§11.5 The Alternating Series

Definition

Let $\sum b_{n}$ be a positive series, that is $b_{n}>0$ for all n.
Then $\sum(-1)^{n} b_{n}$ or $\sum(-1)^{n+1} b_{n}$ is called an alternating series.

Theorem (Alternating Series Test)

Let $\sum b_{n}$ be a positive series. If b_{n} is decreasing and $\lim _{n \rightarrow \infty} b_{n}=0$, then the alternating series

$$
\sum(-1)^{n+1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots
$$

is convergent.

Remainder Estimate for Alternating Series*

Let $\sum b_{n}$ be a positive, decreasing series such that $\lim _{n \rightarrow \infty} b_{n}=0$.

Theorem (Remainder Estimate for Alternating Series*)

Let $s=\sum b_{n}$ and $s_{n}=\sum_{k=1}^{n} b_{k}$.
If we denote the remainder of the sequence as $R_{n}=s-s_{n}$, then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

