$\S{11.1}$ Sequences and Limits

Definition

A sequence is a list of order numbers

$$\{a_1, a_2, a_3, a_4, \ldots, a_n, \ldots\},\$$

which is denoted by

$$\{a_n\}_{n=1}^\infty, \quad \text{or} \quad \{a_n\} \quad \text{for short.}$$

Example

(1). $\{a_n\}_{n=1}^{\infty}$	is	$\{2n-1\}$
-------------------------------	----	------------

(2). $\{b_n\}_{n=1}^{\infty}$ is $\left\{\frac{(-1)^n n}{e^n}\right\}$

(3). $\{c_n\}_{n=1}^{\infty}$ is $\left\{\sqrt{3n}\right\}$

Definition (Limits)

If a sequence $\{a_n\}$ has the limit *L* as $n \to \infty$, we write

$$\lim_{n\to\infty}a_n=L,$$

and say $\{a_n\}$ converges to *L*.

If $\{a_n\}$ has no limit, we say $\{a_n\}$ diverges.

Theorem

If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then, $\lim_{n\to\infty} f(n) = L.$

Definition (Limit L (Precise Definition.))

A sequence $\{a_n\}$ has limit *L* as $n \to \infty$, if for every $\epsilon > 0$ there is a corresponding integer *N* such that

if n > N, then $|a_n - L| < \epsilon$.

Definition (Limit ∞ (Precise Definition.))

A sequence $\{a_n\}$ has limit ∞ as $n \to \infty$, denoted as $\lim_{n\to\infty} a_n = \infty$, if for every positive number M there is an integer N such that

if n > N, then $a_n > M$.

The Limit Laws for functions hold for the limits of sequences

Theorem (Limit Laws)

If $\{a_n\}$ and $\{b_n\}$ are convergent and k is a constant number, then $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$ $\lim_{n\to\infty} ka_n = k \lim_{n\to\infty} a_n$ $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$ $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}$ $\lim_{n\to\infty} (a_n)^p = (\lim_{n\to\infty} a_n)^p \text{ if } p > 0 \text{ and } a_n > 0.$

Theorem

The Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for $n \geq N$, and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then

$$\lim_{n\to\infty}b_n=L$$

Theorem

If
$$\lim_{n\to\infty} |a_n| = 0$$
, then $\lim_{n\to\infty} a_n = 0$

Theorem

Theorem. If $\lim_{n\to\infty} a_n = L$ and the function f(x) is continuous at x = L then

$$\lim_{n\to\infty}f(a_n)=f(L).$$

Definition (Monotonic)

A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is

 $a_1 < a_2 < a_3 < \cdots$.

A sequence $\{a_n\}$ is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$, that is

 $a_1>a_2>a_3>\cdots.$

A sequence $\{a_n\}$ is called **monotonic** if it is either increasing **or** decreasing.

Definition (Bounded)

A sequence $\{a_n\}$ is called **bounded above** if there is a number M such that

 $a_n \leq M$ for all $n \geq 1$

A sequence $\{a_n\}$ is called **bounded below** if there is a number *m* such that

 $m \leq a_n$ for all $n \geq 1$.

A sequence $\{a_n\}$ is called **bounded sequence** if it is bounded above **and** below.

Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.