$\S 11.1$ Sequences and Limits

Definition

A sequence is a list of order numbers

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots\right\}
$$

which is denoted by

$$
\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or } \quad\left\{a_{n}\right\} \quad \text { for short. }
$$

Example

(1). $\left\{a_{n}\right\}_{n=1}^{\infty}$ is $\{2 n-1\}$
(2). $\left\{b_{n}\right\}_{n=1}^{\infty} \quad$ is $\quad\left\{\frac{(-1)^{n} n}{e^{n}}\right\}$
(3). $\left\{c_{n}\right\}_{n=1}^{\infty}$ is $\{\sqrt{3 n}\}$

Definition (Limits)

If a sequence $\left\{a_{n}\right\}$ has the limit L as $n \rightarrow \infty$, we write

$$
\lim _{n \rightarrow \infty} a_{n}=L,
$$

and say $\left\{a_{n}\right\}$ converges to L.
If $\left\{a_{n}\right\}$ has no limit, we say $\left\{a_{n}\right\}$ diverges.

Theorem

If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then,

$$
\lim _{n \rightarrow \infty} f(n)=L
$$

Definition (Limit L (Precise Definition.))

A sequence $\left\{a_{n}\right\}$ has limit L as $n \rightarrow \infty$,
if for every $\epsilon>0$ there is a corresponding integer N such that

$$
\text { if } n>N, \text { then }\left|a_{n}-L\right|<\epsilon
$$

Definition (Limit ∞ (Precise Definition.))

A sequence $\left\{a_{n}\right\}$ has limit ∞ as $n \rightarrow \infty$, denoted as $\lim _{n \rightarrow \infty} a_{n}=\infty$, if for every positive number M there is an integer N such that

$$
\text { if } n>N, \text { then } a_{n}>M .
$$

The Limit Laws for functions hold for the limits of sequences

Theorem (Limit Laws)

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent and k is a constant number, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} k a_{n} & =k \lim _{n \rightarrow \infty} a_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \\
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{p} & =\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p} \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

Theorem

The Squeeze Theorem: If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq N$, and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Theorem

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$

Theorem

Theorem. If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function $f(x)$ is continuous at $x=L$ then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Definition (Monotonic)

A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$, that is

$$
a_{1}<a_{2}<a_{3}<\cdots .
$$

A sequence $\left\{a_{n}\right\}$ is called decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$, that is

$$
a_{1}>a_{2}>a_{3}>\cdots
$$

A sequence $\left\{a_{n}\right\}$ is called monotonic if it is either increasing or decreasing.

Definition (Bounded)

A sequence $\left\{a_{n}\right\}$ is called bounded above if there is a number M such that

$$
a_{n} \leq M \text { for all } n \geq 1
$$

A sequence $\left\{a_{n}\right\}$ is called bounded below if there is a number m such that

$$
m \leq a_{n} \text { for all } n \geq 1
$$

A sequence $\left\{a_{n}\right\}$ is called bounded sequence if it is bounded above and below.

Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.

