Review: §11.2 Series

Example

Example 3 (Geometric Series $\sum ar^{n-1}$). The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if $\left| r \right| < 1$ and

$$\sum ar^{n-1} = \frac{a}{1-r} \qquad \text{if } |r| < 1.$$

If $|r| \ge 1$, then the geometric series $\sum ar^{n-1}$ is divergent.

Theorem (Divergence Test)

If
$$\lim_{n \to \infty} a_n \neq 0$$
, then the series $\sum a_n$ is divergent

Warning:

If
$$\lim_{n\to\infty} a_n = 0$$
, we know **nothing**!

Example (Harmonic Series)

The Harmonic Series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges, although $\lim_{n\to\infty} \frac{1}{n} = 0$.
(How to know?)

Example. Is the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ convergent or divergent? **Example**. Is the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ convergent or divergent?

$\S{11.3}$ The Integral Test and Estimates of Sums

Suppose f(x) is **continuous**, **positive** and **decreasing** on $[1, \infty]$ and $a_n = f(n)$.

Theorem (The Integral Test)

The series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) dx$ is convergent.

Warning:
$$\sum_{n=1}^{\infty} a_n$$
 and $\int_1^{\infty} f(x) dx$ are convergent to different values!

Example (p-series)

The p-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if $p > 1$.
The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent if $p \le 1$.