curves

If we don't have the assumption $f(x) \geq g(x)$, how should we do?

Areas Between Curves

The area A of the region bounded by the curves $f(x), g(x)$ and the lines $x=a, x=b$ can be computed by

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Here $|f(x)-g(x)|$ is the absolute value defined by

$$
|f(x)-g(x)|= \begin{cases}f(x)-g(x) & \text { when } f(x) \geq g(x) \\ g(x)-f(x) & \text { when } f(x) \leq g(x)\end{cases}
$$

Regarding x as a function of y

Same principle holds for finding areas between $x=f(y)$ and $y=g(y)$.

Areas Between Curves

If $f(y) \geq g(y)$ in the interval $[c, d]$, the area A of the region bounded by the curves $f(y), g(y)$ and the lines $y=c, y=d$ can be computed by

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

