§11.9 Representations of Functions as Power Series

Recall that the Geometric Series

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

converges when $|x|<1$, and we have

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

More Generally, we want to express a function $f(x)$ as a power series:

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad \text { for } x \in I
$$

Theorem

If a function $f(x)$ can be written a power series:

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad \text { for }|x-a|<R,
$$

then, the derivative of $f(x)$ is

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}
$$

and the indefinite integral of $f(x)$ is

$$
\int f(x) d x=\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1}+C
$$

