$\S11.4$ The Comparison Tests

Theorem (The Comparison Test)

Suppose both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are **positive** series. 1 If $a_n \le b_n$ for all n, and $\sum b_n$ is convergent, then $\sum a_n$ is convergent. 2 If $a_n \ge b_n$ for all n, and $\sum b_n$ is divergent, then $\sum a_n$ is divergent.

The Limit Comparison Test

Theorem (The Limit Comparison Test)

Suppose both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are **positive** series. If the limit $\lim_{n \to \infty} \frac{a_n}{b_n} = c$

is a positive finite number, **then**

 $\sum a_n$ is convergent if and only if $\sum b_n$ is convergent.