## §11.8 Power Series

## Definition

More generally, a power series is

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

where $c_{n} \in \mathbb{R}$ are constant numbers called coefficients and $x$ is a variable.
A power series may converge for some $x \in \mathbb{R}$ of and diverge for some other $x \in \mathbb{R}$.

## Definition

More generally, a power series centered at a is

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

## Theorem

For a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are only 3 possibilities:
(1) The series converges only when $x=a$
(2) The series converges for all $x$.
(3) There is a number $R>0$ such that the series converges when $|x-a|<R$ and diverges when $|x-a|>R$.

The number $R$ in case (3) is called the radius of convergence of the power series.

The set of all $x$ for which series converges is called the interval of convergence.

