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Abstract of Dissertation

Formality is a topological property that arises from the rational homotopy theory devel-

oped by Quillen and Sullivan in 70’s. Roughly speaking, the rational homotopy type of a

formal space is determined by its cohomology algebra. In this thesis, we explore the graded-

formality, filtered-formality, and 1-formality of finitely-generated groups, by studying various

Lie algebras over a field of characteristic 0 attached to such groups, including the associated

graded Lie algebra, the holonomy Lie algebra, and the Malcev Lie algebra. We explain how

these notions behave with respect to split injections, coproducts, direct products, and how

they are inherited by solvable and nilpotent quotients.

We investigate the varied relationships among several algebraic and geometric invariants

of finitely-generated groups, including the aforementioned Lie algebras, commutative differ-

ential graded algebras, Chen Lie algebras, Alexander-type invariants as well as resonance

varieties and characteristic varieties. Significant results arise from the study of the interac-

tions between theses objects, e.g., the tangent cone theorem of Dimca, Papadima and Suciu,

and the Chen ranks formula conjectured by Suciu and proved by Cohen and Schenck.

For a finitely-presented group, we give an explicit formula for the cup product in low

degrees, and an algorithm for computing the holonomy Lie algebra, using a Magnus expansion

method. We also give a presentation for the Chen Lie algebra of a filtered-formal group, and

discuss various approaches to computing the ranks of the graded objects under consideration.

We apply our techniques to several families of braid-like groups: the pure braid groups,

the pure welded braid groups, the virtual pure braid groups, as well as their ‘upper’ variants.

We also discuss several natural homomorphisms between these groups, and various ways to

distinguish among them. We illustrate our approach with examples drawn from a variety of

group-theoretic and topological contexts, such as 1-relator groups, finitely generated torsion-

free nilpotent groups, link groups, and fundamental groups of Seifert fibered manifolds.
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Chapter 1

Introduction

The main focus of this thesis is on algebraic and geometric invariants of finitely generated

groups, including commutative differential graded algebras, various graded or filtered Lie

algebras, several modules over Laurent polynomial rings or polynomial rings, as well as two

types of cohomology jump loci. We investigate the formality properties of finitely generated

groups, which play an important role on studying the structure of these invariants and the

relationships among them. We illustrate our approach with examples drawn from group

theory, geometry and topology, including pure braid groups, pure virtual braids groups,

pure welded braid groups, 1-relator groups, finitely generated torsion-free nilpotent groups,

link groups, and fundamental groups of Seifert fibered manifolds. This thesis is based on my

work with Alex Suciu in papers [143, 144, 145, 146].

1.1 Background and preliminaries

1.1.1 From groups to Lie algebras

Throughout, we will let G be a finitely generated group, and we will let Q be the field of

rational numbers. Our main focus will be on several Q-Lie algebras attached to such a group,

and the way they all connect to each other.
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By far the best known of these Lie algebras is the associated graded Lie algebra, gr(G;Q),

introduced by P. Hall, W. Magnus, and E. Witt in the 1930s, cf. [102]. This is a finitely

generated graded Lie algebra, whose graded pieces are the successive quotients of the lower

central series of G (tensored with Q), and whose Lie bracket is induced from the group

commutator. The quintessential example is the free Lie algebra lie(Qn), which is the associ-

ated graded Lie algebra of the free group on n generators, Fn. For a group G with a finite

presentation, various approaches for finding a presentation for gr(G;Q) have been given by

Lazard [89], Labute [83, 84], Falk–Randell [48], Anick [2], et al.

Closely related is the holonomy Lie algebra, h(G;Q), introduced by T. Kohno in [81],

building on work of K.-T. Chen [28], and further studied by Markl–Papadima [105] and

Papadima–Suciu [117]. This is a quadratic Lie algebra, obtained as the quotient of the free

Lie algebra on H1(G;Q) by the ideal generated by the image of the dual of the cup product

map in degree 1. The holonomy Lie algebra comes equipped with a natural epimorphism

ΦG : h(G;Q)� gr(G;Q), and can be viewed as the quadratic approximation to the associated

graded Lie algebra of G. A presentation for the holonomy Lie algebra of a group with a finite

commutator-relators presentation, was given by Papadima–Suciu [117], using the Magnus

expansion. In this thesis, we further developed this method for any finitely presented group.

The most intricate of these Lie algebras (yet, in many ways, the most important) is the

Malcev Lie algebra, m(G;Q). As shown by A. Malcev in [104], every finitely generated,

torsion-free nilpotent group N is the fundamental group of a nilmanifold, whose correspond-

ing Q-Lie algebra is m(N ;Q). Taking now the nilpotent quotients of G, we may define

m(G;Q) as the inverse limit of the resulting tower of nilpotent Lie algebras, m(G/ΓkG;Q).

By construction, this is a complete, filtered Lie algebra. In two seminal papers, [132, 131],

D. Quillen showed that m(G;Q) is the set of all primitive elements in Q̂G (the completion of

the group algebra of G with respect to the filtration by powers of the augmentation ideal),

and that the associated graded Lie algebra of m(G;Q) is isomorphic to gr(G;Q). In particu-

2



lar, gr(m(G;Q)) is generated in degree 1. If G admits a finite presentation, one can use this

approach to find a presentation for the Malcev Lie algebra m(G;Q), see Massuyeau [109]

and Papadima [116].

1.1.2 Algebraic models and formality

Algebraic models play an important role in algebraic topology, especially in rational homo-

topy theory. They are also very useful in homological algebra, operad theory, and geometry.

The de Rham complex provides a commutative differential graded algebra (cdga) model for

a smooth manifold. More generally, in his foundational paper on rational homotopy theory

[148], D. Sullivan associated to each path-connected space X a cdga model, M(X), called

a ‘minimal model’, which can be viewed as an algebraic approximation to the space. Any

cdga which is quasi-isomorphic to the minimal model is an algebraic model of the space.

There is a close relationship between cdga models of a space X and the Lie algebras

attached to the fundamental group G = π1(X), provided that X is a connected CW-complex

with finitely many 1-cells. As shown by Cenkl and Porter [25], Griffiths and Morgan [63]

and Sullivan [148], the Lie algebra dual to the first stage of the minimal model is isomorphic

to the Malcev Lie algebra m(G;Q). The Chevalley–Eilenberg complex of the Malcev Lie

algebra gives the first stage of the minimal model. As shown in [105] (see also Theorem

2.3.10), the dual Lie algebra of the 1-minimal model of H∗(G;Q) is isomorphic to the degree

completion of the holonomy Lie algebra of G.

Formality is an important property in rational homotopy theory. Roughly speaking, the

rational homotopy type of a simply-connected formal space is determined by its cohomology

algebra over Q. In this thesis, we focus on developing the rational homotopy theory on

non-simply-connected spaces. The space X is said to be formal if the commutative, graded

differential algebra M(X) is quasi-isomorphic to the cohomology ring H∗(X;Q), endowed

with the zero differential. If there exists a cdga morphism from the i-minimal model
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M(X, i) to H∗(X;Q) inducing isomorphisms in cohomology up to degree i and a monomor-

phism in degree i + 1, then X is called i-formal. As shown in [39], the compact Kähler

manifolds are formal spaces. The complements of complex hyperplane arrangements are

also formal spaces [21]. The higher Heisenberg group Hn is (n−1)-formal, but not n-formal,

see Măcinic [99].

All the Lie algebras and the algebraic models mentioned above can be defined over any

field K of characteristic 0. As is well-known, a space X with finite Betti numbers is formal

over Q if and only it is formal over K. This foundational result was proved independently

and in various degrees of generality by Halperin and Stasheff [67], Neisendorfer and Miller

[115], and Sullivan [148].

A finitely generated group G is said to be 1-formal (over Q) if it has a classifying space

X = K(G, 1) which is 1-formal. The 1-formality of X depends only on the fundamental

group G = π1(X). Hence, the study of the various Lie algebras attached to the fundamental

group of a space provides a fruitful way to look at the formality problem. Indeed, the group

G is 1-formal if and only if the Malcev Lie algebra m(G;Q) is isomorphic to the rational

holonomy Lie algebra ofG, completed with respect to the lower central series (LCS) filtration.

1.1.3 Cohomology jumping loci

The cohomology jumping loci associated to a connected CW-complex X of finite-type are

essential tools in this thesis, including resonance varieties and characteristic varieties. The

resonance varieties of X, which originated from the study of complements of hyperplane

arrangements by M. Falk in [50], are homogeneous subvarieties of H1(X;C). More generally,

the resonance varieties of a complex cdga (A∗, d) with finite dimensional A1, recently studied

by Dimca, Papadima, Suciu, and others, [13, 125, 43, 100, 142], are defined by

Ri
k(A, d) = {a ∈ A1 | dim(H i(A; δa)) ≥ k}, where δa(u) = d(u) + a · u for u ∈ Ai. (1.1)
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The resonance varieties of X are the resonance varieties of H∗(X;C) with zero differential,

denoted by Ri
k(X). The characteristic varieties of X are the jumping loci for cohomology

with coefficients in rank 1 local systems,

V ik(X) = {ρ ∈ Hom(π1(X),C∗) | dim(Hi(X;Cρ)) ≥ k}. (1.2)

If a group G admits a finite-type classifying space K(G, 1), the jump loci of the group G

are defined in terms of the jump loci of the corresponding classifying space. The cohomol-

ogy algebra H∗(G,C) may be turned into a family of cochain complexes parametrized by

the affine space H1(G,C), from which one may define the resonance varieties of the group,

Ri
d(G), as the loci where the cohomology of those cochain complexes jumps. The resonance

varieties and characteristic varieties of some classes of such groups have been studied. The

degree one resonance varieties of right-angled Artin groups were described explicitly in [118,

Theorem 5.5]. A complete description of the resonance varieties and the characteristic va-

rieties, in all degrees, is described in [119, Theorem 3.8] for toric complexes associated to

arbitrary finite simplicial complexes. Results relating to the cohomology jump loci of the

complement of a complex hyperplane arrangement can be found in [50, 33, 94].

Best understood are the degree 1 cohomology jump loci, Rk(X) = R1
k(X) and Vk(X) =

V1
k(X), which depend only on the fundamental group G = π1(X). In this case, the tangent

cone to Vk(G) at the origin 1 is contained in Rk(G), see Libgober [93]. As shown in [42] by

Dimca, Papadima and Suciu, these two types of varieties are closely related by the Tangent

Cone Theorem: If G is 1-formal, then TC1(Vk(G)) = Rk(G), and all irreducible components

of Rk(G) are rationally defined linear subspaces of H1(G;C). This yields new and powerful

obstructions for a finitely generated group G to be 1-formal.

1.1.4 Alexander invariants

The Alexander invariants, originating from the study the Alexander polynomials of knots and

links by J.W. Alexander in [1], play an important role in investigating resonance varieties,

5



characteristic varieties and Chen ranks.

Let X be a connected CW-complex, with fundamental group G. Let X ′ → X be the

Galois cover corresponding to the commutator subgroup G′ ⊂ G. Then the Alexander

invariant of X is defined by B(G) := H1(X ′;C) and the action of Gab = G/G′ corresponds

to the action in homology of the group of covering transformations. A useful algebraic

interpretation for the Alexander invariant is given by B(G) = G′/G′′, with the action of Gab

given by conjugation. In [106], W.S. Massey gave a presentation for the Alexander invariant

for the complement of links. In [33, 32], Cohen and Suciu further developed Massey’s method

and gave an explicit presentation for the Alexander invariant of the complement of a complex

hyperplane arrangement using Fox derivatives.

The work of E. Hironaka [71] shows that that the degree 1 characteristic varieties of a

finitely generated group G coincide with the support varieties of its Alexander invariant,

at least away from the origin. A more general statement, valid in arbitrary degrees, was

recently proved in [122]

In a similar fashion, we define the infinitesimal Alexander invariant of a finitely generated,

graded Lie algebra g to be the graded Sym(g1)-module B(g) = g′/g′′. Suppose G is a finitely

presented, commutator-relators group. As shown in [110], for each k ≥ 1, the resonance

variety Rk(G) coincides, at least away from the origin 0 ∈ H1(G;C), with the support

variety of the annihilator of d-th exterior power of the infinitesimal Alexander invariant;

that is,

Rk(G) = Supp
( k∧

B(h(G))
)

:= V

(
Ann

( k∧
B(h(G))

))
. (1.3)

1.1.5 Chen Lie algebras

K.T. Chen in [27] studied the lower central series (LCS) quotients of the maximal metabelian

quotient G/G′′, of a finitely generated group G, which were called Chen groups by Murasugi

in [114], who used them to study the Milnor invariants of links. The associated graded Lie
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algebras gr(G/G′′;C) of the maximal metabelian quotient are called the Chen Lie algebras.

The LCS ranks of the Chen groups are called the Chen ranks, and are denoted by θk(G).

Chen computed the Chen ranks θk(Fn) by introducing a path integral technique associated

to a free group Fn with n generators. Let G be the fundamental group of the complement of

a link of n components with connected linking graph. As conjectured by Murasugi [114] and

proved by Massey–Traldi [108] and Labute [85], the link group G has the same LCS ranks

φk and the same Chen ranks θk as the free group Fn−1, for all k > 1. Furthermore, G has

the same Chen Lie algebra as Fn−1 (see [117]).

As shown by Massey in [106], the Chen ranks of G can be computed from the Alexander

invariant B(G). More precisely, if we view this abelian group as a module over C[Gab],

then filter it by powers of the augmentation ideal, and take the associated graded module,

gr(B(G)), viewed as a module over the symmetric algebra S = Sym(H ⊗ C), we have that

θk+2(G) = dim grk(B(G)) for all k ≥ 0. Similarly, the Chen ranks of a finitely generated,

graded Lie algebra g are defined to be θk(g) = dim(g/g′′)k, and we show that θk+2(g) =

dimB(g)k for all k ≥ 0.

In [31], Cohen and Suciu developed Massey’s method and computed the Chen ranks of the

pure braid groups Pn by finding the Gröbner basis of the corresponding Alexander invariants.

Generalizing a theorem in [117], we connect the Chen Lie algebra and the associated graded

Lie algebra of a filtered-formal group. If G is a filtered-formal group, then the Chen Lie

algebra gr(G/G′′;Q) is isomorphic to gr(G;Q)/ gr(G;Q)′′.

There is a close relationship between Chen ranks and resonance varieties. In [140], Suciu

conjectured that the Chen ranks of an arrangement group G are given by

θk(G) =
∑
m≥2

hm · θk(Fm), for k � 0, (1.4)

where hm is the number of m-dimensional components of R1(G), and Fm is the free group

with m generators. Recently, D. Cohen and Schenck [34] showed that, for a finitely pre-

sented, commutator-relators 1-formal group G, the Chen ranks formula holds, provided the

7



components of R1(G) are zero-isotropic, projectively disjoint, and reduced as schemes.

1.1.6 Summary of algebraic and geometric invariants

We summarize all the algebraic and geometric invariants described above using diagram 1.1

in the next page. The following questions are interesting and important to investigate.

• How to compute or describe these invariants for a finitely presented group?

• How to compute the dimensions or ranks of these graded Lie algebras or modules in

each degree.

• When do the dotted arrows exist? When are the various maps isomorphisms?

• How do these invariants behave with respect to products, coproducts, semidirect prod-

ucts, inclusions, projections, etc.?

• What are the relationships among these invariants?

• Use these invariants to study several families of important spaces and groups.
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G = π1(X) M(G) H∗(G;C)

M(G, i) H≤i+1(G;C) cdgas

ĈG M(G, 1) H≤2(G;C)

M(G) m(G)
Malcev

Lie algebra

ĥ(G)

gr
Î
(ĈG) ∼= grI(CG) ĝr(G)

filtered

Lie algebras

G/G′ gr(G/G′) = g1 g = gr(G) h = h(G)
graded

Lie algebras

G/G′′ gr(G/G′′) g/g′′ h/h′′
Chen

Lie algebras

G′/G′′ gr
Γ̃
(G′/G′′) g′/g′′ h′/h′′

B(G) grI(B(G)) B(g) B(h)

Alexander

invariants

Supp(B(G)) Supp(grI(B(G))) Supp(B(g)) Supp(B(h))
support

varieties

V1(G) TC1(V1(G)) R1(G)
cohomology

jump loci

gr

grÎ

gr

exp

log

∗ ∗

Supp Supp Supp Supp

TC1

grI

gr
Γ̃

gr

gr

· · · · · ·

Research Diagram:

Figure 1.1: Algebraic and geometric invariants of G = π1(X).

Note: 1. The ground field is C. 2. The open triangle arrows are functors. ∗: away from origin.
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1.1.7 Pure braid groups and their relatives

The techniques described above have a large range of applicability in a variety of examples in

group theory, algebraic geometry, low-dimensional topology and geometry. We start with the

braid groups and their relatives, which have showed their importance in several important

fields of mathematics as well as in physics.

Pure braid groups

Let Fn be the free group on generators x1, . . . , xn, and let Aut(Fn) be its automorphism

group. Magnus [101] showed that the map Aut(Fn)→ GLn(Z) which sends an automorphism

to the induced map on the abelianization (Fn)ab = Zn is surjective, with kernel denoted by

IAn. An automorphism of Fn is called a permutation-conjugacy, if it sends each generator

xi to a conjugate of xτ(i), for some permutation τ ∈ Sn.

The classical Artin braid group Bn is the subgroup of Aut(Fn) consisting of those

permutation-conjugacy automorphisms which fix the word x1 · · ·xn ∈ Fn, see [18, 69]. The

kernel of the canonical projection from Bn to the symmetric group Sn is the pure braid

group Pn on n strings, whose classifying space is Confn(C), the configuration space of n

ordered points in the complex plane. The cohomology algebras of the pure braid groups are

computed by Arnold in [3].

Pure welded braid groups

The set of all permutation-conjugacy automorphisms forms a subgroup of Aut(Fn), known

as the welded braid group wBn, cf. [4, 6, 9, 15, 54]. As shown in [54], wBn is isomorphic to a

group of generalised braids with the classical crossing and the welded crossing in Figure 1.3.

The pure welded braid group, wPn = wBn∩IAn, is generated by the Magnus automorphisms

αij (1 ≤ i 6= j ≤ n), which send xi to xjxix
−1
j and leave invariant the remaining generators

of Fn. The subgroup generated by the automorphisms αij with i < j is called the upper

10



pure welded braid group wP+
n . McCool gave presentations for wPn and wP+

n in [112], (also

known as the McCool groups). As shown in [20], the pure welded braid group wPn (wP+
n )

is the fundamental group of the space of configurations of “parallel rings” (of unequal size).

The cohomology algebra of wPn was given in [75], while the cohomology algebra of wP+
n was

given in [29].

Classical move Welded move

Figure 1.2: Untwisted flying rings.

Pure virtual braid groups

Another class of braid-like groups are the virtual braid groups vBn, which were introduced

in [78] and further studied in [6, 9, 79, 7, 76]. As shown by Kamada in [76], any virtual

link can be constructed as the closure of a virtual braid, which is unique up to certain

Reidemeister-type moves. In this thesis, we will be mostly interested in the kernel of the

canonical epimorphism vBn → Sn, called the pure virtual braid group, vPn, and a certain

subgroup of this group, vP+
n , which we call the upper pure virtual braid group. A presentation

for vPn and vP+
n was given by Bardakov in [7], Whether or not the virtual (pure) braid groups

are subgroups of Aut(Fn) is still an open question [7, 62]. The groups vPn and vP+
n were

also independently studied in [11, 91] as groups arising from the Yang-Baxter equations.

Classifying spaces for these groups can be constructed by taking quotients of permutahedra

by suitable actions of the symmetric groups.

The three types of braid crossings mentioned above are depicted in Figure 1.3.
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classical welded virtual

Figure 1.3: Braid crossings.

Pure braid groups on surfaces

Another important class of braid-like groups are the pure braid groups on compact Riemann

surfaces Σg of genus g, denoted by Pg,n. Much work has been done for this class of groups,

see [16, 13, 23, 65], but still there are several unsolved problems. In our future work, we will

compute the resonance varieties of Pg,n, the resonance varieties of the cdga model of Pg,n,

and the Chen ranks of Pg,n and explore their relationship.

The groups mentioned so far fit into the diagram from Figure 1.4. A related diagram can

be found in [4].

IAn Aut(Fn) GLn(Z)

vP+
n vPn vBn Sn

wP+
n wPn wBn Sn

Pn Bn Sn

Pg,n Bg,n Sn

Figure 1.4: Braid-like groups and automorphism groups of free groups.

This work was motivated in good part by the papers [11, 23] of Etingof et al. on the

triangular and quasi-triangular groups, also known as the (upper) pure virtual braid groups.

In §7, we apply the techniques developed here to study the formality properties of such

12



groups. Related results for the pure welded braid groups and other braid-like groups will be

given in §7, §8 and §9.4.

1.2 Summary of main results

1.2.1 Graded formality and filtered formality

We find it useful to separate the 1-formality property of a group G into two complementary

properties: graded formality and filtered formality. More precisely, we say that G is graded-

formal (over Q) if the associated graded Lie algebra gr(G;Q) is isomorphic, as a graded

Lie algebra, to the holonomy Lie algebra h(G;Q). Likewise, we say that G is filtered-formal

(over Q) if the Malcev Lie algebra m = m(G;Q) is isomorphic, as a filtered Lie algebra,

to the completion of its associated graded Lie algebra, ĝr(m), where both m and ĝr(m) are

endowed with the respective inverse limit filtrations. As we show in Proposition 3.3.4, the

group G is 1-formal if and only if it is both graded-formal and filtered-formal.

All four possible combinations of these formality properties occur:

1. Examples of 1-formal groups include finitely generated free groups and free abelian

groups (more generally, right-angled Artin groups), groups with first Betti number

equal to 0 or 1, fundamental groups of compact Kähler manifolds, and fundamental

groups of complements of complex algebraic hypersurfaces.

2. There are many torsion-free, nilpotent groups (Example 3.3.6, or, more generally, 9.1.7)

as well as link groups (Examples 9.2.15 and 9.2.16) which are filtered-formal, but not

graded-formal.

3. There are also finitely presented groups, such as those from Examples 3.3.7, 9.2.6, and

9.2.17 which are graded-formal but not filtered-formal.
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4. Finally, there are groups which enjoy none of these formality properties. Indeed, if

G1 is one of the groups from (2) and G2 is one of the groups from (3), then Theorem

1.2.3 below shows that the product G1 ×G2 and the free product G1 ∗G2 are neither

graded-formal, nor filtered-formal.

For a finite-dimensional, nilpotent Lie algebra m over the field Q, the filtered-formality of

such a Lie algebra coincides with the notions of ‘Carnot’, ‘naturally graded’, ‘homogeneous’

and ‘quasi-cyclic’ which appear in [37, 77, 92].

Recently, D. Bar-Natan has explored the Taylor expansion of any ring R, see [5]. In

the case R = QG, the existence of a Taylor expansion of R is equivalent to saying that G

is filtered-formal. The existence of a quadratic Taylor expansion of R is equivalent to the

1-formality of G.

1.2.2 Minimal model and formality

We start by reviewing in §2.1–§2.2 some basic notions pertaining to filtered and graded Lie

algebras, as well as the notions of quadratic and Koszul algebras, while in §2.3, we analyze in

detail the relationship between the 1-minimal modelM(A, 1) and the dual Lie algebra L(A)

of a differential graded Q-algebra (A, d). The reason for doing this is a result of Sullivan

[148], which gives a functorial isomorphism of pronilpotent Lie algebras, L(A) ∼= m(G;Q),

provided M(A, 1) is a 1-minimal model for a finitely generated group G.

Of particular interest is the case when A is a connected, graded commutative algebra

with dim(A1) < ∞, endowed with the differential d = 0. In Theorem 2.3.10, we show that

L(A) is isomorphic (as a complete, filtered Lie algebra) to the degree completion of the

holonomy Lie algebra of A. In the case when A≤2 = H≤2(G;Q) for some finitely generated

group G, this result recovers the aforementioned characterization of the 1-formality property

of G. Both filtered-formality and graded-formality can be interpreted using the language of

minimal models. More precisely, in §3.2.3, we show the following theorem.
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Theorem 1.2.1. A finitely generated group G is filtered-formal over Q if and only if the

canonical 1-minimal model M(G;Q) is filtered-isomorphic to a 1-minimal model M with

positive Hirsch weights.

The above theorem was suggested to us by R. Porter. He also noted that G is graded-

formal if and only if the 1-minimal model of G is isomorphic to the 1-minimal model of

H∗(G;Q) as bigraded algebras. From this point of view, the work of Morgan [113] implies

that the fundamental groups of complex smooth algebraic varieties are filtered-formal.

1.2.3 Propagation of formality

We investigate the way in which the various formality notions for groups behave with respect

to split injections, coproducts, and direct products. Our first result in this direction is a

combination of Theorem 3.1.17 and 3.3.10, and can be stated as follows.

Theorem 1.2.2. Let G be a finitely generated group, and let K ≤ G be a subgroup. Suppose

there is a split monomorphism ι : K → G. Then:

1. If G is graded-formal, then K is also graded-formal.

2. If G is filtered-formal, then K is also filtered-formal.

3. If G is 1-formal, then K is also 1-formal.

In particular, if a semi-direct product G1 oG2 has one of the above formality properties,

then G2 also has that property; in general, though, G1 will not, as illustrated in Example

3.1.19.

As shown by Dimca et al. [42], both the product and the coproduct of two 1-formal

groups is again 1-formal. Also, as shown by Plantiko [127], the product and coproduct

of two graded-formal groups is again graded-formal. We sharpen these results in the next

theorem, which is a combination of Propositions 3.1.21 and 3.3.12.
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Theorem 1.2.3. Let G1 and G2 be two finitely generated groups. The following conditions

are equivalent.

1. G1 and G2 are graded-formal (respectively, filtered-formal, or 1-formal).

2. G1 ∗G2 is graded-formal (respectively, filtered-formal, or 1-formal).

3. G1 ×G2 is graded-formal (respectively, filtered-formal, or 1-formal).

Both Theorem 1.2.2 and 1.2.3 can be used to decide the formality properties of new

groups from those of known groups. In general, though, even when both G1 and G2 are

1-formal, we cannot conclude that an arbitrary semi-direct product G1 oG2 is 1-formal (see

Example 9.2.17).

The various formality properties are not necessarily inherited by quotient groups. How-

ever, as we shall see in Theorem 1.2.5 and Theorem 3.3.8, respectively, filtered formality is

passed on to the derived quotients and to the nilpotent quotients of a group.

1.2.4 Presentations

In §4.1 to §4.3 we analyze the presentations of the various Lie algebras attached to a finitely

presented group G. Some of the motivation and techniques come from the work of Labute

[83, 84] and Anick [2], who gave presentations for the associated graded Lie algebra gr(G;Q),

provided G has a ‘mild’ presentation.

Our main interest, though, is in finding presentations for the holonomy Lie algebra

h(G;Q) and its solvable quotients. In the special case whenG is a commutator-relators group,

such presentations were given in [117]. To generalize these results to arbitrary finitely pre-

sented groups, we first compute the cup product map ∪ : H1(G;Q)∧H1(G;Q)→ H2(G;Q),

using Fox Calculus and Magnus expansion techniques modelled on the approach of Fenn and

Sjerve from [55]. The next result is a summary of Proposition 4.1.9 and Theorems 4.2.6,

4.3.1, and 4.3.5.
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Theorem 1.2.4. Let G be a group with finite presentation 〈x1, . . . , xn | r1, . . . , rm〉, and let

b = dimH1(G;Q).

1. There exists a group G̃ with echelon presentation 〈x1, . . . , xn | w1, . . . , wm〉 such that

h(G;Q) ∼= h(G̃;Q).

2. The holonomy Lie algebra h(G;Q) is the quotient of the free Q-Lie algebra with gener-

ators y = {y1, . . . , yb} in degree 1 by the ideal I generated by κ2(wn−b+1), . . . , κ2(wm),

where κ2 is determined by the Magnus expansion for G̃.

3. The solvable quotient h(G;Q)/h(G;Q)(i) is isomorphic to lie(y)/(I + lie(i)(y)).

Here we say that G has an ‘echelon presentation’ if the augmented Jacobian matrix of Fox

derivatives of this presentation is in row-echelon form. Theorem 1.2.4 yields an algorithm for

finding a presentation for the holonomy Lie algebra of a finitely presented group, and thus,

a presentation for the associated graded Lie algebra of a finitely presented, graded-formal

group.

1.2.5 Chen Lie algebras and Alexander invariants

In §6.1, we investigate some of the relationships between the lower central series and the

derived series of a finitely generated group, on one hand, and the derived series of the

corresponding Lie algebras, on the other hand.

In [27], Chen studied the lower central series quotients of the maximal metabelian quotient

of a finitely generated free group, and computed their graded ranks. More generally, following

Papadima and Suciu [117], we may define the i-th Chen Lie algebras of a group G as the

associated graded Lie algebras of its solvable quotients, gr(G/G(i);Q). Our next theorem

(which combines Theorem 6.1.5 and Corollary 6.1.7) sharpens and extends the main result

of [117].
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Theorem 1.2.5. Let G be a finitely generated group. For each i ≥ 2, the quotient map

G� G/G(i) induces a natural epimorphism of graded Q-Lie algebras,

Ψ
(i)
G : gr(G;Q)/ gr(G;Q)(i) // // gr(G/G(i);Q) .

Moreover,

1. If G is a filtered-formal group, then each solvable quotient G/G(i) is also filtered-formal,

and the map Ψ
(i)
G is an isomorphism.

2. If G is a 1-formal group, then h(G;Q)/h(G;Q)(i) ∼= gr(G/G(i);Q).

Given a finitely presented group G, the solvable quotients G/G(i) need not be finitely

presented. Thus, finding presentations for the Chen Lie algebra gr(G/G(i)) can be an arduous

task. Nevertheless, Theorem 1.2.5 provides a method for finding such presentations, under

suitable formality assumptions. The theorem can also be used as an obstruction to 1-

formality.

Our next main result (a combination of Propositions 5.2.2, 6.2.2, and 6.2.3), relates the

various Alexander-type invariants associated to a group, as follows.

Theorem 1.2.6. Let G be a finitely generated group with abelianization H, and set S =

Sym(H ⊗ C). There exists then surjective morphisms of graded S-modules,

B(h(G))
ψ // //B(gr(G))

ϕ // // gr(B(G)) . (1.5)

Moreover, if G is graded-formal, then ψ is an isomorphism, and if G is filtered-formal, then

ϕ is an isomorphism.

This result yields the following inequalities between the various types of Chen ranks

associated to a finitely generated group G:

θk(h(G)) ≥ θk(gr(G)) ≥ θk(G), (1.6)

with the first inequality holding as equality if G is graded-formal, and the second inequality

holding as equality if G is filtered-formal.
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1.2.6 Resonance varieties and Chen ranks

Recall from §1.1.3 that the resonance varieties of a group G with finite-type cohomology

algebra, Ri
d(G), are defined as the loci where the cohomology of those cochain complexes

jumps by (1.1), where A = H∗(G;C) and the differential d is zero. We study in §5.1.4 the

behavior of resonance under products and coproducts, obtaining formulas which generalize

those from [122], see Propositions 5.1.3 and 5.1.4.

The Chen ranks formula (1.4) reveals a close relationship between the first resonance

variety and the Chen ranks of G. Recall that Cohen and Schenck [34] showed that, for a

finitely presented, commutator-relators 1-formal group G, the Chen ranks formula holds,

provided the components of R1(G) are zero-isotropic, projectively disjoint, and reduced as

schemes. With the help of Theorem 1.2.4, in Proposition 6.3.2, we show that the theorem

of Cohen and Schenck is still true without the “commutator-relators” assumption.

In §6.3, we analyze the Chen ranks formula in a wider setting, with a view towards

comparing the Chen ranks and the resonance varieties of the pure virtual braid groups.

We start by noting that formula (1.4) may hold even for non-1-formal groups, such as the

fundamental groups of complements of suitably chosen arrangements of planes in R4.

Next, we look at the way the Chen ranks formula behaves well with respect to products

and coproducts of groups. The conclusion may be summarized as follows.

Proposition 1.2.1. If both G1 and G2 satisfy the Chen ranks formula (1.4), then G1 ×G2

also satisfies the Chen ranks formula, but G1 ∗G2 may not.

1.2.7 The pure virtual braids

Bardakov gave in [7] a presentation for the pure virtual braid group vPn, much simpler

than the usual presentation of the pure braid group Pn. As shown in [11], there exits a

monomorphism from Pn to vPn. Moreover, there are split injections vPn → vPn+1, vP+
n →

vP+
n+1 and vP+

n → vPn.
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The pure braid group Pn has center Z, so there is a decomposition Pn ∼= P n × Z. Using

a decomposition of vP3 given by Bardakov, Mikhailov, Vershinin, and Wu in [10], we show

that vP3
∼= P 4 ∗ Z. In this context, it is worth noting that the center of vPn is trivial for

n ≥ 2, and the center of vP+
n is trivial for n ≥ 3, with one possible exception; see Dies and

Nicas [40].

Labute [84] and Anick [2] defined the notion of a ‘mild’ presentation for a group. If

G admits such a presentation, then a presentation for the (complex) associated graded Lie

algebra gr(G) can be obtained from the classical Magnus expansion. In general, though,

finding a presentation for this Lie algebra is an onerous task. In §9.2.3, we prove the following

result.

Proposition 1.2.2. The pure braid groups Pn and the pure virtual braid groups vPn and

vP+
n admit mild presentations if and only n ≤ 3.

Nevertheless, for each n, explicit presentations for the associated graded Lie algebra of Pn

(as well as vPn and vP+
n ) were given in [80, 48] (respectively in [11, 91]). All these associated

graded Lie algebras are isomorphic to the holonomy Lie algebras of the corresponding groups,

i.e., gr(Pn) ∼= h(Pn), gr(vPn) ∼= h(vPn) and gr(vP+
n ) ∼= h(vP+

n ). Furthermore, the universal

enveloping algebras of these graded Lie algebras are Koszul algebras.

Using Koszul duality and some combinatorial manipulations, we find that the LCS ranks

of the groups Gn = Pn, vPn, or vP+
n are given by

φk(Gn) =
1

k

∑
d|k

µ

(
k

d

)[ ∑
m1+2m2+···+nmn=d

(−1)snd(m!)
n∏
j=1

(bn,n−j)
mj

(mj)!

]
, (1.7)

where mj are non-negative integers, sn =
∑[n/2]

i=1 m2i, m =
∑n

i=1mi− 1, and µ is the Möbius

function, while bn,j are the (unsigned) Stirling numbers of the first kind (for Gn = Pn), the

Lah numbers (for Gn = vPn), or the Stirling numbers of the second kind (for Gn = vP+
n ).

The work of Bartholdi et al. [11] and Lee [91] mentioned above shows that the pure

virtual braid group vPn and its subgroup vP+
n are graded-formal, for all n. Furthermore,
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Bartholdi, Enriquez, Etingof, and Rains state that the groups vPn and vP+
n are not 1-formal

for n ≥ 4, and sketch a proof of this claim. One of the aims of this thesis (indeed, the

original motivation for this work) is to provide a detailed proof of this fact.

Theorem 1.2.7. The groups vPn and vP+
n are both 1-formal if n ≤ 3, and they are both

non-1-formal (and thus, not filtered formal) if n ≥ 4.

From Propositions 3.1.21 and 3.3.12, the 1-formality property of groups is preserved

under split injections and (co)products. Consequently, the fact that we have split injections

between the various pure virtual braid groups allows us to reduce the proof of Theorem

1.2.7 to verifying the 1-formality of vP3 and the non-1-formality of vP+
4 . To prove the first

statement, we use the free product decomposition vP3
∼= Z ∗ P 4. For the second statement,

we compute the resonance variety R1
1(vP+

4 ), and use the geometry of this variety, together

with the Tangent Cone Theorem from [42] to reach the desired conclusion.

1.2.8 The pure welded braids

Recall from §1.1.7 that wPn are the pure welded braid groups (McCool groups), with the

subgroups wP+
n upper pure welded braid groups (upper McCool groups).

In [38], D. Cohen showed that

R1(wPn) =
⋃

1≤i<j≤n

Cij ∪
⋃

1≤i<j<k≤n

Cijk (1.8)

where Cij and Cijk are certain linear subspaces of of H1(wPn;C) of dimension 2 and 3,

respectively.

In this thesis, we pursue this line of inquiry by analyzing the resonance varieties and the

Chen Lie algebras of the upper McCool groups.

Theorem 1.2.8 (Theorem 8.4.2). The resonance varieties of the upper McCool groups are

given by

R1(wP+
n ) =

⋃
2≤j<i≤n

Lij,
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where Li,j is the j-dimensional linear subspace of H1(wP+
n ;C) = C(n

2) defined by the equa-

tions 
xi,l + xj,l = 0 for 1 ≤ l ≤ j − 1,

xi,l = 0 for j + 1 ≤ l ≤ i− 1,

xs,t = 0 for s 6= i, s 6= j, and 1 ≤ t < s.

Comparing the resonance varieties of wPn with those of wP+
n , we obtain the following

corollary.

Corollary 1.2.3 (Corollary 7.1.2). There is no epimorphism from wP+
n to wPn for n ≥ 4.

In particular, the inclusion ι : wP+
n → wPn admits no splitting for n ≥ 4.

In [34], Cohen and Schenck showed the full McCool groups satisfy the Chen ranks formula

(1.4), from which they deduce that

θk(wPn) = (k − 1)

(
n

2

)
+ (k2 − 1)

(
n

3

)
. (1.9)

Rather surprisingly, it turns out that the resonance varieties R1(wP+
n ) no longer obey the

hypothesis of [34], and, in fact, the Chen ranks of wP+
n no longer obey formula (1.4). Nev-

ertheless, using a different approach, based on a refinement of the Gröbner basis algorithm

from [31], we find a closed formula for those Chen ranks.

Theorem 1.2.9 (Theorem 8.5.5). The Chen ranks of the upper McCool groups, θk =

θk(wP
+
n ), are given by θ1 =

(
n
2

)
, θ2 =

(
n
3

)
, θ3 = 2

(
n+1

4

)
, and

θk =

(
n+ k − 2

k + 1

)
+ θk−1 =

k∑
i=3

(
n+ i− 2

i+ 1

)
+

(
n+ 1

4

)
for k ≥ 4.

Both Pn and wP+
n are iterated semidirect products of the form Fn−1 o · · ·o F2 o F1. A

question from [29] asks whether or not the groups Pn and wP+
n are isomorphic. We already

know that for n ≤ 3 the answer is yes. As a quick application of this result, we obtain the

following corollary, which answers this question for all n.
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Corollary 1.2.4 (Corollary 8.5.6). For each n ≥ 4, the pure braid group Pn, the upper

McCool group wP+
n , and the direct product Πn :=

∏n−1
i=1 Fi are all non-isomorphic, although

they all do have the same LCS ranks and the same Betti numbers.

The fact that Pn 6∼= Πn for n ≥ 4 was already established in [31], also using the Chen

ranks. The novelty here is the distinction between wP+
n and the other two groups.

1.2.9 Hilbert series

An important aspect in the study of the graded Lie algebras attached to a finitely generated

group G is the computation of the Hilbert series of these objects. If g is such a graded Lie

algebra, and U(g) is its universal enveloping algebra, the Poincaré–Birkhoff–Witt theorem

expresses the graded ranks of g in terms of the Hilbert series of U(g).

In favorable situations, which oftentimes involve the formality notions discussed above,

this approach permits us to determine the LCS ranks φi(G) = dim gri(G;Q) or the Chen

ranks θi(G) = dim gri(G/G
′′;Q), as well as the holonomy versions of these ranks, φ̄i(G) =

dim hi(G;Q) and θ̄i(G) = dim hi(G;Q)/h′′i (G;Q). In this context, the isomorphisms provided

by Theorem 1.2.5, as well as the presentations provided by Theorem 1.2.4 prove to be valuable

tools.

Using these techniques, we compute in §9.2 the ranks φ̄i(G) and θ̄i(G) for one-relator

groups G, while in §9.3 we compute the whole set of ranks for the fundamental groups of

closed, orientable Seifert manifolds.

1.2.10 Nilpotent groups

Our techniques apply especially well to the class of finitely generated, torsion-free nilpotent

groups. Carlson and Toledo [24] studied the 1-formality properties of such groups, while

Plantiko [127] gave a sufficient conditions for such groups to be non-graded-formal. For

nilpotent Lie algebras, the notion of filtered-formality has been studied by Leger [92], Cor-
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nulier [37], Kasuya [77], and others. In particular, Cornulier [37] proves that the systolic

growth of a finitely generated nilpotent group G is asymptotically equivalent to its growth

if and only if the Malcev Lie algebra m(G;Q) is filtered-formal (or, ‘Carnot’), while Kasuya

[77] shows that the variety of flat connections on a filtered-formal (or, ‘naturally graded’),

n-step nilpotent Lie algebra g has a singularity at the origin cut out by polynomials of degree

at most n+ 1.

We investigate in §9.1 the filtered formality of nilpotent groups, and the way this property

interacts with other properties of these groups. The next result combines Theorem 9.1.3 and

Proposition 9.1.8.

Theorem 1.2.10. Let G be a finitely generated, torsion-free nilpotent group.

1. Suppose G is a 2-step nilpotent group with torsion-free abelianization. Then G is

filtered-formal.

2. Suppose G is filtered-formal. Then the universal enveloping algebra U(gr(G;Q)) is

Koszul if and only if G is abelian.

As mentioned previously, nilpotent quotients of finitely generated filtered-formal groups

are filtered-formal. In particular, each n-step, free nilpotent group F/ΓnF is filtered-formal.

A classical example is the unipotent group Un(Z), which is known to be filtered-formal by

Lambe and Priddy [88], but not graded-formal for n ≥ 3.

1.2.11 Further applications

We illustrate our approach with several other classes of finitely presented groups. We first

look at 1-relator groups, whose associated graded Lie algebras were first determined by

Labute in [83]. We give in §9.2.1– §9.2.4 presentations for the holonomy Lie algebra and the

Chen Lie algebras of a 1-relator group, compute the respective Hilbert series, and discuss

the formality properties of these groups.
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It has been known since the pioneering work of W. Massey [107] that fundamental groups

of link complements are not always 1-formal. In fact, as shown by Hain in [64], such groups

need not be graded-formal. However, as shown by Anick [2], Berceanu–Papadima [14], and

Papadima–Suciu [117], if the linking graph is connected, then the link group is graded-formal.

Building on work of Dimca et al. [42], we give in §9.2.5 an example of a link group which is

graded-formal, yet not filtered-formal.

We end in §9.3 with a detailed study of fundamental groups of (orientable) Seifert fibered

manifolds from a rational homotopy viewpoint. Let M be such a manifold. Using Theorem

1.2.4, we find an explicit presentation for the holonomy Lie algebra of π1(M). On the

other hand, using the minimal model of M (as described by Putinar in [130]), we find a

presentation for the Malcev Lie algebra m(π1(M);Q), and we use this information to derive

a presentation for gr(π1(M);Q). As an application, we show that Seifert manifold groups

are filtered-formal, and determine precisely which ones are graded-formal.

In future work, we will investigate the many and varied connections between the char-

acteristic and resonance varieties of spaces and cdga models, and we will explore the rela-

tionship between the ranks of the Chen Lie algebras and the dimensions of the resonance

varieties of the cdga models of groups. We briefly state these projects in the context of

pure braid groups on Riemann surfaces §9.4 and picture groups from quiver representations

§9.5, etc.

We use Macaulay 2, GAP and Mathematica to carry out computations in this thesis.
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Chapter 2

Finitely generated Lie algebras and

formality properties

In this chapter, we first review some definitions and properties relating graded Lie algebras

and filtered Lie algebras, and prove some lemmas which will be useful for the rest of this

thesis. In particular, we investigate the formality properties of a complete filtered Lie algebra.

We then study several relationships between these Lie algebras and associative algebras,

focusing on the notion of quadraticity and Koszul properties. At last, we study the minimal

model and the (partial) formality properties of a differential graded algebra, which are very

important notions in rational homotopy theory. In this thesis, we focus on developing the

theory of the non-simply-connected rational homotopy theory. This chapter is based on the

work in my paper [143] with Alex Suciu.

2.1 Filtered and graded Lie algebras

In this section we study the interactions between filtered Lie algebras, their completions, and

their associated graded Lie algebras, mainly as they relate to the notion of filtered formality.
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2.1.1 Graded Lie algebras

We start by reviewing some standard material on Lie algebras, following the exposition from

the works of Ekedahl and Merkulov [47], Polishchuk and Positselski [128], Quillen [131], and

Serre [136].

Fix a ground field Q of characteristic 0. Let g be a Lie algebra over Q, i.e., a Q-vector

space g endowed with a bilinear operation [ , ] : g × g → g satisfying the Lie identities. We

say that g is a graded Lie algebra if g decomposes as g =
⊕

i≥1 gi and the Lie bracket sends

gi×gj to gi+j, for all i and j. A morphism of graded Lie algebras is a Q-linear map ϕ : g→ h

which preserves the Lie brackets and the degrees.

The most basic example of a graded Lie algebra is constructed as follows. Let V a

Q-vector space. The tensor algebra T (V ) has a natural Hopf algebra structure, with comul-

tiplication ∆ and counit ε the algebra maps given by ∆(v) = v⊗ 1 + 1⊗ v and ε(v) = 0, for

v ∈ V . The free Lie algebra on V is the set of primitive elements, i.e.,

lie(V ) = {x ∈ T (V ) | ∆(x) = x⊗ 1 + 1⊗ x}, (2.1)

with Lie bracket [x, y] = x⊗ y − y ⊗ x and grading induced from T (V ).

Now suppose all elements of V are assigned degree 1 in T (V ). Then the inclusion

ι : lie(V ) → T (V ) identifies lie1(V ) with T1(V ) = V . Furthermore, ι maps lie2(V ) to

T2(V ) = V ⊗ V by sending [v, w] to v ⊗ w − w ⊗ v for each v, w ∈ V ; we thus may

identify lie2(V ) ∼= V ∧ V by sending [v, w] to v ∧ w.

A Lie algebra g is said to be finitely generated if there is an epimorphism ϕ : lie(Qn)→ g

for some n ≥ 1. If, moreover, the Lie ideal r = kerϕ is finitely generated as a Lie algebra,

then g is called finitely presented.

If g is finitely generated and all the generators x1, . . . , xn ∈ lie(Qn) can be chosen to have

degree 1, then we say g is generated in degree 1. If, moreover, the Lie ideal r is homogeneous,

then g is a graded Lie algebra. In particular, if r is generated in degree 2, then we say the

graded Lie algebra g is a quadratic Lie algebra.
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2.1.2 Filtrations

We will be very much interested in this work in Lie algebras endowed with a filtration,

usually but not always enjoying an extra ‘multiplicative’ property. At the most basic level,

a filtration F on a Lie algebra g is a nested sequence of Lie ideals, g = F1g ⊃ F2g ⊃ · · · .

A well-known such filtration is the derived series, Fig = g(i−1), defined by g(0) = g

and g(i) = [g(i−1), g(i−1)] for i ≥ 1. The derived series is preserved by Lie algebra maps.

The quotient Lie algebras g/g(i) are solvable; moreover, if g is a graded Lie algebra, all

these solvable quotients inherit a graded Lie algebra structure. The next lemma (which

will be used in §4.3.2) follows straight from the definitions, using the standard isomorphism

theorems.

Lemma 2.1.1. Let g = lie(V )/r be a finitely generated Lie algebra. Then g/g(i) ∼= lie(V )/(r+

lie(V )(i)). Furthermore, if r is a homogeneous ideal, then this is an isomorphism of graded

Lie algebras.

The existence of a filtration F on a Lie algebra g makes g into a topological vector space,

by defining a basis of open neighborhoods of an element x ∈ g to be {x + Fkg}k∈N. The

fact that each basis neighborhood Fkg is a Lie subalgebra implies that the Lie bracket map

[ , ] : g × g → g is continuous; thus, g is, in fact, a topological Lie algebra. We say that g

is complete (respectively, separated) if the underlying topological vector space enjoys those

properties.

Given an ideal a ⊂ g, there is an induced filtration on it, given by Fka = Fkg∩a. Likewise,

the quotient Lie algebra, g/a, has a naturally induced filtration with terms Fkg/Fka. Let a

be the closure of a in the filtration topology. Then a is a closed ideal of g. Moreover, by the

continuity of the Lie bracket, we have that

[ā, r̄] = [a, r]. (2.2)

Finally, if g is complete (or separated), then g/a is also complete (or separated).
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2.1.3 Completions

For each j ≥ k, there is a canonical projection g/Fjg→ g/Fkg, compatible with the projec-

tions from g to its quotient Lie algebras g/Fkg. The completion of the Lie algebra g with

respect to the filtration F is defined as the limit of this inverse system, i.e.,

ĝ := lim←−
k

g/Fkg =
{

(g1, g2, . . . ) ∈
∞∏
i=1

g/Fig
∣∣ gj ≡ gk mod Fkg for all j > k

}
. (2.3)

Using the fact that Fk(g) is an ideal of g, It is readily seen that ĝ is a Lie algebra, with

Lie bracket defined componentwise. Furthermore, ĝ has a natural inverse limit filtration, F̂ ,

given by

F̂kĝ := F̂kg = lim←−
i≥k
Fkg/Fig = {(g1, g2, . . . ) ∈ ĝ | gi = 0 for all i < k}. (2.4)

Note that F̂kĝ = Fkg, and so each term of the filtration F̂ is a closed Lie ideal of ĝ.

Furthermore, the Lie algebra ĝ, endowed with this filtration, is both complete and separated.

Let α : g → ĝ be the canonical map to the completion. Then α is a morphism of Lie

algebras, preserving the respective filtrations. Clearly, ker(α) =
⋂
k≥1Fkg. Hence, α is

injective if and only if g is separated. Furthermore, α is bijective if and only if g is complete

and separated.

2.1.4 Filtered Lie algebras

A filtered Lie algebra (over the field Q) is a Lie algebra g endowed with a Q-vector filtration

{Fkg}k≥1 satisfying the ‘multiplicativity’ condition

[Frg,Fsg] ⊆ Fr+sg (2.5)

for all r, s ≥ 1. Obviously, this condition implies that each subspace Fkg is a Lie ideal, and

so, in particular, F is a Lie algebra filtration. Let

grF(g) :=
⊕
k≥1

Fkg/Fk+1g. (2.6)
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be the associated graded vector space to the filtration F on g. Condition (2.5) implies that

the Lie bracket map on g descends to a map [ , ] : grF(g) × grF(g) → grF(g), which makes

grF(g) into a graded Lie algebra, with graded pieces given by decomposition (2.6).

A morphism of filtered Lie algebras is a linear map φ : g→ h preserving Lie brackets and

the given filtrations, F and G. Such a morphism induces a morphism of associated graded

Lie algebras, gr(φ) : grF(g)→ grG(h).

If g is a filtered Lie algebra, then its completion, ĝ, is again a filtered Lie algebra. Indeed,

if F is the given multiplicative filtration on g, and F̂ is the completed filtration on ĝ, then

F̂ also satisfies property (2.5). Moreover, the canonical map to the completion, α : g → ĝ,

is a morphism of filtered Lie algebras. It is readily seen that α induces isomorphisms

g/Fkg // ĝ/F̂kĝ , (2.7)

for each k ≥ 1, see e.g. [47] From the 5-lemma, we obtain an isomorphism of graded Lie

algebras,

gr(α) : grF(g) // grF̂(ĝ) . (2.8)

Lemma 2.1.2. Let φ : g → h be a morphism of complete, separated, filtered Lie algebras,

and suppose gr(φ) : grF(g)→ grG(h) is an isomorphism. Then φ is also an isomorphism.

Proof. The map φ induces morphisms φk : g/Fkg→ h/Gkh for all k ≥ 1. By assumption, the

homomorphisms grk(φ) : Fkg/Fk−1g→ Gkh/Gk−1h are isomorphisms, for all k > 1. An easy

induction on k shows that all maps φk are isomorphisms. Hence, the map φ̂ : ĝ → ĥ is an

isomorphism. By assumption, though, g = ĝ and h = ĥ; hence φ = φ̂, and we are done.

Any Lie algebra g comes equipped with a lower central series (LCS) filtration, {Γk(g)}k≥1,

defined by Γ1(g) = g and Γk(g) = [Γk−1(g), g] for k ≥ 2. Clearly, this is a multiplicative

filtration. Any other such filtration {Fk(g)}k≤1 on g is coarser than this filtration; that is,

Γkg ⊆ Fkg, for all k ≥ 1. Any Lie algebra morphism φ : g → h preserves LCS filtrations.

Furthermore, the quotient Lie algebras g/Γkg are nilpotent. For simplicity, we shall write
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gr(g) := grΓ(g) for the associated graded Lie algebra and ĝ for the completion of g with

respect to the LCS filtration Γ. Furthermore, we shall take Γ̂k = Γk as the canonical

filtration on ĝ.

Every graded Lie algebra, g =
⊕

i≥1 gi, has a canonical decreasing filtration induced by

the grading, Fkg =
⊕

i≥k gi. Moreover, if g is generated in degree 1, then this filtration

coincides with the LCS filtration Γk(g). In particular, the associated graded Lie algebra

with respect to F coincides with g. In this case, the completion of g with respect to the

lower central series (or, degree) filtration is called the degree completion of g, and is simply

denoted by ĝ. It is readily seen that ĝ ∼=
∏

i≥1 gi. Therefore, the morphism α : g → ĝ is

injective, and induces an isomorphism g ∼= grΓ̂(ĝ). Moreover, if h is a graded Lie subalgebra

of g, then ĥ = h and

grΓ̂(ĥ) = h. (2.9)

Lemma 2.1.3. If L is a free Lie algebra generated in degree 1, and r is a homogeneous ideal,

then the projection π : L→ L/r induces an isomorphism L̂/r '−→ L̂/r.

Proof. Without loss of generality, we may assume r ⊂ [L,L]. The projection π : L → L/r

extends to an epimorphism between the degree completions, π̂ : L̂ → L̂/r. This morphism

takes the ideal generated by r to 0; thus, by continuity, induces an epimorphism of complete,

filtered Lie algebras, L̂/r̄ � L̂/r. Taking the associated graded, we get an epimorphism

gr(π̂) : gr(L̂/r̄) � gr(L̂/r) = L/r. This epimorphism admits a splitting, induced by the

maps ΓnL + r → Γ̂nL̂ + r̄; thus, gr(π̂) is an isomorphism. The conclusion follows from

Lemma 2.1.5.

2.1.5 Filtered formality

We now consider in more detail the relationship between a filtered Lie algebra g and the

completion of its associated graded Lie algebra, ĝr(g), with the inverse limit filtration. The

following definition will play a key role in the sequel.
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Definition 2.1.4. A complete, filtered Lie algebra g is called filtered-formal if there is a

filtered Lie algebra isomorphism g ∼= ĝr(g) which induces the identity on associated graded

Lie algebras.

This notion appears in the work of Bezrukavnikov [16] and Hain [65], as well as in the

work of Calaque–Enriquez–Etingof [23] under the name of ‘formality’, and in the work of

Lee [91], under the name of ‘weak-formality’. The reasons for our choice of terminology will

become more apparent in §3.2.

It is easy to construct examples of Lie algebras enjoying this property. For instance,

suppose m = ĝ is the completion of a finitely generated, graded Lie algebra g =
⊕

i≥1 gi;

then m is filtered-formal. Moreover, if g has homogeneous presentation g = lie(V )/r, with

V in degree 1, then, by Lemma 2.1.3, the complete, filtered Lie algebra m =
∏

i≥1 gi has

presentation m = l̂ie(V )/r.

Lemma 2.1.5. Let g be a complete, filtered Lie algebra, and let h be a graded Lie algebra.

If there is a Lie algebra isomorphism g ∼= ĥ preserving filtrations, then g is filtered-formal.

Proof. By assumption, there exists a filtered Lie algebra isomorphism φ : g → ĥ. The map

φ induces a graded Lie algebra isomorphism, gr(φ) : gr(g) → h. In turn, the map ψ :=

(gr(φ))−1 induces an isomorphism ψ̂ : ĥ → ĝr(g) of completed Lie algebras. Hence, the

composition ψ̂ ◦φ : g→ ĝr(g) is an isomorphism of filtered Lie algebras inducing the identity

on gr(g).

Corollary 2.1.6. Suppose m is a filtered-formal Lie algebra. There exists then a graded Lie

algebra g such that m is isomorphic to ĝ =
∏

i≥1 gi.

Let us also note for future use that filtered-formality is compatible with extension of

scalars.

Lemma 2.1.7. Suppose m is a filtered-formal Q-Lie algebra, and suppose Q ⊂ K is a field

extension. Then the K-Lie algebra m⊗Q K is also filtered-formal.
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Proof. Follows from the fact that completion commutes with tensor products.

2.1.6 Products and coproducts

The category of Lie algebras admits both products and coproducts. We conclude this section

by showing that filtered formality behaves well with respect to these operations.

Lemma 2.1.8. Let m and n be two filtered-formal Lie algebras. Then m× n is also filtered-

formal.

Proof. By assumption, there exist graded Lie algebras g and h such that m ∼= ĝ =
∏

i≥1 gi

and n ∼= ĥ =
∏

i≥1 hi. We then have

m× n ∼=
(∏
i≥1

gi

)
×
(∏
i≥1

hi

)
=
∏
i≥1

(gi × hi) = ĝ× h. (2.10)

Hence, m× n is filtered-formal.

Now let ∗ denote the usual coproduct (or, free product) of Lie algebras, and let ∗̂ be the

coproduct in the category of complete, filtered Lie algebras. By definition,

m ∗̂ n = m̂ ∗ n = lim←−
k

(m ∗ n)/Γk(m ∗ n). (2.11)

We refer to Lazarev and Markl [90] for a detailed study of this notion.

Lemma 2.1.9. Let m and n be two filtered-formal Lie algebras. Then m ∗̂ n is also filtered-

formal.

Proof. As before, write m = ĝ and n = ĥ, for some graded Lie algebras g and h. The

canonical inclusions, α : g ↪→ m and β : h ↪→ n, induce a monomorphism of filtered Lie

algebras, α̂ ∗ β : ĝ ∗ h→ m̂ ∗ n. Using [90, (9.3)], we infer that the induced morphism between

associated graded Lie algebras, gr(α̂ ∗ β) : gr(ĝ ∗ h)→ gr(m̂ ∗ n), is an isomorphism. Lemma

2.1.2 now implies that α̂ ∗ β is an isomorphism of filtered Lie algebras, thereby verifying the

filtered-formality of m ∗̂ n.
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2.2 Graded algebras and Koszul duality

The notions of graded and filtered algebras are defined completely analogously for an (asso-

ciative) algebra A: the multiplication map is required to preserve the grading, respectively

the filtration on A. In this section we discuss several relationships between Lie algebras and

associative algebras, focussing on the notion of quadratic and Koszul algebras.

2.2.1 Universal enveloping algebras

Given a Lie algebra g over a field Q of characteristic 0, let U(g) be its universal enveloping

algebra. This is the filtered algebra obtained as the quotient of the tensor algebra T (g) by

the (two-sided) ideal I generated by all elements of the form a⊗b−b⊗a− [a, b] with a, b ∈ g.

By the Poincaré–Birkhoff–Witt theorem, the canonical map ι : g→ U(g) is an injection, and

the induced map, Sym(g)→ gr(U(g)), is an isomorphism of graded (commutative) algebras.

Now suppose g is a finitely generated, graded Lie algebra. Then U(g) is isomorphic (as

a graded vector space) to a polynomial algebra in variables indexed by bases for the graded

pieces of g, with degrees set accordingly. Hence, its Hilbert series is given by

Hilb(U(g), t) =
∏
i≥1

(1− ti)− dim(gi). (2.12)

For instance, if g = lie(V ) is the free Lie algebra on a finite-dimensional vector space V

with all generators in degree 1, then dim(gi) = 1
i

∑
d|i µ(d) · ni/d, where n = dimV and

µ : N→ {−1, 0, 1} is the Möbius function.

Finally, suppose g = lie(V )/r is a finitely presented, graded Lie algebra, with generators

in degree 1 and relation ideal r generated by homogeneous elements g1, . . . , gm. Then U(g) is

the quotient of T (V ) by the two-sided ideal generated by ι(g1), . . . , ι(gm), where ι : lie(V ) ↪→

T (V ) is the canonical inclusion. In particular, if g is a quadratic Lie algebra, then U(g) is a

quadratic algebra.
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2.2.2 Quadratic algebras

Now let A be a graded Q-algebra. We will assume throughout that A is non-negatively

graded, i.e., A =
⊕

i≥0Ai, and connected, i.e., A0 = Q. Every such algebra may be realized

as the quotient of a tensor algebra T (V ) by a homogeneous, two-sided ideal I. We will

further assume that dimV <∞.

An algebra A as above is said to be quadratic if A1 = V and the ideal I is generated in

degree 2, i.e., I = 〈I2〉, where I2 = I ∩ (V ⊗ V ). Given a quadratic algebra A = T (V )/I,

identify V ∗ ⊗ V ∗ ∼= (V ⊗ V )∗, and define the quadratic dual of A to be the algebra

A! = T (V ∗)/I⊥, (2.13)

where I⊥ ⊂ T (V ∗) is the ideal generated by the vector subspace I⊥2 := {α ∈ V ∗ ⊗ V ∗ |

α(I2) = 0}. Clearly, A! is again a quadratic algebra, and (A!)! = A.

For any graded algebra A = T (V )/I, we can define a quadrature closure Ā = T (V )/〈I2〉.

Proposition 2.2.1. Let g be a finitely generated graded Lie algebra generated in degree 1.

There is then a unique, functorially defined quadratic Lie algebra, ḡ, such that U(ḡ) = U(g).

Proof. Suppose g has presentation lie(V )/r. Then U(g) has a presentation T (V )/(ι(r)). Set

ḡ = lie(V )/〈r2〉, where r2 = r ∩ lie2(V ); then U(ḡ) has presentation T (V )/〈ι(r2)〉. One can

see that ι(r2) = ι(r) ∩ V ⊗ V .

A commutative graded algebra (for short, a cga) is a graded Q-algebra as above, which

in addition is graded-commutative, i.e., if a ∈ Ai and b ∈ Aj, then ab = (−1)ijba. If all

generators of A are in degree 1, then A can be written as A =
∧

(V )/J , where
∧

(V ) is the

exterior algebra on the Q-vector space V = A1, and J is a homogeneous ideal in
∧

(V ) with

J1 = 0. If, furthermore, J is generated in degree 2, then A is a quadratic cga. The next

lemma follows directly from the definitions.
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Lemma 2.2.2. Let W ⊂ V ∧ V be a linear subspace, and let A =
∧

(V )/〈W 〉 be the

corresponding quadratic cga. Then A! = T (V ∗)/〈ι(W∨)〉, where

W∨ := {α ∈ V ∗ ∧ V ∗ | α(W ) = 0} = W⊥ ∩ (V ∗ ∧ V ∗), (2.14)

and ι : V ∗ ∧ V ∗ ↪→ V ∗ ⊗ V ∗ is the inclusion map, given by x ∧ y 7→ x⊗ y − y ⊗ x.

For instance, if A =
∧

(V ), then A! = Sym(V ∗). Likewise, if A =
∧

(V )/〈V ∧V 〉 = Q⊕V ,

then A! = T (V ∗).

2.2.3 Holonomy Lie algebras

Let A be a commutative graded algebra. Recall we are assuming that A0 = Q and dimA1 <

∞. Because of graded-commutativity, the multiplication map A1⊗A1 → A2 factors through

a linear map µA : A1 ∧A1 → A2. Dualizing this map, and identifying (A1 ∧A1)∗ ∼= A∗1 ∧A∗1,

we obtain a linear map,

∂A = (µA)∗ : A∗2 → A∗1 ∧ A∗1. (2.15)

Finally, identify A∗1 ∧ A∗1 with lie2(A∗1) via the map x ∧ y 7→ [x, y].

Definition 2.2.3. The holonomy Lie algebra of A is the quotient

h(A) = lie(A∗1)/〈im ∂A〉 (2.16)

of the free Lie algebra on A∗1 by the ideal generated by the image of ∂A under the above

identification. Alternatively, using the notation from (2.14), we have that

h(A) = lie(A∗1)/〈ker(µA)∨〉. (2.17)

By construction, h(A) is a quadratic Lie algebra. Moreover, this construction is functorial:

if ϕ : A → B is a morphism of cgas as above, the induced map, lie(ϕ∗1) : lie(B∗1) → lie(A∗1),

factors through a morphism of graded Lie algebras, h(ϕ) : h(B) → h(A). Moreover, if ϕ is

injective, then h(ϕ) is surjective.
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Clearly, the holonomy Lie algebra h(A) depends only on the information encoded in the

multiplication map µA : A1 ∧ A1 → A2. More precisely, let Ā be the quadratic closure of A

defined as

Ā =
∧

(A1)/〈K〉, (2.18)

where K = ker(µA) ⊂ A1 ∧ A1. Then Ā is a commutative, quadratic algebra, which comes

equipped with a canonical homomorphism q : Ā → A, which is an isomorphism in degree 1

and a monomorphism in degree 2. It is readily verified that the induced morphism between

holonomy Lie algebras, h(A)→ h(Ā), is an isomorphism.

The following proposition is a slight generalization of a result of Papadima–Yuzvinsky

[126, Lemma 4.1].

Proposition 2.2.4. Let A be a commutative graded algebra. Then U(h(A)) is a quadratic

algebra, and U(h(A)) = Ā!.

Proof. By the above, Ā =
∧

(A1)/〈K〉, where K = 〈ker(µA)〉. On the other hand, by (2.17)

we have that h(A) = lie(A∗1)/〈K∨〉. Hence, by Lemma 2.2.2, U(h(A)) = T (V ∗)/〈ι(K∨)〉 =

Ā!.

Combining Propositions 2.2.1 and 2.2.4, we can see the relations between the quadratic

closure of a Lie algebra and the holonomy Lie algebra.

Corollary 2.2.5. Let g be a finitely generated graded Lie algebra generated in degree 1. Then

h
(
U(g)

!
)

= ḡ.

Work of Löfwall [97, Theorem 1.1] yields another interpretation of the universal envelop-

ing algebra of the holonomy Lie algebra.

Proposition 2.2.6 ([97]). Let Ext1
A(Q,Q) =

⊕
i≥0 ExtiA(Q,Q)i be the linear strand in the

Yoneda algebra of A. Then U(h(A)) ∼= Ext1
A(Q,Q).
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In particular, the graded ranks of the holonomy Lie algebra h = h(A) are given by∏
n≥1(1− tn)dim(hn) =

∑
i≥0 biit

i, where bii = dimQ ExtiA(Q,Q)i.

The next proposition shows that every quadratic Lie algebra can be realized as the

holonomy Lie algebra of a (quadratic) algebra.

Proposition 2.2.7. Let g be a quadratic Lie algebra. There is then a commutative quadratic

algebra A such that g = h(A).

Proof. By assumption, g has a presentation of the form lie(V )/〈W 〉, where W is a linear

subspace of V ∧ V . Define A =
∧

(V ∗)/〈W∨〉. Then, by (2.17),

h(A) = lie((V ∗)∗)/〈(W∨)∨〉 = lie(V )/〈W 〉, (2.19)

and this completes the proof.

2.2.4 Koszul algebras

Any connected, graded algebra A =
⊕

i≥0Ai has a free, graded A-resolution of the trivial

A-module Q,

· · · ϕ3 // Ab2
ϕ2 // Ab1

ϕ1 // A // Q . (2.20)

Such a resolution is said to be minimal if all the nonzero entries of the matrices ϕi have

positive degrees.

A Koszul algebra is a graded algebra for which the minimal graded resolution of Q is

linear, or, equivalently, ExtA(Q,Q) = Ext1
A(Q,Q). Such an algebra is always quadratic, but

the converse is far from true. If A is a Koszul algebra, then the quadratic dual A! is also a

Koszul algebra, and the following ‘Koszul duality’ formula holds:

Hilb(A, t) · Hilb(A!,−t) = 1. (2.21)

Furthermore, if A is a graded algebra of the form A = T (V )/I, where I is an ideal

admitting a (noncommutative) quadratic Gröbner basis, then A is a Koszul algebra (see [58]

by Fröberg).

38



Corollary 2.2.8. Let A be a connected, commutative graded algebra. If Ā is a Koszul

algebra, then Hilb(Ā,−t) · Hilb(U(h(A)), t) = 1.

Example 2.2.9. Consider the quadratic algebraA =
∧

(u1, u2, u3, u4)/(u1u2−u3u4). Clearly,

Hilb(A, t) = 1 + 4t + 5t2. If A were Koszul, then formula (2.21) would give Hilb(A!, t) =

1 + 4t+ 11t2 + 24t3 + 41t4 + 44t5 − 29t6 + · · · , which is impossible.

Example 2.2.10. The quasitriangular Lie algebra qtrn defined in [11] is generated by xij,

1 ≤ i 6= j ≤ n with relations [xij, xik] + [xij, xjk] + [xik, xjk] = 0 for distinct i, j, k and

[xij, xkl] = 0 for distinct i, j, k, l. The Lie algebra trn is the quotient Lie algebra of qtrn by

the ideal generated by xij + xji for distinct i 6= j. In [11], Bartholdi et al. show that the

quadratic dual algebras U(qtrn)! and U(trn)! are Koszul, and compute their Hilbert series.

They also state that neither qtrn nor trn is filtered-formal for n ≥ 4, and sketch a proof of

this fact. We will provide a detailed proof in Chapter 7.

2.3 Minimal models and (partial) formality

In this section, we discuss two basic notions in non-simply-connected rational homotopy

theory: the minimal model and the (partial) formality properties of a differential graded

algebra.

2.3.1 Minimal models of cdgas

We follow the approach of Sullivan [148], Deligne et al. [39], and Morgan [113], as further

developed by Félix et al. [51, 52, 53], Griffiths and Morgan [63], Halperin and Stasheff [67],

Kohno [81], and Măcinic [99]. We start with some basic algebraic notions.

Definition 2.3.1. A differential graded algebra (for short, a cdga) over a field Q of char-

acteristic 0 is a graded Q-algebra A∗ =
⊕

n≥0A
n equipped with a differential d : A → A of
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degree 1 satisfying ab = (−1)mnba and d(ab) = d(a) · b + (−1)|a|a · d(b) for any a ∈ Am and

b ∈ An. We denote the cdga by (A∗, d) or simply by A∗ if there is no confusion.

A morphism f : A∗ → B∗ between two cdga’s is a degree zero algebra map which

commutes with the differentials. A Hirsch extension (of degree i) is a cdga inclusion

α : (A∗, dA) ↪→ (A∗ ⊗
∧

(V ), d), where V is a Q-vector space concentrated in degree i, while∧
(V ) is the free graded-commutative algebra generated by V , and d sends V into Ai+1. We

say this is a finite Hirsch extension if dimV <∞.

We now come to a crucial definition in rational homotopy theory, due to Sullivan [148].

Definition 2.3.2. A cdga (A∗, d) is called minimal if A0 = Q, and the following two

conditions are satisfied:

1. A∗ =
⋃
j≥0A

∗
j , where A0 = Q, and Aj is a Hirsch extension of Aj−1, for all j ≥ 0.

2. The differential is decomposable, i.e., dA∗ ⊂ A+ ∧ A+, where A+ =
⊕

i≥1A
i.

The first condition implies that A∗ has an increasing, exhausting filtration by the sub-

cdga’s A∗j ; equivalently, A∗ is free as a graded-commutative algebra on generators of degree

≥ 1. (Note that we use the lower-index for the filtration, and the upper-index for the

grading.) The second condition is automatically satisfied if A is generated in degree 1.

Two cdgas A∗ and B∗ are said to be quasi-isomorphic if there is a morphism f : A→ B

inducing isomorphisms in cohomology. The two cdgas are called weakly equivalent (written

A ' B) if there is a sequence of quasi-isomorphisms (in either direction) connecting them.

Likewise, for an integer i ≥ 0, we say that a morphism f : A→ B is an i-quasi-isomorphism

if f ∗ : Hj(A) → Hj(B) is an isomorphism for each j ≤ i and f i+1 : H i+1(A) → H i+1(B) is

injective. Furthermore, we say that A and B are i-weakly equivalent (A 'i B) if there is a

zig-zag of i-quasi-isomorphisms connecting A to B.

The next two lemmas follow directly from the definitions.
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Lemma 2.3.3. Any cdga morphism φ : (A, dA) → (B, dB) extends to a cdga morphism

of Hirsch extensions, φ̄ : (A, dA) ⊗
∧

(x) → (B, dB) ⊗
∧

(y), provided that d(y) = φ(d(x)).

Moreover, if φ is a (quasi-) isomorphism, then so is φ̄.

Lemma 2.3.4. Let α : A → B be the inclusion map of Hirsch extension of degree i + 1.

Then α is an i-quasi-isomorphism.

Given a cdga A, we say that another cdga B is a minimal model for A if B is a minimal

cdga and there exists a quasi-isomorphism f : B → A. Likewise, we say that a minimal

cdga B is an i-minimal model for A if B is generated by elements of degree at most i, and

there exists an i-quasi-isomorphism f : B → A. A basic result in rational homotopy theory

is the following existence and uniqueness theorem, first proved for (full) minimal models by

Sullivan [148], and in full generality by Morgan in [113, Theorem 5.6].

Theorem 2.3.5 ([113, 148]). Each connected cdga (A, d) has a minimal model M(A),

unique up to isomorphism. Likewise, for each i ≥ 0, there is an i-minimal model M(A, i),

unique up to isomorphism.

It follows from the proof of Theorem 2.3.5 that the minimal model M(A) is isomorphic

to a minimal model built from the i-minimal model M(A, i) by means of Hirsch extensions

in degrees i+ 1 and higher. Thus, in view of Lemma 2.3.4, M(A) 'iM(A, i).

2.3.2 Minimal models and holonomy Lie algebras

Let M = (M∗, d) be a minimal cdga over Q, generated in degree 1. Following [113, 81],

let us consider the filtration

Q =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂ M =
⋃
i

Mi, (2.22)

where M1 is the subalgebra of M generated by x ∈ M1 such that dx = 0, and Mi

is the subalgebra of M generated by x ∈ M1 such that dx ∈ Mi−1 for i > 1. Each
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inclusion Mi−1 ⊂ Mi is a Hirsch extension of the form Mi = Mi−1 ⊗
∧

(Vi), where

Vi := ker(H2(Mi−1) → H2(M)). Taking the degree 1 part of the filtration (2.22), we

obtain the filtration

Q =M1
0 ⊂M1

1 ⊂M1
2 ⊂ · · · ⊂ M1. (2.23)

Now assume each of the above Hirsch extensions is finite, i.e., dim(Vi) < ∞ for all i.

Using the fact that d(Vi) ⊂ Mi−1, we see that each dual vector space Li = (M1
i )
∗ acquires

the structure of a Q-Lie algebra by setting

〈[u∗, v∗], w〉 = 〈u∗ ∧ v∗, dw〉 (2.24)

for v, v, w ∈ M1
i . Clearly, d(V1) = 0, and thus L1 = (V1)∗ is an abelian Lie algebra. Using

the vector space decompositionsM1
i =M1

i−1⊕ Vi andM2
i =M2

i−1⊕ (M1
i−1⊗ Vi)⊕

∧2(Vi)

we easily see that the canonical projection Li � Li−1 (i.e., the dual of the inclusion map

Mi−1 ↪→ Mi) has kernel V ∗i , and this kernel is central inside Li. Therefore, we obtain a

tower of finite-dimensional nilpotent Q-Lie algebras,

0 L1
oooo L2

oooo · · ·oooo Lioooo · · ·oooo . (2.25)

The inverse limit of this tower, L = L(M), endowed with the inverse limit filtration,

is a complete, filtered Lie algebra with the property that L/Γ̂i+1L = Li, for each i ≥ 1.

Conversely, from a tower of the form (2.25), we can construct a sequence of finite Hirsch

extensionsMi as in (2.22). It is readily seen that the cdgaMi, with differential defined by

(2.24), coincides with the Chevalley–Eilenberg complex (
∧

(L∗i ), d) associated to the finite-

dimensional Lie algebra Li = L(Mi), as in [70, Section VII]. In particular,

H∗(Mi) ∼= H∗(Li;Q) . (2.26)

The direct limit of the above sequence of Hirsch extensions, M =
⋃
iMi, is a minimal

Q-cdga generated in degree 1, which we denote by M(L). We obtain in this fashion an

adjoint correspondence that sendsM to the pronilpotent Lie algebra L(M) and conversely,
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sends a pronilpotent Lie algebra L to the minimal algebra M(L). Under this correspon-

dence, filtration-preserving cdga morphisms M → N get sent to filtration-preserving Lie

morphisms L(N )→ L(M), and vice-versa.

2.3.3 Positive weights

Following Body et al. [19], Morgan [113], and Sullivan [148], we say that a cga A∗ has

positive weights if each graded piece has a vector space decomposition Ai =
⊕

α∈ZA
i,α with

A1,α = 0 for α ≤ 0, such that xy ∈ Ai+j,α+β for x ∈ Ai,α and y ∈ Aj,β. Furthermore, we say

that a cdga (A∗, d) has positive weights if the underlying cga A∗ has positive weights, and

the differential is homogeneous with respect to those weights, i.e., d(x) ∈ Ai+1,α for x ∈ Ai,α.

Now let (M∗, d) be a minimal cdga generated in degree one, endowed with the canonical

filtration {Mi}i≥0 constructed in (2.22), where each sub-cdgaMi given by a Hirsch exten-

sion of the form Mi−1 ⊗
∧

(Vi). The underlying cgaM∗ possesses a natural set of positive

weights, which we will refer to as the Hirsch weights: simply declare Vi to have weight i, and

extend those weights to M∗ multiplicatively. We say that the cdga (M∗, d) has positive

Hirsch weights if the differential d is homogeneous with respect to those weights. If this is

the case, each sub-cdgaMi also has positive Hirsch weights.

Lemma 2.3.6. Let M = (M∗, d) be a minimal cdga generated in degree one, with dual

Lie algebra L. Then M has positive Hirsch weights if and only if L = ĝr(L).

Proof. As usual, write M =
⋃
Mi, with Mi = Mi−1 ⊗

∧
(Vi). Since M is generated in

degree one, the differential is homogeneous with respect to the Hirsch weights if and only

if d(Vs) ⊂
⊕

i+j=s Vi ∧ Vj, for all s ≥ 1. Passing now to the dual Lie algebra L = L(M)

and using formula (2.24), we see that this condition is equivalent to having [V ∗i , V
∗
j ] ⊂ V ∗i+j,

for all i, j ≥ 1. In turn, this is equivalent to saying that each Lie algebra Li is a graded

Lie algebra with grk(Li) = V ∗k , for each k ≤ i, which means that the filtered Lie algebra

L = lim←−i Li coincides with the completion of its associated graded Lie algebra, ĝr(L).
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Remark 2.3.7. The property that the differential of M be homogeneous with respect to

the Hirsch weights is stronger than saying that the Lie algebra L = L(M) is filtered-formal.

The fact that this can happen is illustrated in Example 9.1.2.

Remark 2.3.8. If a minimal cdga is generated in degree 1 and has positive weights, but

these weights do not coincide with the Hirsch weights, then the dual Lie algebra need not be

filtered-formal. This phenomenon is illustrated in Example 9.1.4: there is a finitely generated

nilpotent Lie algebra m for which the Chevalley–Eilenberg complex M(m) =
∧

(m∗) has

positive weights, but those weights are not the Hirsch weights; moreover, m is not filtered-

formal.

2.3.4 Dual Lie algebra and holonomy Lie algebra

Let (B∗, d) be a cdga, and let A = H∗(B) be its cohomology algebra. Assume A is connected

and dimA1 < ∞, and let µ : A1 ∧ A1 → A2 be the multiplication map. By the discussion

from §2.3.1, there is a 1-minimal model M(B, 1) for (B∗, d), unique up to isomorphism.

A concrete way to build such a model can be found in [39, 63, 113]. The first two steps

of this construction are easy to describe. Set V1 = A1 and define M(B, 1)1 =
∧

(V1), with

differential d = 0. Next, set V2 = ker(µ) and defineM(B, 1)2 =
∧

(V1 ⊕ V2), with d|V2 equal

to the inclusion map V2 ↪→ A1 ∧ A1.

Let L(B) = L(M(B, 1)) be the Lie algebra corresponding to the 1-minimal model of B.

The next proposition, which generalizes a result of Kohno ([81, Lemma 4.9]), relates this Lie

algebra to the holonomy Lie algebra h(A) from Definition 2.2.3.

Proposition 2.3.9. Let φ : L → L(B) be the morphism defined by extending the identity

map of V ∗1 to the free Lie algebra L = lie(V ∗1 ), and let J = ker(φ). There exists then an

isomorphism of graded Lie algebras, h(A) ∼= L/〈J ∩ L2〉, where h(A) is the holonomy Lie

algebra of A = H∗(B).
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Proof. Let gr(φ) : L → grΓ̂(L(B)) be the associated graded morphism of φ. Then the first

graded piece gr1(φ) : V ∗1 → V ∗1 is the identity, while the second graded piece gr2(φ) can

be identified with the Lie bracket map V ∗1 ∧ V ∗1 → V ∗2 , which is the dual of the differential

d : V2 → V1∧V1. From the construction ofM(B, 1)2, there is an isomorphism ker d∗ ∼= imµ∗.

Since J ∩ L2 = ker(gr2(φ)), we have that imµ∗ = J ∩ L2, and the claim follows.

2.3.5 The completion of the holonomy Lie algebra

Let A∗ be a commutative graded Q-algebra with A0 = Q. Proceeding as above, by taking

B = A and d = 0 so that H∗(B) = A, we can construct a 1-minimal model M =M(A, 1)

for the algebra A in a ‘formal’ way, following the approach outlined by Carlson and Toledo

in [24]. (A construction of the full, bigraded minimal model of a cga can be found in [67,

§3].)

As before, set M1 = (
∧

(V1), d = 0) where V1 = A1, and M2 = (
∧

(V1 ⊕ V2), d), where

V2 = ker(µ : A1 ∧ A1 → A2) and d : V2 ↪→ V1 ∧ V1 is the inclusion map. After that, define

inductivelyMi asMi−1⊗
∧

(Vi), where the vector space Vi fits into the short exact sequence

0 // Vi // H2(Mi−1) // im(µ) // 0 , (2.27)

while the differential d includes Vi into V1∧Vi−1 ⊂Mi−1. In particular, the subalgebrasMi

constitute the canonical filtration (2.22) of M, and the differential d preserves the Hirsch

weights on M. For these reasons, we call M =M(A, 1) the canonical 1-minimal model of

A.

The next theorem relates the Lie algebra dual to the 1-minimal model of a cga as above

to its holonomy Lie algebra. A similar result was obtained by Markl and Papadima in [105];

see also Morgan [113, Theorem 9.4] and Remark 3.3.3.

Theorem 2.3.10. Let A∗ be a connected cga with dimA1 < ∞. Let L(A) := L(M(A, 1))

be the Lie algebra corresponding to the 1-minimal model of A, and let h(A) be the holonomy
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Lie algebra of A. There exists then an isomorphism of complete, filtered Lie algebras between

L(A) and the degree completion ĥ(A).

Proof. By Definition 2.2.3, the holonomy Lie algebra of A has presentation h(A) = L/r,

where L = lie(V ∗1 ) and r is the ideal generated by im(µ∗) ⊂ L2. It follows that, for each

i ≥ 1, the nilpotent quotient hi(A) := h(A)/Γi+1h(A) has presentation L/(r + Γi+1L).

Consider now the dual Lie algebra Li(A) = L(Mi). By construction, we have a vector

space decomposition, Li(A) =
⊕

s≤i V
∗
s . The fact that d(Vs) ⊂ V1∧Vs−1 implies that the Lie

bracket maps V ∗1 ∧ V ∗s−1 onto V ∗s , for every 1 < s ≤ i. In turn, this implies that Li(A) is an

i-step nilpotent, graded Lie algebra generated in degree 1, with grs(Li(A)) = V ∗s for s ≤ i.

Let ri be the kernel of the canonical projection πi : L� Li(A). By the Hopf formula, there

is an isomorphism of graded vector spaces between H2(Li(A);Q) and ri/[L, ri], the space of

(minimal) generators for the homogeneous ideal ri. On the other hand, H2(Mi) ∼= H2(Li;Q),

by (2.26). Taking the dual of the exact sequence (2.27), we find that H2(Li(A);Q) ∼=

im(µ∗)⊕ V ∗i+1. We conclude that the ideal ri is generated by im(µ∗) in degree 2 and a copy

of V ∗i+1 in degree i+ 1.

Since gr2(r) = im(µ∗), we infer that
⊕

s≤i grs(ri) =
⊕

s≤i grs(r). Since Li(A) is an i-

step nilpotent Lie algebra,
⊕

s>i grs(ri) = Γi+1L. Therefore, Γi+1L + r = ri. It follows

that the identity map of L induces an isomorphism Li(A) ∼= hi(A), for each i ≥ 1. Hence,

L(A) ∼= ĥ(A), as filtered Lie algebras.

Corollary 2.3.11. The graded ranks of the holonomy Lie algebra of a connected, graded

algebra A are given by dim hi(A) = dimVi, where M =
∧(⊕

i≥1 Vi
)

is the 1-minimal model

of (A, d = 0).

2.3.6 Partial formality and field extensions

The following notion, introduced by Sullivan in [148], and further developed in [39, 63, 99,

113], will play a central role in our study.
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Definition 2.3.12. A cdga (A∗, d) over Q is said to be formal if there exists a quasi-

isomorphismM(A)→ (H∗(A), d = 0). Likewise, (A∗, d) is said to be i-formal if there exists

an i-quasi-isomorphism M(A, i)→ (H∗(A), d = 0).

In [99], Măcinic studies in detail these concepts. Evidently, if A is formal, then it is

i-formal, for all i ≥ 0, and, if A is i-formal, then it is j-formal for every j ≤ i. Moreover, A

is 0-formal if and only if H0(A) = Q.

Lemma 2.3.13 ([99]). A cdga (A∗, d) is i-formal if and only if (A∗, d) is i-weakly equivalent

to (H∗(A), d = 0).

As a corollary, we deduce that i-formality is invariant under i-weakly equivalence.

Corollary 2.3.14. Suppose A 'i B. Then A is i-formal if and only if B is i-formal.

Given a cdga (A, d) over a field Q of characteristic 0, and a field extension Q ⊂ K, let

(A⊗K, d⊗ idK) be the corresponding cdga over K. (If the underlying field Q is understood,

we will usually omit it from the tensor product A⊗QK.) The following result will be crucial

to us in the sequel.

Theorem 2.3.15 (Theorem 6.8 in [67]). Let (A∗, dA) and (B∗, dB) be two cdgas over Q

whose cohomology algebras are connected and of finite type. Suppose there is an isomorphism

of graded algebras, f : H∗(A)→ H∗(B), and suppose f ⊗ idK : H∗(A)⊗K→ H∗(B)⊗K can

be realized by a weak equivalence between (A∗ ⊗K, dA ⊗ idK) and (B∗ ⊗K, dB ⊗ idK). Then

f can be realized by a weak equivalence between (A∗, dA) and (B∗, dB).

This theorem has an important corollary, based on the following lemma. For complete-

ness, we provide proofs for these statements, which are omitted in [67] by Halperin and

Stasheff.

Lemma 2.3.16 ([67]). A cdga (A∗, dA) with H∗(A) of finite-type is formal if and only

if the identity map of H∗(A) can be realized by a weak equivalence between (A∗, dA) and

(H∗(A), d = 0).

47



Proof. The backwards implication is obvious. So assume (A∗, dA) is formal, that is, there is

a zig-zag of quasi-isomorphisms between (A∗, dA) and (H∗(A), d = 0). This yields an iso-

morphism in cohomology, φ : H∗(A)→ H∗(A). The inverse of φ defines a quasi-isomorphism

between (H∗(A), d = 0) and (H∗(A), d = 0). Composing this quasi-isomorphism with the

given zig-zag of quasi-isomorphisms defines a new weak equivalence between (A∗, dA) and

(H∗(A), d = 0), which induces the identity map in cohomology.

Corollary 2.3.17 ([67]). A Q-cdga (A∗, dA) with H∗(A) of finite-type is formal if and

only if the K-cdga (A∗ ⊗K, dA ⊗ idK) is formal.

Proof. As the forward implication is obvious, we only prove the converse. Suppose our K-

cdga is formal. By Lemma 2.3.16, there exists a weak equivalence between (A∗⊗K, dA⊗idK)

and (H∗(A) ⊗ K, d = 0) inducing the identity on H∗(A) ⊗ K. By Theorem 2.3.15, the

map id: H∗(A) → H∗(A) can be realized by a weak equivalence between (A∗, dA) and

(H∗(A), d = 0). That is, (A∗, dA) is formal (over Q).

2.3.7 Field extensions and i-formality

We now use the aforementioned result of Halperin and Stasheff on full formality to establish

an analogous result for partial formality. First we need an auxiliary construction, and a

lemma.

Let M(A, i) be the i-minimal model of a cdga (A∗, dA). The degree i + 1 piece,

M(A, i)i+1, is isomorphic to (ker di+1) ⊕ Ci+1, where di+1 : M(A, i)i+1 → M(A, i)i+2 is the

differential, and Ci+1 is a complement to its kernel. It is readily checked that the vector

subspace

Ii := Ci+1 ⊕
⊕
s≥i+2

M(A, i)s (2.28)
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is an ideal of M(A, i), left invariant by the differential. Consider the quotient cdga,

M[A, i] : =M(A, i)/Ii (2.29)

= Q⊕M(A, i)1 ⊕ · · · ⊕M(A, i)i ⊕ ker di+1.

Lemma 2.3.18. The following statements are equivalent:

1. (A∗, dA) is i-formal.

2. M(A, i) is i-formal.

3. M[A, i] is i-formal.

4. M[A, i] is formal.

Proof. SinceM(A, i) is an i-minimal model for (A∗, dA), the two cdgas are i-quasi-isomorphic.

The equivalence (1) ⇔ (2) follows from Corollary 2.3.14.

Now let ψ : M(A, i) → M[A, i] be the canonical projection. It is readily checked that

the induced homomorphism, ψ∗ : H∗(M(A, i))→ H∗(M[A, i]), is an isomorphism in degrees

up to and including i+ 1. In particular, this shows that M(A, i) is an i-minimal model for

M[A, i]. The equivalence (2) ⇔ (3) again follows from Corollary 2.3.14.

Implication (4) ⇒ (3) is trivial, so it remains to establish (3) ⇒ (4). Assume the cdga

M[A, i] is i-formal. Since M(A, i) is an i-minimal model for M[A, i], there is an i-quasi-

isomorphism β as in diagram (2.30). In particular, the homomorphism, β∗ : H i+1(M(A, i))→

H i+1(M[A, i]), is injective. On the other hand, we know from the previous paragraph that

H i+1(M[A, i]) and H i+1(M(A, i)) have the same dimension; thus, β∗ is an isomorphism in

degree i+ 1, too.

M(A, i)

ψ
����

β //
� u

α

((

(H∗(M[A, i]), 0)

M[A, i] M .'
φoo

γ '

OO
(2.30)
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Let M = M(M[A, i]) be the full minimal model of M[A, i]. As mentioned right after

Theorem 2.3.5, this model can be constructed by Hirsch extensions of degree k ≥ i + 1,

starting from the i-minimal model of M[A, i], which we can take to be M(A, i). Hence,

the inclusion map, α : M(A, i) → M, induces isomorphisms in cohomology up to degree

i, and a monomorphism in degree i + 1. Now, since H i+1(M) has the same dimension as

H i+1(M[A, i]), and thus as H i+1(M(A, i)), the map α∗ is also an isomorphism in degree

i+ 1.

The cdga morphism β extends to a cga map γ : M → H∗(M[A, i]) as in diagram

(2.30), by sending the new generators to zero. Since the target of β vanishes in degrees

k ≥ i + 2 and has differential d = 0, the map γ is a cdga morphism. Furthermore, since

γ ◦ α = β, we infer that γ induces isomorphisms in cohomology in degrees k ≤ i + 1. Since

Hk(M) = Hk(M[A, i]) = 0 for k ≥ i + 2, we conclude that γ∗ is an isomorphism in all

degrees, i.e., γ is a quasi-isomorphism.

Finally, let φ : M→M[A, i] be a quasi-isomorphism from the minimal model ofM[A, i]

to this cdga. The maps φ and γ define a weak equivalence betweenM[A, i] andH∗(M[A, i]),

thereby showing that M[A, i] is formal.

Since H≥i+2(M[A, i]) = 0, the equivalence of conditions (3) and (4) in the above lemma

also follows from the (quite different) proof of Proposition 3.4 from [99]; see Remark 2.3.21

for more on this. We are now ready to prove descent for partial formality of cdgas.

Theorem 2.3.19. Let (A∗, dA) be a cdga over Q, and let Q ⊂ K be a field extension.

Suppose H≤i+1(A) is finite-dimensional. Then (A∗, dA) is i-formal if and only if (A∗ ⊗

K, dA ⊗ idK) is i-formal.

Proof. By Lemma 2.3.18, (A∗, dA) is i-formal if and only if M[A, i] is formal. By construc-

tion, Hq(M[A, i]) equals Hq(A) for q ≤ i, injects into Hq(A) for q = i + 1, and vanishes

for q > i + 1; hence, in view of our hypothesis, H∗(M[A, i]) is of finite-type. By Corollary
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2.3.17, M[A, i] is formal if and only if M[A, i]⊗K is formal. By Lemma 2.3.18 again, this

is equivalent to the i-formality of M[A, i]⊗K.

2.3.8 Formality notions for spaces

To every space X, Sullivan [148] associated in a functorial way a cdga of ‘rational poly-

nomial forms’, denoted A∗PL(X). As shown in [51, §10], there is a natural identification

H∗(A∗PL(X)) = H∗(X,Q) under which the respective induced homomorphisms in cohomol-

ogy correspond. In particular, the weak isomorphism type of A∗PL(X) depends only on the

rational homotopy type of X.

A cdga (A, d) over K is called a model for the space X if A is weakly equivalent to

Sullivan’s algebra APL(X;K) := APL(X) ⊗Q K. In other words, M(A) is isomorphic to

M(X;K) := M(X) ⊗Q K, where M(A) is the minimal model of A and M(X) is the

minimal model of APL(X). In the same vein, A is an i-model for X if (A, d) 'i APL(X;K).

For instance, if X is a smooth manifold, then the de Rham algebra Ω∗dR(X) is a model for

X over R.

A space X is said to be formal over K if the model APL(X;K) is formal, that is, there is

a quasi-isomorphismM(X;K)→ (H∗(X;K), d = 0). Likewise, X is said to be i-formal, for

some i ≥ 0, if there is an i-quasi-isomorphismM(APL(X;K), i)→ (H∗(X;K), d = 0). Note

that X is 0-formal if and only if X is path-connected. Also, since a homotopy equivalence

X ' Y induces an isomorphism H∗(Y ;Q) '−→ H∗(X;Q), it follows from Corollary 2.3.14

that the i-formality property is preserved under homotopy equivalences.

The following theorem of Papadima and Yuzvinsky [126] nicely relates the properties of

the minimal model of X to the Koszulness of its cohomology algebra.

Theorem 2.3.20 ([126]). Let X be a connected space with finite Betti numbers. IfM(X) ∼=

M(X, 1), then H∗(X;Q) is a Koszul algebra. Moreover, if X is formal, then the converse

holds.
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Remark 2.3.21. In [99, Proposition 3.4], Măcinic shows that every i-formal space X for

which H≥i+2(X;Q) vanishes is formal. In particular, the notions of formality and i-formality

coincide for (i+ 1)-dimensional CW-complexes. In general, though, full formality is a much

stronger condition than partial formality.

Remark 2.3.22. There is a competing notion of i-formality, due to Fernández and Muñoz

[56]. As explained in [99], the two notions differ significantly, even for i = 1. In the sequel,

we will use exclusively the classical notion of i-formality given above.

As is well-known, the (full) formality property behaves well with respect to field exten-

sions of the form Q ⊂ K. Indeed, it follows from Halperin and Stasheff’s Corollary 2.3.17

that a connected space X with finite Betti numbers is formal over Q if and only if X is formal

over K. This result was first stated and proved by Sullivan [148], using different techniques.

An independent proof was given by Neisendorfer and Miller [115] in the simply-connected

case.

These classical results on descent of formality may be strengthened to a result on descent

of partial formality. More precisely, using Theorem 2.3.19, we obtain the following immediate

corollary.

Corollary 2.3.23. Let X be a connected space with finite Betti numbers b1(X), . . . , bi+1(X).

Then X is i-formal over Q if and only if X is i-formal over K.
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Chapter 3

Formality of finitely generated groups

We now turn to finitely generated groups, and study the associated graded Lie algebras, the

holonomy Lie algebra, and the Malcev Lie algebras attached to such groups, and the ranks of

these Lie algebras. We specially emphasize on the relationship between these Lie algebras,

relating to the notion of 1-formality and leading to the notions of graded-formality and

filtered-formality. We investigate the propagation properties for these formality properties,

with respect to split injections, products and coproducts. The most intricate of these Lie

algebras, and in many ways, the most important, is the Malcev Lie algebra, for which we

describe several equivalent definitions. The study of filtered formality of the Malcev Lie

algebra relates to many research directions in different fields. This chapter is based on the

work in my papers [143, 145, 146] with Alex Suciu.

3.1 Groups, Lie algebras, and graded formality

In this section, we study two graded Lie algebras associated to a finitely generated group

and the graded formality property.
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3.1.1 Central filtrations on groups

We start with some general background on lower central series and the associated graded

Lie algebra of a group. For more details on this classical topic, we refer to Lazard [89] and

Magnus et al. [102].

Let G be a group. For elements x, y ∈ G, let [x, y] = xyx−1y−1 be their group commu-

tator. Likewise, for subgroups H,K < G, let [H,K] be the subgroup of G generated by all

commutators [x, y] with x ∈ H, y ∈ K.

A (central) filtration on the group G is a decreasing sequence of subgroups, G = F1G >

F2G > F3G > · · · , such that [FrG,FsG] ⊂ Fr+sG. It is readily verified that, for each k > 1,

the group Fk+1G is a normal subgroup of FkG, and the quotient group grFk (G) = FkG/Fk+1G

is abelian. As before, let Q be a field of characteristic 0. The direct sum

grF(G;Q) =
⊕
k≥1

grFk (G)⊗Z Q (3.1)

is a graded Lie algebra over Q, with Lie bracket induced from the group commutator: If

x ∈ FrG and y ∈ FsG, then [x + Fr+1G, y + Fs+1G] = xyx−1y−1 + Fr+s+1G. We can

view grF(−;Q) as a functor from groups to graded Q-Lie algebras. Moreover, grF(G;K) =

grF(G;Q) ⊗Q K, for any field extension Q ⊂ K. (Once again, if the underlying ring in a

tensor product is understood, we will write ⊗ for short.)

Let H be a normal subgroup of G, and let Q = G/H be the quotient group. Define

filtrations on H and Q by F̃kH = FkG ∩H and FkQ = FkG/F̃kH, respectively. We then

have the following classical result of Lazard.

Proposition 3.1.1 (Theorem 2.4 in [89]). The canonical projection G � G/H induces a

natural isomorphism of graded Lie algebras,

grF(G)/ grF̃(H) ' // grF(G/H) .
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3.1.2 The associated graded Lie algebra

Any group G comes endowed with the lower central series (LCS) filtration {ΓkG}k≥1, defined

inductively by Γ1G = G and

Γk+1G = [ΓkG,G]. (3.2)

If ΓkG 6= 1 but Γk+1G = 1, then G is said to be a k-step nilpotent group. In general, though,

the LCS filtration does not terminate.

The Lie algebra gr(G;Q) = grΓ(G;Q) is called the associated graded Lie algebra (over

Q) of the group G. For instance, if F = Fn is a free group of rank n, then gr(F ;Q) is the

free graded Lie algebra lie(Qn). A group homomorphism f : G1 → G2 induces a morphism

of graded Lie algebras, gr(f ;Q) : gr(G1;Q) → gr(G2;Q); moreover, if f is surjective, then

gr(f ;Q) is also surjective.

For each k ≥ 2, the factor group G/Γk(G) is the maximal (k − 1)-step nilpotent quo-

tient of G. The canonical projection G → G/Γk(G) induces an epimorphism gr(G;Q) →

gr(G/Γk(G);Q), which is an isomorphism in degrees s < k.

From now on, unless otherwise specified, we will assume that the group G is finitely

generated. That is, there is a free group F of finite rank, and an epimorphism ϕ : F � G.

Let R = ker(ϕ); then G = F/R is called a presentation for G. Note that the induced

morphism gr(ϕ;Q) : gr(F ;Q)→ gr(G;Q) is surjective. Thus, gr(G;Q) is a finitely generated

Lie algebra, with generators in degree 1.

Let H / G be a normal subgroup, and let Q = G/H. If Γ̃rH = ΓrG ∩H is the induced

filtration on H, it is readily seen that the filtration ΓrQ = ΓrG/Γ̃rH coincides with the LCS

filtration on Q. Hence, by Proposition 3.1.1,

gr(Q) ∼= gr(G)/ grΓ̃(H). (3.3)

Now suppose G = HoQ is a semi-direct product of groups. In general, there is not much

of a relation between the respective associated graded Lie algebras. Nevertheless, we have the
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following well-known result of Falk and Randell [48], which shows that gr(G) = gr(H)ogr(Q)

for ‘almost-direct’ products of groups.

Theorem 3.1.2 (Theorem 3.1 in [48]). Let G = H oQ be a semi-direct product of groups,

and suppose Q acts trivially on Hab. Then the filtrations {Γ̃rH}r≥1 and {ΓrH}r≥1 coincide,

and there is a split exact sequence of graded Lie algebras,

0 // gr(H) // gr(G) // gr(Q) // 0 .

3.1.3 LCS ranks

The next two lemmas give explicit ways to compute the LCS ranks of a group G, under a

common rationality hypothesis for the Hilbert series of the graded Lie algebra U .

Lemma 3.1.3. Suppose there is a polynomial f(t) = 1 +
∑n

i=1 bit
i ∈ Z[t] such that

Hilb(U(gr(G)),−t) · f(t) = 1. (3.4)

Then the LCS ranks of G are given by

φk(G) =
1

k

∑
d|k

µ

(
k

d

)[ ∑
m1+2m2+···+nmn=d

(−1)snd(m!)
n∏
j=1

(bj)
mj

(mj)!

]
, (3.5)

where 0 ≤ mj ∈ Z, sn =
∑[n/2]

i=1 m2i, m =
∑n

i=1 mi − 1 and µ is the Möbius function.

Proof. From formula (2.12) and assumption (3.4), we have that

∞∏
k=1

(1− tk)φk(G) = 1 +
n∑
i=1

bi(−t)i. (3.6)

Taking logarithms on both sides, we find that

∞∑
j=1

∞∑
s=1

φs(G)
tsj

j
=
∞∑
w=1

1

w

(
−

n∑
i=1

bi(−t)i
)w

. (3.7)

Comparing the coefficients of tk on each side gives

∑
d|k

φd(G)
d

k
=

∑
m1+2m2+···+nmn=k

(−1)sn(m!)
n∏
j=1

(bj)
mj

(mj)!
, (3.8)
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where sn =
∑[n/2]

i=1 m2i and m =
∑n

i=1mi− 1. Finally, multiplying both sides by k and using

the Möbius inversion formula yields the desired formula.

The advantage of Lemma 3.1.3 is that it is easy to use it to compute low-index LCS

ranks. For instance, we obtain the following formulas for a group G satisfying (3.4):

φ2(G) =
1

2
(−b1 + b2

1)− b2,

φ3(G) =
1

3
(−b1 + b3

1)− b1b2 + b3,

φ4(G) =
1

4
(−b2

1 + 2b2 + b4
1 + 2b2

2)− b2
1b2 + b1b3 − b4,

φ5(G) =
1

5
(−b1 + b5

1) + b1b
2
2 − b1b4 + b2

1b3 − b3
1b2 − b2b3 + b5.

An alternative way of computing the LCS ranks of a group G satisfying the assumptions

from Lemma 3.1.3 was given by Weigel in [150].

Lemma 3.1.4 ([150]). Suppose there is a polynomial f(t) = 1 +
∑n

i=1 bit
i ∈ Z[t] such that

Hilb(U(gr(G),−t)) · f(t) = 1. Let z1, . . . , zn be the (complex) roots of f(−t). Then the LCS

ranks of G are given by

φk(G) =
1

k

∑
1≤i≤n

∑
d|k

µ

(
k

d

)
1

zdi
. (3.9)

Proposition 3.1.5. Suppose the group G is graded-formal, and its cohomology algebra,

A = H∗(G;C), is Koszul. Then Hilb(U(gr(G)),−t) · Hilb(A, t) = 1.

Proof. Let U = U(gr(G)). and let U ! be its quadratic dual. By assumption, gr(G) = h(A)

is a quadratic Lie algebra. Thus, U is a quadratic algebra. Furthermore, since A is also

quadratic, U = U(h(A)) is isomorphic to A!, the quadratic dual of A, see [126].

On the other hand, since A is Koszul, the Koszul duality formula gives Hilb(A!,−t) ·

Hilb(A, t) = 1. The conclusion follows.

Corollary 3.1.6. Suppose the group G is graded-formal, and its cohomology algebra is Koszul

and finite-dimensional. Then the LCS ranks φk(G) are given by formula (3.5), where bi =

bi(G).
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3.1.4 The holonomy Lie algebra

The holonomy Lie algebra of a finitely generated group was introduced by Kohno [81] fol-

lowing the work of K.-T. Chen [28], and further studied in [105, 117].

Definition 3.1.7. Let G be a finitely generated group. The holonomy Lie algebra of G is

the holonomy Lie algebra of the cohomology ring A = H∗(G;Q), that is,

h(G;Q) = lie(H1(G;Q))/〈im ∂G〉, (3.10)

where ∂G is the dual to the cup-product map ∪G : H1(G;Q) ∧H1(G;Q)→ H2(G;Q).

By construction, h(G;Q) is a quadratic Lie algebra. If f : G1 → G2 is a group homo-

morphism, then the induced homomorphism in cohomology, f ∗ : H1(G2;Q) → H1(G1;Q)

yields a morphism of graded Lie algebras, h(f ;Q) : h(G1;Q) → h(G2;Q). Moreover, if f is

surjective, then h(f ;Q) is also surjective. Finally, h(G;K) = h(G;Q) ⊗Q K, for any field

extension Q ⊂ K

In the definition of the holonomy Lie algebra of G, we used the cohomology ring of a

classifying space K(G, 1). As the next lemma shows, we may replace this space by any other

connected CW-complex with the same fundamental group.

Lemma 3.1.8. Let X be a connected CW-complex with π1(X) = G. Then h(H∗(X;Q)) ∼=

h(G;Q).

Proof. We may construct a classifying space for G by adding cells of dimension 3 and higher

to X in a suitable way. The inclusion map, j : X → K(G, 1), induces a map on cohomology

rings, j∗ : H∗(K(G, 1);Q)→ H∗(X;Q), which is an isomorphism in degree 1 and an injection

in degree 2. Consequently, j2 restricts to an isomorphism from im(∪G) to im(∪X). Taking

duals, we find that im(∂X) = im(∂G). The conclusion follows.

In particular, if KG is the 2-complex associated to a presentation of G, then h(G;Q) ∼=

h(H∗(KG;Q)). Let φ̄n(G) := dim hn(G;Q) be the dimensions of the graded pieces of the
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holonomy Lie algebra of G. The next corollary is an algebraic version of the LCS formula

from Papadima and Yuzvinsky [126], but with no formality assumption.

Corollary 3.1.9. Let X be a connected CW-complex with π1(X) = G, let A = H∗(X;Q) be

its cohomology algebra, and let Ā be the quadratic closure of A. Then
∏

n≥1(1 − tn)φ̄n(G) =∑
i≥0 biit

i, where bii = dim ExtiA(Q,Q)i. Moreover, if Ā is a Koszul algebra, then∏
n≥1

(1− tn)φ̄n = Hilb(Ā,−t).

Proof. The first claim follows from Lemma 3.1.8, the Poincaré–Birkhoff–Witt formula (2.12),

and Löfwall’s formula from Proposition 2.2.6. The second claim follows from the Koszul

duality formula stated in Corollary 2.2.8.

3.1.5 A comparison map

Once again, let G be a finitely generated group. Although the next lemma is known, we

provide a proof, both for the sake of completeness, and for later use.

Lemma 3.1.10 ([105, 117]). There exists a natural epimorphism of graded Q-Lie algebras,

ΦG : h(G;Q) // // gr(G;Q) , (3.11)

inducing isomorphisms in degrees 1 and 2. Furthermore, this epimorphism is natural with

respect to field extensions Q ⊂ K.

Proof. As first noted by Sullivan [147] in a particular case, and proved by Lambe [87] in

general, there is a natural exact sequence

0 // (Γ2G/Γ3G⊗Q)∗
β // H1(G;Q) ∧H1(G;Q) ∪ // H2(G;Q) , (3.12)

where β is the dual of Lie bracket product. In particular, im(∂G) = ker(β∗).

Recall that the associated graded Lie algebra gr(G;Q) is generated by its degree 1 piece,

H1(G;Q) ∼= gr1(G)⊗Q. Hence, there is a natural epimorphism of graded Q-Lie algebras,

ϕG : lie(H1(G;Q)) // // gr(G;Q) , (3.13)
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restricting to the identity in degree 1, and to the Lie bracket map [ , ] :
∧2 gr1(G;Q) →

gr2(G;Q) in degree 2. In the exact sequence (3.12), the image of ∂G coincides with the

kernel of the Lie bracket map. Thus, the morphism ϕG factors through the desired morphism

ΦG. The fact that ΦG commutes with the morphisms h(G;Q) → h(G;K) and gr(G;Q) →

gr(G;K) readily follows.

Corollary 3.1.11. Let V = H1(G;Q). Suppose the associated graded Lie algebra g =

gr(G;Q) has presentation lie(V )/r. Then the holonomy Lie algebra h(G;Q) has presentation

lie(V )/〈r2〉, where r2 = r ∩ lie2(V ). Furthermore, if A = U(g), then h(G;Q) = h
(
Ā!
)
.

Proof. Taking the dual of the exact sequence (3.13), we find that im(∂G) = ker(β∗), where

β : V ∧ V → lie2(V ) is the Lie bracket in lie(V ). Hence, 〈r2〉 = 〈im(∂G)〉 as ideals of lie(V );

thus, h(G;Q) = lie(V )/〈r2〉. The last claim follows from Corollary 2.2.5.

Recall we denote by φn(G) and φ̄n(G) the dimensions on the n-th graded pieces of

gr(G;Q) and h(G;Q), respectively. By Lemma 3.1.10, φ̄n(G) ≥ φn(G), for all n ≥ 1,

and equality always holds for n ≤ 2. Nevertheless, these inequalities can be strict for n ≥ 3.

As a quick application, let us compare the holonomy Lie algebras of G and its nilpotent

quotients.

Proposition 3.1.12. Let G be a finitely generated group. Then,

h(G/ΓkG;Q) =


h(G;Q)/h(G;Q)′ for k = 2,

h(G;Q) for k ≥ 3.

(3.14)

In particular, the holonomy Lie algebra of G depends only on the second nilpotent quotient,

G/Γ3G.

Proof. The case k = 2 is trivial, so let us assume k ≥ 3. By a previous remark, the pro-

jection G→ G/Γk(G) induces an isomorphism gr2(G;Q)→ gr2(G/Γk(G);Q). Furthermore,

H1(G;Q) ∼= H1(G/Γk(G);Q). Using now the dual of the exact sequence (3.12), we see that

im(∂G) = im(∂G/Γk(G)). The desired conclusion follows.
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3.1.6 Graded-formality

We continue our discussion of the associated graded and holonomy Lie algebras of a finitely

generated group with a formality notion that will be important in the sequel.

Definition 3.1.13. A finitely generated group G is graded-formal (over Q) if the canonical

projection ΦG : h(G;Q)� gr(G;Q) is an isomorphism of graded Lie algebras.

This notion was introduced by Lee in [91], where it is called graded 1-formality. Next,

we give two alternate definitions, which oftentimes are easier to verify.

Lemma 3.1.14. A finitely generated group G is graded-formal over Q if and only if gr(G;Q)

is quadratic.

Proof. The forward implication is immediate. So assume gr(G;Q) is quadratic, that is, it

admits a presentation of the form lie(V )/〈U〉, where V is a Q-vector space in degree 1 and

U is a Q-vector subspace of lie2(V ). In particular, V = gr1(G;Q) = H1(G;Q).

From the exact sequence (3.12), we see that the image of ∂G coincides with the kernel

of the Lie bracket map [ , ] :
∧2 gr1(G;Q) → gr2(G;Q), which can be identified with U .

Hence the surjection ϕG : lie(GQ) � gr(G;Q) induces an isomorphism ΦG : h(G;Q) '−→

gr(G;Q).

Lemma 3.1.15. A finitely generated group G is graded-formal over Q if and only if

dimQ hn(G;Q) = dimQ grn(G;Q), for all n ≥ 1.

Proof. The homomorphisms (ΦG)n : hn(G;Q)→ grn(G;Q) are always isomorphisms for n ≤

2 and epimorphisms n ≥ 3. Our assumption, together with the fact that each Q-vector

space hn(G;Q) is finite-dimensional implies that all homomorphisms (ΦG)n are isomorphisms.

Therefore, the map ΦG : h(G;Q)� gr(G;Q) is an isomorphism of graded Lie algebras.

The lemma implies that the definition of graded formality is independent of the choice

of coefficient field K of characteristic 0. More precisely, we have the following corollary.
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Corollary 3.1.16. A finitely generated group G is graded-formal over K if and only if is

graded-formal over Q.

Proof. The dimension of a finite-dimensional vector space does not change upon the exten-

sions of scalars Q ⊂ K. The conclusion follows at once from Lemma 3.1.15.

3.1.7 Split injections

We are now in a position to state and prove the main result of this section, which proves the

first part of Theorem 1.2.2 from the Introduction.

Theorem 3.1.17. Let G be a finitely generated group. Suppose there is a split monomor-

phism ι : K → G. If G is a graded-formal group, then K is also graded-formal.

Proof. In view of our hypothesis, we have an epimorphism σ : G � K such that σ ◦ ι = id.

In particular, K is also finitely generated. Furthermore, the induced maps h(ι) and gr(ι) are

also injective.

Let π : F � G be a presentation for G. There is then an induced presentation for K,

given by the composition σπ : F � K. By Lemma 3.1.10, there exist epimorphisms ΦK and

Φ making the following diagram commute:

h(K;Q)� _

h(ι)

��

ΦK // // gr(K;Q)� _
gr(ι)

��
h(G;Q) Φ // // gr(G;Q) .

(3.15)

If the group G is graded-formal, then Φ is an isomorphism of graded Lie algebras. Hence,

the epimorphism ΦK is also injective, and so K is a graded-formal.

Theorem 3.1.18. Let G = K oQ be a semi-direct product of finitely generated groups, and

suppose G is graded-formal. Then:

1. The group Q is graded-formal.
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2. If, moreover, Q acts trivially on Kab, then K is also graded-formal.

Proof. The first assertion follows at once from Theorem 3.1.17. So assume Q acts trivially

on Kab. By Theorem 3.1.2, there exists a split exact sequence of graded Lie algebras, which

we record in the top row of the next diagram.

0 // gr(K;Q) // gr(G;Q)
qq

// gr(Q;Q)
qq

// 0

h(K;Q) //

OOOO

h(G;Q)
rr

//

∼=

OO

h(Q;Q) //
rr

∼=

OO

0 .

(3.16)

Let ι : K → G be the inclusion map. By the above, we have an epimorphism σ from

gr(G;Q) to gr(K;Q) such that σ ◦ gr(ι) = id. Consequently, gr(K;Q) is finitely generated.

By Corollary 3.1.11, the map σ induces a morphism σ̄ : h(G;Q) → h(G;Q) such that

σ̄ ◦ h(ι) = id. Consequently, h(ι) is injective. Therefore, the morphism h(K;Q)→ gr(K;Q)

is also injective. Hence, K is graded-formal.

If the hypothesis of Theorem 3.1.18, part (2) does not hold, the subgroup K may not be

graded-formal, even when the group G is 1-formal. We illustrate this phenomenon with an

example adapted from [120].

Example 3.1.19. Let K = 〈x, y | [x, [x, y]], [y, [x, y]]〉 be the discrete Heisenberg group.

Consider the semidirect product G = K oφ Z, defined by the automorphism φ : K → K

given by x → y, y → xy. We have that b1(G) = 1, and so G is 1-formal, yet K is not

graded-formal.

3.1.8 Products and coproducts

We conclude this section with a discussion of the functors gr and h and how the notion of

graded formality behaves with respect to products and coproducts.
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Lemma 3.1.20 ([95, 125]). The functors gr and h preserve products and coproducts, that

is, we have the following natural isomorphisms of graded Lie algebras,
gr(G1 ×G2;Q) ∼= gr(G1;Q)× gr(G2;Q)

gr(G1 ∗G2;Q) ∼= gr(G1;Q) ∗ gr(G2;Q),

and


h(G1 ×G2;Q) ∼= h(G1;Q)× h(G2;Q)

h(G1 ∗G2;Q) ∼= h(G1;Q) ∗ h(G2;Q).

Proof. The first statement on the gr(−) functor is well-known, while the second statement

is the main theorem from [95]. The statements regarding the h(−) functor can be found in

[125].

Regarding graded-formality, we have the following result, which sharpens and general-

izes Lemma 4.5 from Plantiko [127], and proves the first part of Theorem 1.2.3 from the

Introduction.

Proposition 3.1.21. Let G1 and G2 be two finitely generated groups. Then, the following

conditions are equivalent.

1. G1 and G2 are graded-formal.

2. G1 ∗G2 is graded-formal.

3. G1 ×G2 is graded-formal.

Proof. Since there exist split injections from G1 and G2 to the product G1 × G2 and the

coproduct G1 ∗ G2, Theorem 3.1.17 shows that implications (2)⇒(1) and (3)⇒(1) hold.

Implications (1)⇒(2) and (1)⇒(3) follow from Lemma 3.1.20 and the naturality of the map

Φ from (3.11).

3.2 Malcev Lie algebras and filtered formality

In this section we consider the Malcev Lie algebra of a finitely generated group, and study

the ensuing notions of filtered formality and 1-formality.
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3.2.1 Prounipotent completions and Malcev Lie algebras

Once again, let G be a finitely generated group, and let {ΓkG}k≥1 be its LCS filtration.

The successive quotients of G by these normal subgroups form a tower of finitely generated,

nilpotent groups,

· · · // G/Γ4G // G/Γ3G // G/Γ2G = Gab . (3.17)

Let Q be a field of characteristic 0. It is possible to replace each nilpotent quotient

Nk = G/ΓkG by Nk ⊗ Q, the (rationally defined) nilpotent Lie group associated to the

discrete, torsion-free nilpotent group Nk/tors(Nk) via a procedure which will be discussed

in more detail in §9.1.1. The corresponding inverse limit,

M(G;Q) = lim←−
k

((G/ΓkG)⊗Q), (3.18)

is a prounipotent Q-Lie group over Q, which is called the prounipotent completion, or Malcev

completion of G over Q. Let Lie((G/ΓkG)⊗Q) be the Lie algebra of the nilpotent Lie group

(G/ΓkG)⊗Q. The pronilpotent Lie algebra

m(G;Q) := lim←−
k

Lie((G/ΓkG)⊗Q), (3.19)

with the inverse limit filtration, is called the Malcev Lie algebra of G (over Q). By construc-

tion, m(−;Q) is a functor from the category of finitely generated groups to the category of

complete, separated, filtered Q-Lie algebras.

In [131], Quillen gave a different construction of this Lie algebra, as follows. The group-

algebra QG has a natural Hopf algebra structure, with comultiplication ∆: QG→ QG⊗QG

given by ∆(g) = g⊗g for g ∈ G, and counit the augmentation map ε : QG→ Q. The powers

of the augmentation ideal I = ker ε form a descending filtration of QG by two-sided ideals;

let Q̂G = lim←−kQG/I
k be the completion of the group-algebra with respect to this filtration.

The comultiplication map ∆ extends to a map ∆̂: Q̂G → Q̂G ⊗̂ Q̂G, making Q̂G into a

complete Hopf algebra. An element x ∈ Q̂G is called ‘primitive’ if ∆̂x = x⊗̂1 + 1⊗̂x. The
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set of all primitive elements in Q̂G, with bracket [x, y] = xy − yx, and endowed with the

induced filtration, is a Lie algebra, isomorphic to the Malcev Lie algebra of G,

m(G;Q) ∼= Prim
(
Q̂G
)
. (3.20)

The filtration topology on Q̂G is a metric topology; hence, the filtration topology on

m(G;Q) is also metrizable, and thus separated. We shall denote by gr(m(G;Q)) the associ-

ated graded Lie algebra of m(G;Q) with respect to the induced inverse limit filtration.

A non-zero element x ∈ Q̂G is called ‘group-like’ if ∆̂x = x⊗̂x. The set of all such

elements, with multiplication inherited from Q̂G, forms a group, which is isomorphic to

M(G;Q). The group G naturally embeds as a subgroup of M(G;Q). Composing this

inclusion with the logarithmic map log : M(G;Q) → m(G;Q), we obtain a map ρ : G →

m(G;Q); see Massuyeau [109] for details. As shown by Quillen in [132], the map ρ induces

an isomorphism of graded Lie algebras,

gr(ρ) : gr(G;Q)
∼= // gr(m(G;Q)) . (3.21)

In particular, gr(m(G;Q)) is generated in degree 1. If G admits a finite presentation, one can

use this approach to find a presentation for the Malcev Lie algebra m(G;Q), see Massuyeau

[109] and Papadima [116].

3.2.2 Minimal models and Malcev Lie algebras

Every group G has a classifying space K(G, 1), which can be chosen to be a connected

CW-complex. Such a CW-complex is unique up to homotopy, and thus, up to rational

homotopy equivalence. Hence, by the discussion from §2.3.8 the weak equivalence type of

the Sullivan algebra A = APL(K(G, 1)) depends only on the isomorphism type of G. By

Theorem 2.3.5, the cdga A ⊗Q Q has a 1-minimal model, M(A ⊗Q Q, 1), unique up to

isomorphism. Moreover, the assignment G;M(A⊗Q Q, 1) is functorial.
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Assume now that the group G is finitely generated. Let M =M(G;Q) be a 1-minimal

model of G, with the canonical filtration constructed in (2.22). The starting point is the

finite-dimensional vector space M1
1 = V1 := H1(G;Q). Each sub-cdga Mi is a Hirsch

extension of Mi−1 by the finite-dimensional vector space Vi := ker(H2(Mi−1)→ H2(A)).

Define L(G;Q) = lim←−i Li(G;Q) as the pronilpotent Lie algebra associated to the 1-

minimal model M(G;Q) in the manner described in §2.3.2, and note that the assignment

G; L(G;Q) is also functorial.

Theorem 3.2.1 ([25, 63, 148]). There exist natural isomorphisms of towers of nilpotent Lie

algebras,

· · · Li−1(G;Q)oo

∼=
��

Li(G;Q)oo

∼=
��

· · ·oo

· · · m(G/ΓiG;Q)oo m(G/Γi+1G;Q)oo · · · .oo

Hence, there is a functorial isomorphism L(G;Q) ∼= m(G;Q) of complete, filtered Lie alge-

bras.

This functorial isomorphism m(G;Q) ∼= L(G;Q), together with the dualization corre-

spondence L(G;Q) ! M(G;Q) define adjoint functors between the category of Malcev

Lie algebras of finitely generated groups and the category of 1-minimal models of finitely

generated groups.

3.2.3 Filtered formality of groups

We now define the notion of filtered formality for groups (also known as weak formality by

Lee [91]), based on the notion of filtered formality for Lie algebras from Definition 2.1.4.

Definition 3.2.2. A finitely generated group G is said to be filtered-formal (over Q) if its

Malcev Lie algebra m(G;Q) is filtered-formal, with respect to the inverse limit filtration.

Here are some more direct ways to think of this notion.
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Proposition 3.2.3. A finitely generated group G is filtered-formal over Q if and only if one

of the following conditions is satisfied.

1. m(G;Q) ∼= ĝr(G;Q) as filtered Lie algebras.

2. m(G;Q) admits a homogeneous presentation.

Proof. (1) We know from Quillen’s isomorphism (3.21) that gr(m(G;Q)) ∼= gr(G;Q). The

forward implication follows straight from the definitions, while the backward implication

follows from Lemma 2.1.5.

(2) Choose a presentation gr(G;Q) = lie(H1(G;Q))/r, where r is a homogeneous ideal.

By Lemma 2.1.3, we have

m(G;Q) = l̂ie(H1(G;Q))/r, (3.22)

which is a homogeneous presentation for m(G;Q). Conversely, if (3.22) holds, then m(G;Q) ∼=

ĝ, where g = lie(H1(G;Q))/r.

The notion of filtered formality can also be interpreted in terms of minimal models.

Let M(G;Q) be the 1-minimal model of G, endowed with the canonical filtration, which

is the minimal cdga dual to the Malcev Lie algebra m(G;Q) under the correspondence

described in §2.3.2. Likewise, let N (G;Q) be the minimal cdga (generated in degree 1)

corresponding to the prounipotent Lie algebra ĝr(G;Q). Recall that both M(G;Q) and

N (G;Q) come equipped with increasing filtrations as in (2.22), which correspond to the

inverse limit filtrations on m(G;Q) and ĝr(G;Q), respectively.

Proposition 3.2.4. A finitely generated group G is filtered-formal over Q if and only if one

of the following conditions is satisfied.

1. there is a filtration-preserving cdga isomorphism between M(G;Q) and N (G;Q).

2. there is a cdga isomorphism between M(G;Q) and N (G;Q) inducing the identity on

first cohomology.
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Proof. (1) Recall Proposition 3.2.3 thatG is filtered-formal if and only if m(G;Q) ∼= ĝr(G;Q),

as filtered Lie algebras. Dualizing, this condition becomes equivalent toM(G;Q) ∼= N (G;Q),

as filtered cdga’s.

(2) Recall that G is filtered-formal if and only if m(G;Q) ∼= ĝr(m(G;Q)) inducing identity

on their associated graded Lie algebras.

Likewise, both M1
1 and N 1

1 can be canonically identified with gr1(G;Q)∗ = H1(G;Q).

The desired conclusion follows.

Here is another description of filtered formality, suggested to us by R. Porter.

Theorem 3.2.5. A finitely generated group G is filtered-formal over Q if and only if the

canonical 1-minimal model M(G;Q) is filtered-isomorphic to a 1-minimal model M with

positive Hirsch weights.

Proof. First suppose G is filtered-formal, and let N = N (G;Q) be the minimal cdga dual

to L = ĝr(G,Q). By Proposition 3.2.4, this cdga is a 1-minimal model for G. Since by

construction L = ĝr(L), Lemma 2.3.6 shows that the differential on N is homogeneous with

respect to the Hirsch weights.

Now suppose M is a 1-minimal model for G over Q, with homogeneous differential on

Hirsch weights. By Lemma 2.3.6 again, the dual Lie algebra L(M) is filtered-formal. On

the other hand, the assumption thatM∼=M(G;Q) and Theorem 3.2.1 together imply that

L(M) ∼= m(G;Q). Hence, the group G is filtered-formal by Definition 3.2.2.

We would like to thank Y. Cornulier for asking whether the next result holds, and for

pointing out the connection it would have with [37, Theorem 3.14].

Proposition 3.2.6. Let G be a finitely generated group, and let Q ⊂ K be a field extension.

Then G is filtered-formal over Q if and only if G is filtered-formal over K.
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3.3 Filtered-formality and 1-formality

In this section, we consider the 1-formality property of finitely generated groups, and the way

it relates to Massey products, graded-formality, and filtered-formality. We also study the

way various formality properties behave under free and direct products, as well as retracts.

3.3.1 1-formality of groups

We start with a basic definition. As usual, let Q be a field of characteristic 0.

Definition 3.3.1. A finitely generated group G is called 1-formal (over Q) if a classifying

space K(G, 1) is 1-formal over Q.

Since any two classifying spaces for G are homotopy equivalent, the discussion from

§2.3.8 shows that this notion is well-defined. A similar argument shows that the 1-formality

property of a path-connected space X depends only on its fundamental group, G = π1(X).

The next, well-known theorem provides an equivalent, purely group-theoretic definition of

1-formality. Although proofs can be found in the literature (see for instance Markl–Papadima

[105], Carlson–Toledo [24], and Remark 3.3.3 below), we provide here an alternative proof,

based on Theorem 2.3.10 and the discussion from §3.2.2.

Theorem 3.3.2. A finitely generated group G is 1-formal over Q if and only if the Malcev

Lie algebra of G is isomorphic to the degree completion of the holonomy Lie algebra h(G;Q).

Proof. LetM(G;Q) =M(APL(K(G, 1)), 1)⊗Q Q be the 1-minimal model of G. The group

G is 1-formal if and only if there exists a cdga morphism M(G;Q) → (H∗(G;Q), d = 0)

inducing an isomorphism in first cohomology and a monomorphism in second cohomology,

i.e., M(G;Q) is a 1-minimal model for (H∗(G;Q), d = 0).

Let L(G;Q) be the dual Lie algebra of M(G;Q). By Theorem 3.2.1, the Malcev Lie

algebra of G is isomorphic to L(G;Q). By Theorem 2.3.10, the degree completion of the

holonomy Lie algebra of G is isomorphic to L(G;Q). This completes the proof.
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Remark 3.3.3. Theorem 3.3.2 admits the following generalization: if G is a finitely gener-

ated group, and if (A, d) is a connected cdga with dimA1 < ∞ whose 1-minimal model is

isomorphic toM(G;Q), then the Malcev Lie algebra m(G;Q) is isomorphic to the completion

with respect to the degree filtration of the Lie algebra h(A, d) := lie((A1)∗)/〈im((d1)∗+µ∗A)〉.

A proof of this result is given by Berceanu et al. in [13]; related results can be found in work

of Bezrukavnikov [16], Bibby–Hilburn [17], and Polishchuk–Positselski [128].

An equivalent formulation of Theorem 3.3.2 is given by Papadima and Suciu in [120]: A

finitely generated group G is 1-formal over Q if and only if its Malcev Lie algebra m(G;Q)

is isomorphic to the degree completion of a quadratic Lie algebra, as filtered Lie algebras.

For instance, if b1(G) equals 0 or 1, then G is 1-formal.

Clearly, finitely generated free groups are 1-formal; indeed, if F is such a group, then

m(F ;Q) ∼= l̂ie(H1(F ;Q)). Other well-known examples of 1-formal groups include funda-

mental groups of compact Kähler manifolds, cf. Deligne et al. [39], fundamental groups of

complements of complex algebraic hypersurfaces, cf. Kohno [81], and the pure braid groups

of surfaces of genus different from 1, cf. Bezrukavnikov [16] and Hain [65].

3.3.2 Massey products

A well-known obstruction to 1-formality is provided by the higher-order Massey products

(introduced in [107]). For our purposes, we will discuss here only triple Massey products of

degree 1 cohomology classes.

Let γ1, γ2 and γ3 be cocycles of degrees 1 in the (singular) chain complex C∗(G;Q), with

cohomology classes ui = [γi] satisfying u1∪u2 = 0 and u2∪u3 = 0. That is, we assume there

are 1-cochains γ12 and γ23 such that dγ12 = γ1∪γ2 and dγ23 = γ2∪γ3. It is readily seen that

the 2-cochain ω = γ12 ∪ γ3 + γ1 ∪ γ23 is, in fact, a cocycle. The set of all cohomology classes

[ω] obtained in this way is the Massey triple product 〈u1, u2, u3〉 of the classes u1, u2 and u3.

Due to the ambiguity in the choice of γ12 and γ23, the Massey triple product 〈u1, u2, u3〉 is a
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representative of the coset

H2(G;Q)/(u1 ∪H1(G;Q) +H1(G;Q) ∪ u3). (3.23)

In [129], Porter gave a topological method for computing cup products products and

Massey products in H2(G;Q). Building on work of Dwyer [44], Fenn and Sjerve gave in [55]

another method for computing these products in the second cohomology of a commutator-

relators group, directly from a presentation of the group. We will briefly review the latter

method in Remark 4.2.8, and use it in the computations from Examples 3.3.6, 9.2.12, and

9.2.15.

If a group G is 1-formal, then all triple Massey products vanish in the quotient Q-vector

space (3.23). However, if G is only graded-formal, these Massey products need not vanish.

As we shall see in Example 9.2.12, even a one-relator group G may be graded-formal, yet

not 1-formal.

3.3.3 Filtered formality, graded formality and 1-formality

The next result pulls together the various formality notions for groups, and establishes the

basic relationship among them.

Proposition 3.3.4. A finitely generated group G is 1-formal if and only if G is graded-formal

and filtered-formal.

Proof. First suppose G is 1-formal. Then, by Theorem 3.3.2, m(G;Q) ∼= ĥ(G;Q), and thus,

gr(G;Q) ∼= h(G;Q), by (3.21). Hence, G is graded-formal, by Lemma 3.1.14. It follows that

m(G;Q) ∼= ĝr(G;Q), and hence G is filtered-formal, by Proposition 3.2.3.

Now suppose G filtered-formal. Then, by Proposition 3.2.3, we have that m(G;Q) ∼=

ĝr(G;Q). Thus, if G is also graded-formal, m(G;Q) ∼= ĥ(G;Q). Hence, G is 1-formal.

Using this proposition, together with Proposition 3.2.6 and Corollary 3.1.16, we obtain

the following corollary.
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Corollary 3.3.5. A finitely generated group G is 1-formal over Q if and only if G is 1-formal

over K.

In other words, the 1-formality property of a finitely generated group is independent of

the choice of coefficient field of characteristic 0.

In general, a filtered-formal group need not be 1-formal. Examples include some of the

free nilpotent groups from Example 9.1.1 or the unipotent groups from Example 9.1.7. In

fact, the triple Massey products in the cohomology of a filtered-formal group need not vanish

(modulo indeterminacy).

Example 3.3.6. Let G = F2/Γ3F2 = 〈x1, x2 | [x1, [x1, x2]] = [x2, [x1, x2]] = 1〉 be the

Heisenberg group. Then G is filtered-formal, yet has non-trivial triple Massey products

〈u1, u1, u2〉 and 〈u2, u1, u2〉 in H2(G;Q). Hence, G is not graded-formal.

As shown by in Hain in [65, 66] the Torelli groups in genus 4 or higher are 1-formal, but

the Torelli group in genus 3 is filtered-formal, yet not graded-formal.

Example 3.3.7. In [11], Bartholdi et al. consider two infinite families of groups. The first

are the quasitriangular groups QTrn, which have presentations with generators xij (1 ≤ i 6=

j ≤ n), and relations xijxikxjk = xjkxikxij and xijxkl = xklxij for distinct i, j, k, l. The

second are the triangular groups Trn, each of which is the quotient of QTrn by the relations

of the form xij = xji for i 6= j. As shown by Lee in [91], the groups QTrn and Trn are all

graded-formal. On the other hand, as indicated in [11], these groups are non-1-formal (and

hence, not filtered-formal) for all n ≥ 4. A detailed proof of this fact will be given in Chapter

7.

3.3.4 Propagation of filtered formality

The next theorem shows that filtered formality is inherited upon taking nilpotent quotients.
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Theorem 3.3.8. Let G be a finitely generated group, and suppose G is filtered-formal. Then

all the nilpotent quotients G/Γi(G) are filtered-formal.

Proof. Set g = gr(G;Q) and m = m(G;Q), and write g =
⊕

k≥1 gk. Then, for each i ≥ 1,

the canonical projection φi : G � G/ΓiG induces an epimorphism of complete, filtered Lie

algebras, m(φi) : m� m(G/ΓiG;Q). In each degree k ≥ i, we have that Γ̂km(G/ΓiG;Q) = 0,

and so m(φi)(Γ̂km) = 0. Therefore, there exists an induced epimorphism

Φk,i : m/Γ̂km // // m(G/ΓiG;Q) . (3.24)

Passing to associated graded Lie algebras, we obtain an epimorphism gr(Φk,i) from

gr(m/Γ̂km) to gr(m(G/ΓiG;Q)), which is readily seen to be an isomorphism for k = i.

Using now Lemma 2.1.2, we conclude that the map Φi,i is an isomorphism of completed,

filtered Lie algebras.

On the other hand, our filtered-formality assumption on G allows us to identify m ∼= ĝ =∏
k≥1 gk. Using now formula (2.7), we find that m/Γ̂km = ĝ/Γ̂kĝ = g/Γkg, for all k ≥ 1.

Using these identifications for k = i, together with the isomorphism Φi,i from above, we

obtain isomorphisms

m(G/ΓiG;Q) ∼= g/Γig ∼= gr(G/ΓiG;Q). (3.25)

This shows that the nilpotent quotient G/ΓiG is filtered-formal, and we are done.

Proposition 3.3.9. Suppose φ : G1 → G2 is a homomorphism between two finitely generated

groups, inducing an isomorphism H1(G1;Q)→ H1(G2;Q) and an epimorphism H2(G1;Q)→

H2(G2;Q). Then we have the following statements.

1. If G2 is 1-formal, then G1 is also 1-formal.

2. If G2 is filtered-formal, then G1 is also filtered-formal.

3. If G2 is graded-formal, then G1 is also graded-formal.
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Proof. A celebrated theorem of Stallings [138] (see also Dwyer [44] and Freedman et al. [57])

insures that the homomorphism φ induces isomorphisms φk : (G1/ΓkG1)⊗Q→ (G2/ΓkG2)⊗

Q, for all k ≥ 1. Hence, φ induces an isomorphism m(φ) : m(G1;Q) → m(G2;Q) between

the respective Malcev completions, thereby proving claim (1). The other two claims follow

directly from (3.21).

3.3.5 Split injections

We are now ready to state and prove the main result of this section, which completes the

proof of Theorem 1.2.2 from the Introduction.

Theorem 3.3.10. Let G be a finitely generated group. Suppose there is a split monomor-

phism ι : K → G. The following statements then hold.

1. If G is filtered-formal, then K is also filtered-formal.

2. If G is 1-formal, then K is also 1-formal.

Proof. By hypothesis, we have an epimorphism σ : G � K such that σ ◦ ι = id. It follows

that the induced maps m(ι) and ĝr(ι) are also split injections.

Let π : F � G be a presentation for G. We then have an induced presentation for K,

given by the composition π1 := σπ : F � K. There is also a map ι1 : F → F which is a lift

of ι, that is, ιπ1 = πι1. Consider the following diagram (for simplicity, we will suppress the

coefficient field Q from the notation).
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J1 l̂ie(F ) ĝr(K)

I1 l̂ie(F ) m(K)

J l̂ie(F ) ĝr(G)

I l̂ie(F ) m(G)

id

id Φ ∼=

Φ1

m(ι1) m(ι)

ĝr(ι)

(3.26)

We have m(ι1) = ĝr(ι1). By assumption, G is filtered-formal; hence, there exists a

filtered Lie algebra isomorphism Φ: m(G)→ ĝr(G) as in diagram (3.26), which induces the

identity on associated graded algebras. It follows that Φ is induced from the identity map of

l̂ie(F ) upon projecting onto source and target, i.e., the bottom right square in the diagram

commutes.

First, we show that the identity map id: l̂ie(F )→ l̂ie(F ) in the above diagram induces an

inclusion map I1 → J1. Suppose there is an element c ∈ l̂ie(F ) such that c ∈ I1 and c /∈ J1,

i.e., [c] = 0 in m(K) and [c] 6= 0 in ĝr(G). Since ĝr(ι) is injective, we have that ĝr(ι)([c]) 6= 0,

i.e., ĝr(ι1)(c) /∈ I. We also have m(ι)([c]) = 0 ∈ m(G), i.e., m(ι1)(c) ∈ J . This contradicts

the fact that the inclusion I ↪→ J is induced by the identity map. Thus, I1 ⊂ J1.

In view of the above, we may define a Lie algebra morphism Φ1 : m(K) → ĝr(K) as the

quotient of the identity on l̂ie(F ). By construction, Φ1 is an epimorphism. We also have

ĝr(ι) ◦ Φ1 = Φ ◦m(ι). Since the maps m(ι), ĝr(ι) and Φ are all injective, the map Φ1 is also

injective. Therefore, Φ1 is an isomorphism, and so the group K is filtered-formal.

Finally, part (2) follows at once from part (1) and Theorem 3.1.17.

This completes the proof of Theorem 1.2.2 from the Introduction. As we shall see in

Example 3.3.7, this theorem is useful for deciding whether certain infinite families of groups

are 1-formal.
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We now proceed with the proof of Theorem 1.2.3. First, we need a lemma.

Lemma 3.3.11 ([42]). Let G1 and G2 be two finitely generated groups. Then m(G1 ×

G2;Q) ∼= m(G1;Q)×m(G2;Q) and m(G1 ∗G2;Q) ∼= m(G1;Q) ∗̂m(G2;Q).

Proposition 3.3.12. For any two finitely generated groups G1 and G2, the following con-

ditions are equivalent.

1. G1 and G2 are filtered-formal.

2. G1 ∗G2 is filtered-formal.

3. G1 ×G2 is filtered-formal.

Proof. Since there exist split injections from G1 and G2 to the product G1×G2 and coproduct

G1 ∗G2, we may apply Theorem 3.3.10 to conclude that implications (2)⇒(1) and (3)⇒(1)

hold. Implications (1)⇒(2) and (1)⇒(3) follow from Lemmas 2.1.8, 2.1.9, and 3.3.11.

Remark 3.3.13. As we shall see in Example 9.2.17, the implication (1)⇒(3) from Propo-

sition 3.3.12 cannot be strengthened from direct products to arbitrary semi-direct products.

More precisely, there exist split extensions of the form G = Fn oα Z, for certain automor-

phisms α ∈ Aut(Fn), such that the group G is not filtered-formal, although of course both

Fn and Z are 1-formal.

Corollary 3.3.14. Suppose G1 and G2 are finitely generated groups such that G1 is not

graded-formal and G2 is not filtered-formal. Then the product G1 ×G2 and the free product

G1 ∗G2 are neither graded-formal, nor filtered-formal.

Proof. Follows at once from Propositions 3.1.21 and 3.3.12.

As mentioned in the Introduction, concrete examples of groups which do not possess

either formality property can be obtained by taking direct products of groups which enjoy

one property but not the other.
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Chapter 4

Magnus expansions and the holonomy

Lie algebra

The free differential calculus on free groups, defined by R. Fox in the 1950s, is an important

tool in the study of Alexander invariants and Alexander polynomials in knot theory. Closely

related to the Fox derivatives, the Magnus expansion is a ring homomorphism from the

group ring of a free group to a non-commutative power series ring. The Magnus expansion

is important in studying the group cohomology in low degrees and holonomy Lie algebras.

In this chapter, we construct a similar Magnus expansion for a finitely presented group. We

use this Magnus-type expansion to compute cup products, and find an explicit presentation

for the holonomy Lie algebra. This chapter is based on the work in my paper [143] with

Alex Suciu.

4.1 Magnus expansions for finitely generated groups

In this section, we introduce and study a Magnus-type expansion for an arbitrary finitely

generated group.
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4.1.1 The Magnus expansion for a free group

We start by reviewing some standard material on Fox calculus and Magnus expansions,

following the exposition from Magnus et al. [102], Fenn–Sjerve [55], and Matei–Suciu [110].

As before, let Q denote a field of characteristic 0. Let F be the free group generated

by x = {x1, . . . , xn}, and set FQ = Fab ⊗ Q. The completed tensor algebra T̂ (FQ) can be

identified with Q〈〈x〉〉, the power series ring over Q in n non-commuting variables.

Let QF be the group ring of F , with augmentation map ε : QF → Q given by ε(xi) = 1.

There is a well-defined ring morphism M : QF → Q〈〈x〉〉, called the Magnus expansion, given

by

M(xi) = 1 + xi and M(x−1
i ) = 1− xi + x2

i − x3
i + · · · . (4.1)

The Fox derivatives are the ring morphisms ∂i : ZF → ZF defined by the rules ∂i(1) = 0,

∂i(xj) = δij, and ∂i(uv) = ∂i(u)ε(v) + u∂i(v) for u, v ∈ ZF . The higher Fox derivatives

∂i1,...,ik are then defined inductively.

The Magnus expansion can be computed in terms of Fox derivatives, as follows. Given

y ∈ F , if we write M(y) = 1+
∑
aIxI , then aI = εI(y), where I = (i1, . . . , is), and εI = ε◦∂I

is the composition of ε : QF → Q with ∂I : QF → QF . Let Mk be the composite

QF M //

Mk

**

T̂ (FQ)
grk // grk(T̂ (FQ)) , (4.2)

In particular, for each y ∈ F , we have M1(y) =
∑n

i=1 εi(y)xi, while for each y ∈ [F, F ] we

have

M2(y) =
∑
i<j

εi,j(y)(xixj − xjxi). (4.3)

Notice that M2(y) is a primitive element in the Hopf algebra T̂ (FQ), which corresponds to

the element
∑

i<j εi,j(y)[xi, xj] in the free Lie algebra lie(FQ).

Remark 4.1.1. The map M extends to a map M̂ : Q̂F → T̂ (FQ) which is an isomorphism

of complete, filtered algebras, but M̂ is not compatible with the respective comultiplications
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if rankF > 1. On the other hand, X. Lin constructed in [96] an exponential expansion,

exp: Q̂F → T̂ (FQ), while Massuyeau showed in [109] that the map exp is an isomorphism

of complete Hopf algebras. Restricting this map to the Lie algebras of primitive elements

gives an isomorphism m(F ;Q) '−→ l̂ie(FQ).

4.1.2 The Magnus expansion for finitely generated groups

Given a finitely generated group G, there exists an epimorphism ϕ : F � G from a free group

F of finite rank. Let π be the induced epimorphism in homology from FQ := H1(F ;Q) to

GQ := H1(G;Q).

Definition 4.1.2. The Magnus expansion for a finitely generated group G, denoted by κ,

is the composite

QF M //

κ

))
T̂ (FQ)

T̂ (π) // T̂ (GQ) , (4.4)

where M is the classical Magnus expansion for the free group F , and the epimorphism T̂ (π)

from T̂ (FQ) to T̂ (GQ) is induced by the projection π : FQ � GQ.

In particular, if the group G is a commutator-relators group, then π identifies GQ with

FQ, and the Magnus expansion κ coincides with the classical Magnus expansion M .

More generally, let G be a group generated by x = {x1, . . . , xn}, and let F be the free

group generated by the same set. Pick a basis y = {y1, . . . , yb} for GQ, and identify T̂ (GQ)

with Q〈〈y〉〉. Let κ(r)I be the coefficient of yI := yi1 · · · yis in κ(r), for I = (i1, . . . , is). Then

we can write

κ(r) = 1 +
∑
I

κ(r)I · yI . (4.5)

Lemma 4.1.3. If r ∈ ΓkF , then κ(r)I = 0, for |I| < k. Furthermore, if r ∈ Γ2F , then

κ(r)i,j = −κ(r)j,i.

Proof. Since M(r)I = εI(r) = 0 for |I| < k (see for instance [110]), we have that κ(r)I = 0 for

|I| < k. To prove the second assertion, identify the completed symmetric algebras Ŝym(FQ)
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and Ŝym(GQ) with the power series rings Q[[x]] and Q[[y]] in the following commutative

diagram of linear maps.

QF
κ

""

M // T̂ (FQ)

T̂ (π)
��

α1 // Ŝym(FQ)

Ŝym(π)
��

T̂ (GQ)
α2 // Ŝym(GQ) .

(4.6)

When r ∈ [F, F ], we have that α2 ◦ κ(r) = Ŝym(π) ◦ α1 ◦M(r) = 1. Thus, κi(r) = 0 and

κ(r)i,j + κ(r)j,i = 0.

Lemma 4.1.4. If u, v ∈ F satisfy κ(u)J = κ(v)J = 0 for all |J | < s, for some s ≥ 2, then

κ(uv)I = κ(u)I + κ(v)I , for |I| = s.

Moreover, the above formula is always true for s = 1.

Proof. We have that κ(uv) = κ(u)κ(v) for u, v ∈ F . If κ(u)J = κ(v)J = 0 for all |J | < s,

then κ(u) = 1 +
∑
|I|=s κ(u)IyI up to higher-order terms, and similarly for κ(v). Then

κ(uv) = κ(u)κ(v) = 1 +
∑
|I|=s

(κ(u)I + κ(u)I)yI + higher-order terms. (4.7)

Therefore, κ(uv)i = κ(u)i + κ(v)i, and so κ(uv)I = κ(u)I + κ(v)I .

4.1.3 Truncating the Magnus expansions

Recall from (4.2) that we defined truncations Mk of the Magnus expansion M of a free group

F . In a similar manner, we can also define the truncations of the Magnus expansion κ for

any finitely generated group G.

Lemma 4.1.5. The following diagram commutes.

QF
κ

""

M // T̂ (FQ)

T̂ (π)
��

grk// grk(T̂ (FQ)) =
⊗kQn

⊗kπ
��

T̂ (GQ)
grk// grk(T̂ (GQ)) =

⊗kQb.

(4.8)
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Proof. The triangle on the left of diagram (4.8) commutes, since it consists of ring homo-

morphisms by the definition of the Magnus expansion for a group.

The morphisms in the square on the right side of (4.8) are homomorphisms between

Q-vector spaces. The square commutes, since π is a linear map.

In diagram (4.8), denote the composition of κ and grk by κk.

QF κ //

κk

**

T̂ (GQ)
grk // grk(T̂ (GQ)) , (4.9)

In particular, κ1(r) =
∑b

i=1 κ(r)iyi for r ∈ F . By Lemma 4.1.3, if r ∈ [F, F ], then

κ2(r) =
∑

1≤i<j≤b

κ(r)i,j(yiyj − yjyi). (4.10)

The next lemma provides a close connection between the Magnus expansion κ and the

classical Magnus expansion M .

Lemma 4.1.6. Let (ai,s) be the b×n matrix for the linear map π : FQ → GQ, and let r ∈ F

be an arbitrary element. Then, for each 1 ≤ i, j ≤ b, we have

κ(r)i =
n∑
s=1

ai,sεs(r), (4.11)

κ(r)i,j =
n∑

s,t=1

(ai,saj,tεs,t(r)) . (4.12)

Proof. By assumption, we have π(xs) =
∑b

i=1 ai,syi. By Lemma 4.1.5 (for k = 1), we have

κ1(r) = π ◦M1(r) = π(
n∑
s=1

εs(r)xs) =
n∑
s=1

b∑
i=1

ai,sεs(r)yi,

which gives formula (4.11). By Lemma 4.1.5 (for k = 2), we have

κ2(r) = π ⊗ π ◦M2(r) = π ⊗ π

(
n∑

s,t=1

εs,t(r)xs ⊗ xt

)
=

n∑
s,t=1

b∑
i,j=1

εs,t(r)ai,saj,tyi ⊗ yj,

which gives formula (4.12).
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4.1.4 Echelon presentations

Let G be a group with finite presentation P = F/R = 〈x | w〉 where x = {x1, . . . , xn} and

w = {w1, . . . , wm}. Then R is a free subgroup of F generated by the set w, and Rab is a

free abelian group with the same generating set.

Let KP be the 2-complex associated to this presentation of G. We may view x as a

basis for C1(KP ;Q) and w as a basis for C2(KP ;Q) = Qm. With this choice of bases, the

matrix of the boundary map dP2 : C2(KP ;Q) → C1(KP ;Q) is the m × n Jacobian matrix

JP = (εi(wk)).

Definition 4.1.7. A group G has an echelon presentation P = 〈x | w〉 if the matrix (εi(wk))

is in row-echelon form.

Example 4.1.8. Let G be the group generated by x1, . . . , x6, with relations w1 = x2
1x

1
2x

3
3x

5
4,

w2 = x2
3x
−2
4 x4

6, w3 = x3
4x
−2
5 x3

6, and w4 = [x1, x2]. The given presentation is already an echelon

presentation, since the matrix

dG2 =


2 1 3 5 0 0

0 0 2 −2 0 4

0 0 0 3 −2 3

0 0 0 0 0 0


has the required form.

The next proposition shows that for any finitely generated group, we can construct a

group with an echelon presentation such that the two groups have the same holonomy Lie

algebra.

Proposition 4.1.9. Let G be a group with a finite presentation P . There exists then a group

G̃ with an echelon presentation P̃ and a surjective homomorphism ρ : G̃ � G inducing the

following isomorphisms:

(i) ρ∗ : Hi(KP̃ ;Q) '−→ Hi(KP ;Q) for i = 1, 2;
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(ii) ρ∗ : H i(KP ;Q) '−→ H i(KP̃ ;Q) for i = 1, 2;

(iii) h(ρ) : h(G̃;Q) '−→ h(G;Q).

Proof. SupposeG has presentation P = 〈x | r〉, where x = {x1, . . . , xn} and r = {r1, . . . , rm}.

Consider the diagram

H2(KG;Q)

∼=
��

// C2(KG;Q)

∼=
��

dG2 // C1(KG;Q)

∼=
��

π // GQ

∼=
��

H2(KG;Q) C2(KG;Q)oo C1(KG;Q)
(dG2 )∗
oo H1(KG;Q),π∗oo

(4.13)

where the vertical arrows indicate duality isomorphisms. By Gaussian elimination over Z,

there exists a matrix C = (cl,k) ∈ GL(m;Z) such that C · (dG2 )∗ is in row-echelon form. We

define a new group,

G̃ = 〈x1, . . . , xn | w1, . . . , wm〉, (4.14)

where wk = r
c1,k
1 r

c2,k
2 · · · rcm,k

m for 1 ≤ k ≤ m. The surjection ρ : G̃ � G, defined by sending

a generator xi ∈ G̃ to the same generator xi ∈ G for 1 ≤ i ≤ n, induces a chain map from

the cellular chain complex C∗(KG̃;Q) to C∗(KG;Q), as follows:

C0(KG;Q) C1(KG;Q)
dG1 =0
oo C2(KG;Q)

dG2oo 0oo · · ·oo

C0(KG̃;Q)

ρ0=id

OO

C1(KG̃;Q)
dG̃1 =0
oo

ρ1=id

OO

C2(KG̃;Q)
dG̃2oo

ρ2

OO

0oo

OO

· · · .oo

(4.15)

The map ρ2 is given by the matrix C, while dG̃2 is given by the composition dG2 ◦ρ2. The ho-

momorphism ρ induces isomorphisms on homology groups. In particular, ρ∗ : H1(KG̃;Q)→

H1(KG;Q) is the identity. Then, we see that πG = πG̃.

The last statement follows from the functoriality of the cup-product and Lemma 3.1.8.

4.2 Group presentations and (co)homology

We compute in this section the cup products of degree 1 classes in the cohomology of a

finitely presented group in terms of the Magnus expansion associated to the group.
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4.2.1 A chain transformation

We start by reviewing the classical bar construction. Let G be a discrete group, and let

B∗(G) be the normalized bar resolution (see e.g. Brown [22], and Fenn and Sjerve [55]),

where Bp(G) is the free left ZG-module on generators [g1| . . . |gp], with gi ∈ G and gi 6= 1,

and B0(G) = ZG is free on one generator, [ ]. The boundary operators are G-module

homomorphisms, dp : Bp(G)→ Bp−1(G), defined by

dp[g1| . . . |gp] = g1[g2| . . . |gp] +

p−1∑
i=1

(−1)i[g1| . . . |gigi+1| . . . |gp] + (−1)p[g1| . . . |gp−1]. (4.16)

In particular, d1[g] = (g − 1)[ ] and d2[g1|g2] = g1[g2] − [g1g2] + [g1]. Let ε : B0(G) → Q be

the augmentation map. We then have a free resolution of the trivial G-module Q,

· · · // B2(G)
d2 // B1(G)

d1 // B0(G) ε // Q // 0 . (4.17)

As before, Q will denote a field of characteristic 0. We shall view Q as a right QG-module,

with action induced by the augmentation map. An element of the cochain group Bp(G;Q) =

HomQG(Bp(G),Q) can be viewed as a set function u : Gp → Q satisfying the normalization

condition u(g1, . . . , gp) = 0 if some gi = 1. The cup-product of two 1-dimensional classes

u, u′ ∈ H1(G;Q) ∼= B1(G;Q) ∼= Hom(G,Q) is given by

u ∪ u′[g1|g2] = u(g1)u′(g2). (4.18)

Now suppose the group G = 〈x1, . . . xn | r1, . . . , rm〉 is finitely presented. Let ϕ : F � G

be the presenting homomorphism, and let KG be the 2-complex associated to this presenta-

tion of G. Denote the cellular chain complex (over Q) of the universal cover of this 2-complex

by C∗(K̃G). The differentials in this chain complex are given by

δ1(λ1, . . . , λn) =
n∑
i=1

λi(xi − 1) , (4.19)

δ2(µ1, . . . , µm) =
( m∑
j=1

µjϕ(∂1wj), . . . ,
m∑
j=1

µjϕ(∂nwj)
)
,

for λi, µj ∈ ZG.
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Lemma 4.2.1 ([55]). There exists a chain transformation T : C∗(K̃G)→ B∗(G) commuting

with the augmentation map,

0 Zoo C0(K̃G)εoo

T0
��

C1(K̃G)
δ1oo

T1
��

C2(K̃G)
δ2oo

T2
��

0oo

��

· · ·oo

0 Zoo B0(G)εoo B1(G)
d1oo B2(G)

d2oo B3(G)oo · · · .oo

Here

T0(λ) := λ[ ], T1(λ1, . . . , λn) =
∑
i

λi[xi], T2(µ1, . . . , µm) =
m∑
j=1

µjτ1T1δ2(ej), (4.20)

where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ (ZG)m has a 1 only in position j, and τ0 : B0(G)→ B1(G)

and τ1 : B1(G)→ B2(G) are the homomorphisms defined by

τ0(g[ ]) = [g] and τ1(g[g1]) = [g|g1], (4.21)

for all g, g1 ∈ G.

4.2.2 Cup products for echelon presentations

Now let G be a group with echelon presentation G = 〈x | w〉, where x = {x1, . . . , xn} and

w = {w1, . . . , wm}, as in Definition 4.1.7. Suppose the pivot elements of the m × n matrix

(εi(wk)) are in position {i1, . . . , id}, and let b = n− d.

Lemma 4.2.2. Let KG be the 2-complex associated to the above presentation for G. Then

(i) The vector space H1(KG;Q) = Qb has basis y = {y1, . . . , yb}, where yj = xid+j
for

1 ≤ j ≤ b.

(ii) The vector space H2(KG;Q) = Qm−d has basis {wd+1, . . . , wm} which coincide with the

augmentation of the basis {ed+1, . . . , em} in Lemma 4.2.1.

Proof. The lemma follows from the fact that the matrix (εi(wk)) is in row-echelon form.
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We will choose as basis for H1(KG;Q) the set {u1, . . . , ub}, where ui is the Kronecker

dual to yi.

Lemma 4.2.3. For each basis element ui ∈ H1(KG;Q) ∼= H1(G;Q) as above, and each

r ∈ F , we have that

ui([ϕ(r)]) =
n∑
s=1

εs(r)ai,s = κi(r),

where (ai,s)b×n is the matrix for the projection map π : FQ → GQ.

Proof. If r ∈ F , then ϕ(r) ∈ G and [ϕ(r)] ∈ B1(G). Hence,

ui([ϕ(r)]) =
n∑
s=1

εs(r)ui([xs]) =
n∑
s=1

εs(r)ai,s = κi(r). (4.22)

Since H1(G;Q) ∼= B1(G;Q) ∼= Hom(G,Q), we may view ui as a group homomorphism.

This yields the first equality. Since π(xs) =
∑b

j=1 ai,syi and ui = y∗i , the second equality

follows. The last equality follows from Lemma 4.1.6.

Theorem 4.2.4. The cup-product map H1(KG;Q) ∧H1(KG;Q)→ H2(KG;Q) is given by

(ui ∪ uj, wk) = κ(wk)i,j ,

for 1 ≤ i, j ≤ b and d+ 1 ≤ k ≤ m, where κ is the Magnus expansion of G.

Proof. Let us write the Fox derivative ∂t(wk) as a finite sum,
∑

x∈F p
x
tkx, for 1 ≤ t ≤ n, and

1 ≤ k ≤ m. We then have

T2(ek) = τ1T1(δ2(ek)) by (4.20)

= τ1T1 (ϕ(∂1(wk)), . . . , ϕ(∂n(wk))) by (4.19) (4.23)

= τ1

( n∑
t=1

ϕ
(
∂t(wk)

)
[xt]
)

by (4.20)

=
n∑
t=1

∑
x∈F

pxtk[ϕ(x)|xt]. by (4.21)
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The chain transformation T : C∗(K̃G) → B∗(G) induces an isomorphism on first coho-

mology, T ∗ : H1(G;Q) → H1(KG;Q). Let us view ui and uj as elements in H1(G;Q). We

then have

(ui ∪ uj, 1⊗ZG ek) = (ui ∪ uj, 1⊗ZG T2(ek))

= (ui ∪ uj,
n∑
t=1

∑
x∈F

pxtk[ϕ(x)|xt]) by (4.23)

=
n∑
t=1

∑
x∈F

pxtkui(ϕ(x))uj(xt) by (4.18)

=
n∑
t=1

∑
x∈F

pxtkui(ϕ(x))aj,t by Lemma 4.2.3

=
n∑
t=1

∑
x∈F

pxtk

n∑
s=1

ai,sεs(x)aj,t by Lemma 4.2.3

=
n∑
t=1

n∑
s=1

(aj,tai,sεs,t(wk)) Fox derivative

= κ(wk)i,j, by Lemma 4.1.6

and this completes the proof.

Example 4.2.5. Let KG be the presentation 2-complex for the group G in Example 4.1.8,

with the homology basis as in Lemma 4.2.2. A basis of H1(KG;Q) = Q3 is {x2, x5, x6} while

a basis of H2(KG;Q) = Q is {w4}, and a basis of H1(KG;Q) is {u1, u2, u3}. With these

choices, we have that (u1 ∪ u2, w4) = 8/3, (u1 ∪ u3, w4) = −7, and (u2 ∪ u3, w4) = 0.

4.2.3 Cup products for finite presentations

Let G be a group with a finite presentation 〈x | r〉. By Proposition 4.1.9, there exists

a group G̃ with an echelon presentation 〈x | w〉. Let us choose a basis y = {y1, . . . , yb}

for H1(KG;Q) ∼= H1(KG̃;Q) and the dual basis {u1, . . . , ub} for H1(KG;Q) ∼= H1(KG̃;Q).

Choose also a basis {r1, . . . , rm} for C2(KG;Q) and a basis {w1, . . . , wm} for C2(KG̃;Q). Set

γk := ρ∗(wk) =
m∑
l=1

cl,krl . (4.24)
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Then {γk | 1 ≤ k ≤ m} is another basis for C2(KG;Q). Furthermore, {wd+1, . . . , wm} is a

basis for H2(KG̃;Q) and {γd+1, . . . , γm} is a basis for H2(KG;Q). Thus, H2(KG;Q) has dual

basis {βd+1, . . . , βm}.

Theorem 4.2.6. The cup-product map ∪ : H1(KG;Q) ∧H1(KG;Q) → H2(KG;Q) is given

by the formula

ui ∪ uj =
m∑

k=d+1

κ(wk)i,jβk,

That is, (ui ∪ uj, γk) = κ(wk)i,j for all 1 ≤ i, j ≤ b.

Proof. By Proposition 4.1.9, we have that γk := ρ∗(wk) = ρ∗(1⊗ZG̃ek), for all d+1 ≤ k ≤ m.

Hence,

(ui ∪ uj, γk) =
(
ui ∪ uj, ρ∗(1⊗ZG̃ ek)

)
=
(
ρ∗(ui ∪ uj), 1⊗ZG̃ ek

)
=
(
ui ∪ uj, 1⊗ZG̃ ek

)
since ρ∗(ui) = ui

= κ(wk)i,j by Theorem 4.2.4.

The claim follows.

Corollary 4.2.7 ([55]). For a commutator-relators group G = 〈x | r〉, the cup-product map

H1(KG;Q) ∧H1(KG;Q)→ H2(KG;Q) is given by

(ui ∪ uj, rk) = M(rk)i,j ,

for 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.

Remark 4.2.8. In [55], Fenn and Sjerve also gave formulas for the higher-order Massey

products in a commutator-relator group, using the classical Magnus expansion. For instance,

suppose G = 〈x | r〉, where the single relator r belongs to [F, F ] and is not a proper

power. Let I = (i1, . . . , ik), and suppose εis,...,it−1(r) = 0 for all 1 ≤ s < t ≤ k + 1,

(s, t) 6= (1, k + 1). Then the evaluation of the Massey product 〈−ui1 , . . . ,−uik〉 on the
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homology class [r] ∈ H2(G;Z) equals εI(r). For an alternative approach, in a more general

context, see [129, Theorem 2].

4.3 A presentation for the holonomy Lie algebra

In this section, we give a presentation for the holonomy Lie algebra and the Chen holonomy

Lie algebra of a finitely presented group. In the process, we complete the proof of the first

two parts of Theorem 1.2.4 from the Introduction.

4.3.1 Magnus expansion and holonomy

In view of Theorem 4.1.9, for any group with finite presentation 〈x | r〉, there exists a group

with echelon presentation P = 〈x | w〉 such that the two groups have the same holonomy

Lie algebras.

Let G = F/R be a group admitting an echelon presentation P as above, with x =

{x1, . . . , xn} and w = {w1, . . . , wm}. We now give a more explicit presentation for the

holonomy Lie algebra h(G;Q) over Q.

Let ∂i(wk) ∈ ZF be the Fox derivatives of the relations, and let εi(wk) ∈ Z be their

augmentations. Recall from Lemma 4.2.2 that we can choose a basis y = {y1, . . . , yb} for

H1(KP ;Q) and a basis {wd+1, . . . , wm} for H2(KP ;Q), where d is the rank of Jacobian matrix

JP = (εi(wk)), viewed as an m× n matrix over Q. Let lie(y) be the free Lie algebra over Q

generated by y in degree 1. Recall that κ2 is the degree 2 part of the Magnus expansion of

G given explicitly in (4.10). Thus, we can identify κ2(wk) with
∑

i<j κ(wk)i,j[yi, yj] in lie(y)

for d+ 1 ≤ k ≤ m.

Theorem 4.3.1. Let G be a group admitting an echelon presentation G = 〈x | w〉. Then

there exists an isomorphism of graded Lie algebras

h(G;Q)
∼=−−→ lie(y)/ideal(κ2(wd+1), . . . , κ2(wm)) .

90



Proof. Combining Theorem 4.2.4 with the fact that (ui ∧ uj,∪∗(wk)) = (∪(ui ∧ uj), wk), we

see that the dual cup-product map, ∪∗ : H2(KP ;Q)→ H1(KP ;Q) ∧H1(KP ;Q), is given by

∪∗ (wk) =
∑

1≤i<j≤b

κ(wk)i,j(yi ∧ yj). (4.25)

Hence, the following diagram commutes.

H2(KP ;Q) ∪∗ //
� _

��

H1(KP ;Q) ∧H1(KP ;Q)� _

��
C2(KP ;Q)

κ2 // H1(KP ;Q)⊗H1(KP ;Q)

(4.26)

Using now the identification of κ2(wk) and
∑

i<j κ(wk)i,j[yi, yj] as elements of lie(y), the

definition of the holonomy Lie algebra, and the fact that h(G;Q) ∼= h(KP ;Q), we arrive at

the desired conclusion.

Corollary 4.3.2. The universal enveloping algebra U(h) of h(G;Q) has presentation

U(h) = Q〈y〉/ ideal(κ2(wn−b+1), . . . , κ2(wm)).

Recall that, for r ∈ [F, F ], the primitive element M2(r) in T̂2(FQ) corresponds to the

element
∑

i<j εi,j(r)[xi, xj] in lie2(x).

Corollary 4.3.3 ([117]). If G = 〈x | r〉 is a commutator-relators group, then

h(G;Q) = lie(x)/ideal
{∑

i<j

εi,j(r)[xi, xj] | r ∈ r
}
.

Corollary 4.3.4. For every quadratic, rationally defined Lie algebra g, there exists a com-

mutator relators group G such that h(G;Q) ∼= g.

Proof. By assumption, we may write g = lie(x)/a, where a is an ideal generated by elements

of the form `k =
∑
cijk[xi, xj] for 1 ≤ k ≤ m, and where the coefficients cijk are in Q.

Clearing denominators, we may assume all cijk are integers. We can then define words

rk =
∏

[xi, xj]
cijk in the free group generated by x, and set G = 〈x | r1, . . . , rm〉. The desired

conclusion follows from Corollary 4.3.3.
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4.3.2 Presentations for the holonomy Chen Lie algebras

The next result (which completes the proof of Theorem 1.2.4 from the Introduction) sharpens

and extends the first part of Theorem 7.3 from [117].

Theorem 4.3.5. Let G = 〈x | r〉 be a finitely presented group, and set h = h(G;Q). Let

y = {y1, . . . , yb} be a basis of H1(G;Q). Then, for each i ≥ 2,

h/h(i) ∼= lie(y)/(ideal(κ2(wn−b+1), . . . , κ2(wm)) + lie(i)(y)),

where b = b1(G) and wk is defined in (4.14).

Proof. By Theorem 4.3.1, the holonomy Lie algebra h is isomorphic to the quotient of the

free Lie algebra lie(y) by the ideal generated by κ2(wn−b+1), . . . , κ2(wm). The claim follows

from Lemma 2.1.1.

Using Corollary 4.3.3, we obtain the following corollary.

Corollary 4.3.6. Let G = 〈x1, . . . , xn | r1, . . . , rm〉 be a commutator-relators group, and

h = h(G;Q). Then, for each i ≥ 2, the Lie algebra h/h(i) is isomorphic to the quotient of

the free Lie algebra lie(x) by the sum of the ideals (M2(r1), . . . ,M2(rm)) and lie(i)(x).

Now suppose G is 1-formal. Then, in view of Corollary 6.1.7, the Chen Lie algebra

gr(G/G′′;Q) is isomorphic to h(G;Q)/h(G;Q)(i), which has presentation as above.

4.3.3 Koszul properties

We now use our presentation of the holonomy Lie algebra h = h(G;Q) of a group G with

finitely many generators and relators to study the Koszul properties of the corresponding

universal enveloping algebra.

Computing the Hilbert Series of U(h) directly from Corollary 4.3.2 is not easy, since it

involves finding a Gröbner basis for a non-commutative algebra. However, if U(h) is a Koszul
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algebra, we can use Proposition 2.2.7 and the Corollary 2.2.8 to reduce the computation to

that of the Hilbert series of a graded-commutative algebra, which can be done by a standard

Gröbner basis algorithm.

Proposition 4.3.7. Let G be a group with presentation 〈x | r〉, and set m = |r|. If

rank(εi(rj)) = m or m− 1, then the universal enveloping algebra U(h(G;Q)) is Koszul.

Proof. Let h = h(G;Q). By Proposition 4.1.9 and Theorem 4.3.1,

h =


lie(x) if rank(εi(rj)) = m,

lie(y)/ideal(κ2(wm)) if rank(εi(rj)) = m− 1.

(4.27)

In the first case, U(h) = T 〈x〉, which of course is Koszul. In the second case, Corollary

4.3.2 implies that U(h) = T 〈y〉/I, where I = ideal(κ2(wm)). Clearly, I is a principal ideal,

generated in degree 2; thus, by [58], U(h) is again a Koszul algebra.

Of course, the universal enveloping algebra of the holonomy Lie algebra of a finitely

generated group is a quadratic algebra. In general, though, it is not a Koszul algebra (see

for instance Example 9.1.10.)

Example 4.3.8. Let h be the holonomy Lie algebra of the McCool group wP+
n . As shown

by Conner and Goetz in [36], the algebra U(h) is not Koszul for n ≥ 4. For more information

on the Lie algebras associated to the McCool groups, see Chapter 8.
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Chapter 5

Resonance varieties

One idea from the theory of hyperplane arrangements is to study a family of cochain com-

plexes parametrized by the cohomology ring in degree 1. The resonance varieties are defined

from the data of these cochain complexes, capture subtle information as the loci where the

cohomology of these cochain complexes jumps. More generally, the resonance varieties of

a finite type commutative graded algebra (cga) A over C, are homogeneous subvarieties

of A1. The resonance varieties of a space X or a group G with appropriate finiteness con-

dition are defined to be the resonance varieties of their cohomology algebras. We study

the resonance varieties of product and coproduct of cgas. Using an explicit presentation

for the infinitesimal Alexander invariants, we provide upper and lower bounds for the first

resonance varieties, which is important for the computation of the resonance varieties of the

pure welded braid groups in a later chapter. This chapter is based on the work in my papers

[145, 146] with Alex Suciu.

5.1 Resonance varieties

In this section, we first review the resonance varieties of a locally finite, connected, graded-

commutative algebra. Applying the Bernstein–Gelfand–Gelfand correspondence, we give a
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description for the first resonance variety.

5.1.1 The Bernstein–Gelfand–Gelfand correspondence

Let V be a complex vector spaces of finite dimension, and let V ∗ be its dual. We write

E =
∧
V for the exterior algebra on V , and S = Sym(V ∗) for the symmetric algebra on V ∗.

Following the approach from [46], the Bernstein–Gelfand–Gelfand (BGG) correspondence is

an isomorphism between the category of linear free complexes over E and the category of

graded free modules over S.

Let {e1, . . . , en} and {x1, . . . , xn} be dual bases for V and V ∗, respectively, and identify

the symmetric algebra Sym(V ∗) with the polynomial ring S = C[x1, . . . , xn]. If we take S to

be generated in degree 1, then E is generated in degree −1. Let L be the functor from the

category of graded E-modules to the category of linear free complexes over S which assigns

to a graded E-module P the chain complex

L(P ) : · · · // Pi ⊗C S
di // Pi−1 ⊗C S // · · · , (5.1)

with differentials given by di(p⊗ s) =
n∑
j=1

ejp⊗ xjs, for p ∈ Pi and s ∈ S.

5.1.2 Resonance varieties

Now let A =
⊕

i≥0A
i be a graded, graded-commutative algebra. We shall assume that

A is connected (i.e., A0 = C), and locally finite (i.e., the Betti numbers bi := dimAi are

finite, for each i ≥ 1). Let {e1, . . . , en} be the basis for the complex vector space V := A1,

and {x1, . . . , xn} be the Kronecker dual basis for V ∗. We can view A as a module over the

exterior algebra E =
∧

(V ).

Let P be a E-module defined by Pi := A−i. The universal Aomoto complex of A is the

complex L(P ) defined by (5.1), and denoted by L(A). Notice the change of degree, the
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universal Aomoto complex of A is the cochain complex of free S-modules,

L(A) : A0 ⊗ S d0 // A1 ⊗ S d1 // A2 ⊗ S d2 // · · · , (5.2)

with differentials given by

di(u⊗ s) =
n∑
j=1

eju⊗ xjs (5.3)

for u ∈ Ai and s ∈ S. According to [121, 141], the evaluation of the universal Aomoto

complex at an element a ∈ A1 coincides with the Aomoto complex, (A; δa), which is the

cochain complex of finite-dimensional, complex vector spaces,

(A, δa) : A0 δ0a // A1 δ1a // A2 δ2a // · · · , (5.4)

with differentials δia(u) = au for all u ∈ Ai. By definition, the (degree i, depth d) resonance

varieties of A are the algebraic sets

Ri
d(A) = {a ∈ A1 | bi(A, a) ≥ d}, (5.5)

where (A, a) is the cochain complex (known as the Aomoto complex) with differentials

δia : Ai → Ai+1 given by δia = a · u, and bi(A, a) := dimH i(A, a).

Observe that bi(A, 0) = bi(A). Thus, Ri
d(A) is empty if either d > bi or d ≥ 0 and bi = 0.

Furthermore, 0 ∈ Ri
d(A) if and only if d ≤ bi. In degree zero, we have that R0

d(A) = {0} for

d = 1 and R0
d(A) = ∅ for d ≥ 2. We use the convention that Ri

d(A) = A1 for d ≤ 0. The

following simple lemma will be useful in computing the resonance varieties of the algebra

A = H∗(vP3,C).

Lemma 5.1.1. Suppose Ai 6= 0 for i ≤ 2 and Ai = 0 for i ≥ 3. Then R2
d(A) = R1

d−χ(A) for

d ≤ b2, where χ = 1− b1 + b2 is the Euler characteristic of A.

Proof. By the above discussion, 0 ∈ R2
d(A) if and only if d ≤ b2. But this is equivalent to

0 ∈ R1
d−χ(A), since d−χ ≤ b2−χ ≤ b1−1. Now let a ∈ A1\{0}. Then b2(A, a) = b1(A, a)+χ.

Hence, a ∈ R2
d(A) if and only if a ∈ R1

d−χ(A), and we are done.
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We will be mostly interested here in the degree 1 resonance varieties, R1
d(A). Equations

for these varieties can be obtained as follows (see for instance [141]). Let {e1, . . . , en} be a

basis for the complex vector space A1 = H1(G;C), and let {x1, . . . , xn} be the dual basis

for A1 = H1(G;C). Identifying the symmetric algebra Sym(A1) with the polynomial ring

S = C[x1, . . . , xn], we obtain a cochain complex of free S-modules,

A0 ⊗C S
δ0 // A1 ⊗C S

δ1 // A2 ⊗C S
δ2 // · · · , (5.6)

with differentials given by δi(u⊗ 1) =
∑n

j=1 eju⊗ xj for u ∈ Ai and extended by S-linearity.

The first resonance variety Rd(A) := R1
d(A), then, is the zero locus of the ideal of codimen-

sion d minors of the matrix δ1. An equivalent description for the first resonance varieties

can be found in [124].

Now suppose X is a connected, finite-type CW-complex. One defines then the resonance

varieties of X to be the sets Ri
d(X) := Ri

d(H
∗(X,C)). Likewise, the resonance varieties of a

group G admitting a finite-type classifying space are defined as Ri
d(G) := Ri

d(H
∗(G,C)).

5.1.3 Characteristic varieties

Let X be a connected CW-complex with finite k-skeleton (k ≥ 1). Without lose of generality,

suppose X has only one single 0-cell x0. Let C∗ be the group of units of C. The cellular

chain complex of X is denoted by (Ci(X;C), ∂i). If the universal cover of X is X̃ → X,

then Ci(X̃;C) is a chain complex of module over CG, where G = π1(X, x0). The module

structure on

CG× Ci(X̃;C)→ Ci(X̃;C)

is given by g ·ei and linear expansion. The group homomorphism Hom(G,C∗) is an algebraic

group, with multiplication f1 ◦ f2(g) = f1(g)f2(g) and identity id(g) = 1 for g ∈ G and

fi ∈ Hom(G,C∗). Since C∗ is abelian group, we have

Hom(G,C∗) = Hom(Gab,C∗) = Hom(Zbi ⊕
⊕
i

Z/kiZ,C∗) = (C∗)bi ⊕
⊕
i

C∗/kiC∗.
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Let ρ : G→ C∗ ∈ Hom(G,C∗). The rank 1 local system on X is a 1-dimensional C-vector

space Cρ. There is a is a right CG-module structure Cρ × G → Cρ given by ρ(g) ◦ a for

a ∈ Cρ and g ∈ G. The homology group of X with coefficient in Cρ is defined by

Hi(X,Cρ) := Hi(C∗(X̃,C)⊗CG Cρ)

In particular, for ρ = id ∈ Hom(G,C∗) gives the homology of X with C coefficient.

The characteristic varieties of X are the jumping loci for cohomology with coefficients

in rank 1 local systems,

V ik(X) = {ρ ∈ Hom(π1(X),C∗) | dim(Hi(X;Cρ)) ≥ k}. (5.7)

If a group G admitting a finite-type classifying space K(G, 1), the jump loci of a group G

are defined in terms of the jump loci of the corresponding classifying space. Best understood

are the degree 1 cohomology jump loci, Rk(X) = R1
k(X) and Vk(X) = V1

k(X), which depend

only on the fundamental group G = π1(X).

An important obstruction to 1-formality is provided by the higher-order Massey products,

but we will not make use of it in this thesis. Instead, we will use another, better suited

obstruction to 1-formality, which is provided by the following theorem.

Theorem 5.1.2 ([42]). Let G be a finitely generated, 1-formal group.

1. There exists an isomorphism between the tangent cone variety at the origin, TC1(Vk(G))

and the resonance variety Rk(G).

2. Then all irreducible components of Rk(G) are rationally defined linear subspaces of

H1(G,C), for all k ≥ 0.

5.1.4 Resonance varieties of products and coproducts

The next two results are generalizations of Propositions 13.1 and 13.3 from [122]. We will

use these results to compute the resonance varieties of the group vP3.

98



Proposition 5.1.3. Let A = B ⊗ C be the product of two connected, finite-type graded

algebras. Then, for all i ≥ 1,

R1
d(B ⊗ C) = R1

d(B)× {0} ∪ {0} ×R1
d(C),

Ri
1(B ⊗ C) =

⋃
s+t=i

Rs
1(B)×Rt

1(C).

Proof. Let a = (a1, a2) be an element in A1 = B1 ⊕ C1. The cochain complex (A, a) splits

as a tensor product of cochain complexes, (B, a1)⊗ (C, a2). Therefore,

bi(A, a) =
∑
s+t=i

bs(B, a1)bt(C, a2), (5.8)

and the second formula follows. In particular, we have b1(A, (0, 0)) = b1(B, 0) + b1(C, 0),

b1(A, (0, a2)) = b1(C, a2) if a2 6= 0, b1(A, (a1, 0)) = b1(B, a1) if a1 6= 0, and b1(A, a) = 0 if

a1 6= 0 and a2 6= 0. The first formula now easily follows.

Proposition 5.1.4. Let A = B ∨ C be the coproduct of two connected, finite-type graded

algebras. Then, for all i ≥ 1,

R1
d(B ∨ C) =

( ⋃
j+k=d−1

(R1
j(B)\{0})× (R1

k(C)\{0})
)
∪

(
{0} ×R1

s(C)
)
∪
(
R1
t (B)× {0}

)
,

Ri
d(B ∨ C) =

⋃
j+k=d

Ri
j(B)×Ri

k(C), if i ≥ 2,

where s = d− dimB1 and t = d− dimC1.

Proof. Pick an element a = (a1, a2) in A1 = B1 ⊕ C1. The Aomoto complex of A splits (in

positive degrees) as a direct sum of chain complexes, (A+, a) ∼= (B+, a1)⊕ (C+, a2). We then

have formulas relating the Betti numbers of the respective Aomoto complexes:

bi(A, a) =


bi(B, a1) + bi(C, a2) + 1 if i = 1, and a1 6= 0, a2 6= 0,

bi(B, a1) + bi(C, a2) otherwise.

The claim follows by a case-by-case analysis of the above formula.

99



5.1.5 A description of the first resonance

In this thesis, we focus on the first resonance varieties, R1(A) := R1
1(A). It is readily seen

that this variety depends only on the multiplication map µA : A1 ∧ A1 → A2.

More precisely, define the quadratic closure of A as Ā = E/I, where E =
∧

(A1) is exterior

algebra and I is the two-sided ideal of E generated by K = ker(µA) ⊂ A1 ∧ A1. Then we

have R1(A) = R1(Ā). Applying the L functor to the exact sequence 0→ I → E → Ā→ 0,

we obtain a short exact sequence of cochain complexes (see, [133, 134])

0 // L(I) ι // L(E)
p // L(Ā) // 0 . (5.9)

More explicitly in degrees two and three, we have a commuting diagram

0 // I2 ⊗ S

Φ

++

ι2 //

d2

��

E2 ⊗ S

d2

��

µA⊗id// Ā2 ⊗ S

d2

��

// 0

0 // I3 ⊗ S
ι3
// E3 ⊗ S // Ā3 ⊗ S // 0 .

(5.10)

Hence, I2 = K = kerµA. Let Φ be the composition ι3 ◦ d2 : I2⊗ S → E3⊗ S. Using this

map, we obtain an equivalent description for the first resonance variety.

Lemma 5.1.5. An element a ∈ A1 belongs to R1(A)\{0} if and only if the evaluation of Φ

at a is not injective.

Proof. Recall we fixed a basis {e1, . . . , en} for A1, that {x1, . . . , xn} is is the dual basis, and

that S = C[x1, . . . , xn]. Let a =
∑n

j=1 ajej ∈ A1, and let eva : S → C be the ring morphism

given by g → g(a1, . . . , an). For each r ∈ I2, by formula (5.3), we have

Φ|a(r) = (idE3 ⊗ eva) ◦ ι3 ◦ d2(r ⊗ 1) =
n∑
j=1

ejr ⊗ eva(xj) =
n∑
j=1

ejr · aj = a · r. (5.11)

Hence, for each a ∈ A1, the map Φ|a : I2 → E3 is given by left multiplication of a. If

a 6= 0, the complex (E, δa) is acyclic. Thus, we have

H1(A; δa) ∼= H2(I; δa) ∼= ker(δa : I2 → I3) = ker(Φ|a : I2 → E3), (5.12)

and this finishes the proof.
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5.2 Infinitesimal Alexander invariants

5.2.1 The infinitesimal Alexander invariant of a Lie algebra

We start in a more general context. Let g =
⊕

k≥1 gk be a finitely generated graded Lie

algebra, with graded pieces gk, for k ≥ 1. Then both the derived algebra, g′, and the second

derived algebra g′′ = (g′)′, are graded sub-Lie algebras. Thus, the maximal metabelian

quotient, g/g′′, is in a natural way a graded Lie algebra, with derived subalgebra g′/g′′.

Define the Chen ranks of g to be

θk(g) = dim(g/g′′)k. (5.13)

Following [117], we associate to g a graded module over the symmetric algebra S =

Sym(g1), as follows. The adjoint representation of g1 on g/g′′ defines an S-action on g′/g′′,

given by h · x̄ = [h, x], for h ∈ g1 and x ∈ g′. Clearly, this action is compatible with the

grading on g′/g′′. The infinitesimal Alexander invariant of g is the graded S-module

B(g) = g′/g′′. (5.14)

Here, S is the universal enveloping algebra of g/g′, which can be identified with the symmetric

algebra on g1, with variables in degree 1. The exact sequence of graded Lie algebras

0 // g′/g′′ // g/g′′ // g/g′ // 0

gives the graded S-module structure on B(g).

Now suppose g admits a finite, quadratic presentation, that is, g = lie(H)/〈a〉, where

H is a finite-dimensional vector space, and a is a finite set of degree two elements in the

free Lie algebra lie(H). Then, by [117], the S-module B(g) admits a homogeneous, finite

presentation of the form

(∧3H ⊕ a
)
⊗ Sδ3+(id⊗ ι) //

∧2H ⊗ S //B(g) // 0 , (5.15)
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where ι is the inclusion of a into lie(H)2
∼= H∧H, and δ3(x∧y∧z) = x∧y⊗z−x∧z⊗y+y∧z⊗x.

Assume now that the graded Lie algebra g =
⊕

k≥1 gk is generated in degree 1. We then

have g′ =
⊕

k≥2 gk. Thus, since the grading for S starts with S0 = C, we are led to define

the grading on B(g) as

B(g)k = (g′/g′′)k+2, for k ≥ 0. (5.16)

We then have the following ‘infinitesimal’ version of Massey’s formula (6.16).

Proposition 5.2.1. Let g be a finitely generated, graded Lie algebra g generated in degree

1. Then the Chen ranks of g are given by∑
k≥2

θk(g) · tk−2 = Hilb(B(g), t). (5.17)

Proof. Since g is generated in degree 1, we have that g/g′ ∼= g1. Using now the exact sequence

of graded Lie algebras 0 → g′/g′′ → g/g′′ → g/g′ → 0, we find that (g/g′′)k = (g′/g′′)k for

all k ≥ 2. The claim then follows from (5.13) and (5.16).

5.2.2 The infinitesimal Alexander invariants of a group

Let again G be a finitely generated group. Denote by H = Gab its abelianization, and

identify h1(G) = gr1(G) with H ⊗C. Finally, set S = Sym(H ⊗C). The procedure outlined

in §5.2.1 yields two S-modules attached to G.

The first one is B(G) = B(h(G)), the infinitesimal Alexander invariant of the holonomy

Lie algebra of G. (When G is a finitely presented, commutator-relators group, this S-module

coincides with the ‘linearized Alexander invariant’ from [32, 110], see [117]). The second one

is B(gr(G)), the infinitesimal Alexander invariant of the associated graded Lie algebra of G.

The next result provides a natural comparison map between these S-modules.

Proposition 5.2.2. The canonical epimorphism Ψ: h(G) � gr(G) from (3.11) induces an

epimorphism of S-modules,

ψ : B(h(G)) // //B(gr(G)) .
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Moreover, if G is graded-formal, then ψ is an isomorphism.

Proof. The graded Lie algebra map Ψ: h(G) � gr(G) preserves derived series, and thus

induces an epimorphism ψ : h(G)′/h(G)′′ � gr(G)′/ gr(G)′′. By the discussion from §5.2.1,

this map can also be viewed as a map ψ : B(h(G))� B(gr(G)) of graded S-modules.

Finally, if G is graded-formal, i.e., if Ψ is an isomorphism, then clearly ψ is also an

isomorphism.

Remark 5.2.3. For a finitely presented group G, a finite presentation for the S-module

B(h(G)) is given in [117]. This presentation may be used to compute the holonomy Chen

ranks θk(h(G)) from the Hilbert series of B(h(G)), using an approach analogous to the one

described in Remark 6.2.1. We refer to Chapter 8, for the detailed computations for the

(upper) pure welded braid groups.

5.3 Bounds for the first resonance variety

Using the BGG correspondence, we give in this section a presentation for the infinitesimal

Alexander invariant. We then obtain upper and lower bounds for the first resonance variety.

Lemma 5.3.1. The dual of Φ: I2 ⊗ S → E3 ⊗ S gives a presentation for the infinitesimal

Alexander invariant B(A).

Proof. By definition, the ideal I of the exterior algebra E =
∧
V is generated by the vector

space K = kerµA. Taking duals, we have an isomorphism K∗ ∼= coker ∂A. Recall the map Φ

from (5.10), defined as the composite

K ⊗ S

Φ

++
ι⊗id //

∧2 V ⊗ S d2 //
∧3 V ⊗ S , (5.18)

where d2(u⊗ a∧ b) = u∧ a∧ b. All S-modules in the above diagram are free modules. After

taking the dual of the above diagram, we have

coker(∂A)⊗ S
∧2 V ∗ ⊗ Sι∗oo

∧3 V ∗ ⊗ S

Φ∗

tt
(d2)∗oo (5.19)
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Here, ι∗ is the projection map and (d2)∗ is the same as δ3 in (5.15). Then the infinitesimal

Alexander invariant B(G) is isomorphic to coker Φ∗ by presentation (5.15).

This result generalizes the formula (2.5) in [34], where they give a presentation for the

linearized Alexander invariant for a commutator-relators group.

5.3.1 A decomposition of the resonance varieties

We now briefly review some basic facts about the elementary ideals of a module (for more

details, see [45]). Let S be a commutative ring with unit. Assume S is Noetherian and a

unique factorization domain. Let M be a S-module with a finite presentation,

Sm
ϕ // Sn //M // 0. (5.20)

If we choose basis for Sm and Sn, we shall view ϕ as a matrix Ω with m rows and n

columns. The i-th elementary ideal (or, Fitting ideal) of M , denoted by Ei(M) ⊆ S, is the

ideal of S generated by the (n − i) × (n − i) minors of the m × n matrix Ω. This ideal is

independent of the presentation of M . The ideal of maximal minors E0(M) is known as the

order ideal.

The next lemma gives upper and lower bounds for the first resonance variety. The first

claim of the lemma is well-known, see e.g.,[41]; we provide a proof for completeness. The

two other claims (especially the third one) prove to be useful in the computation of the first

resonance variety; we will illustrate their usefulness in Section 8.4.

Lemma 5.3.2. Let A be a locally finite, connected, graded-commutative algebra. Let Ω be a

presentation matrix of the infinitesimal Alexander invariant B = B(A).

1. We have isomorphisms of varieties

V(E0(Ω)) ∼= V(Ann(B)) ∼= R1(A).
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where Ann is the annihilator of a module, and V is the variety defined by an ideal.

2. Denote the columns of Ω by Ωi. Then,

⋃
i

V(E0(Ωi)) ⊆ R1(A),

3. Suppose Ω is a block triangular matrix, with diagonal blocks Ωii. Then,

R1(A) ⊆
⋃
i

V(E0(Ωii))

Proof. (1) Suppose B is generated by n elements. By standard commutative algebra, we

have that Ann(B)n ⊆ E0(Ω) ⊆ Ann(B). Thus, V(E0(Ω)) ∼= V(Ann(B)). By Lemmas 5.1.5

and 5.3.1, a non-zero element a ∈ H1(A) belongs to R1(A) if and only if the matrix Ω|a does

not have full rank, that is, a ∈ V(E0(Ω)).

(2) Suppose a ∈ V(E0(Ωi)), that is, the matrix (Ωi)|a does not have full rank. Then Ω|a

does not have full rank, either, that is, a ∈ V(E0(Ω)) ∼= R1(A).

(3) Suppose a /∈
⋃
i V(E0(Ωii)), that is, all matrices Ωii|a have full rank. Then Ω|a has

full rank, and so a /∈ V(E0(Ω)) ∼= R1(A).
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Chapter 6

Chen Lie algebras

In this chapter, we study the Chen Lie algebra of a finitely generated group G and its

relationships with the first resonance varieties and the Alexander invariants of G. K.T. Chen

studied the associated graded Lie algebras of the of the maximal metabelian quotient, which

are now called the Chen Lie algebras of G. The ranks of the Chen Lie algebras are called

the Chen ranks. Chen computed the Chen ranks of a finitely generated free group Fn, by

introducing a path integral technique. The Alexander invariants, which are original from the

study of the Alexander polynomials of knots and links, play an important role in investigating

resonance varieties, characteristic varieties and the Chen ranks. This chapter is based on

the work in my papers [143, 145, 146] with Alex Suciu.

6.1 Derived series and Lie algebras

We now study some of the relationships between the derived series of a group and the derived

series of the corresponding Lie algebras.
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6.1.1 Derived series

Consider the derived series of a group G, starting at G(0) = G, G(1) = G′, and G(2) = G′′,

and defined inductively by G(i+1) = [G(i), G(i)]. Note that any homomorphism φ : G → H

takes G(i) to H(i). The quotient groups, G/G(i), are solvable; in particular, G/G′ = Gab,

while G/G′′ is the maximal metabelian quotient of G.

Assume G is a finitely generated group, and fix a coefficient field Q of characteristic 0.

Proposition 6.1.1. The holonomy Lie algebras of the derived quotients of G are given by

h(G/G(i);Q) =


h(G;Q)/h(G;Q)′ for i = 1,

h(G;Q) for i ≥ 2.

(6.1)

Proof. For i = 1, the statement trivially holds, so we may as well assume i ≥ 2. It is readily

proved by induction that G(i) ⊆ Γ2i(G). Hence, the projections

G // // G/G(i) // // G/Γ2iG (6.2)

yield natural projections h(G;Q) � h(G/G(i);Q) � h(G/Γ2iG;Q) = h(G;Q). By Proposi-

tion 3.1.12, the composition of these projections is an isomorphism of Lie algebras. Therefore,

the surjection h(G;Q)� h(G/G(i);Q) is an isomorphism.

The next theorem is the Lie algebra version of Theorem 3.5 from [117].

Theorem 6.1.2 ([117]). For each i ≥ 2, there is an isomorphism of complete, separated

filtered Lie algebras,

m(G/G(i)) ∼= m(G)/m(G)(i),

where m(G)(i) denotes the closure of m(G)(i) with respect to the filtration topology on m(G).

6.1.2 Chen Lie algebras

As before, let G be a finitely generated group. For each i ≥ 2, the i-th Chen Lie algebra of

G is defined to be the associated graded Lie algebra of the corresponding solvable quotient,
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gr(G/G(i);Q). Clearly, this construction is functorial.

The quotient map, qi : G � G/G(i), induces a surjective morphism between associated

graded Lie algebras. Plainly, this morphism is the canonical identification in degree 1. In

fact, more is true.

Lemma 6.1.3. For each i ≥ 2, the map gr(qi) : grk(G;Q) � grk(G/G
(i);Q) is an isomor-

phism for each k ≤ 2i − 1.

Proof. Taking associated graded Lie algebras in sequence (6.2) gives epimorphisms

gr(G;Q) // // gr(G/G(i);Q) // // gr(G/Γ2iG;Q) . (6.3)

By a previous remark, the composition of these maps is an isomorphism in degrees k < 2i.

The conclusion follows.

We now specialize to the case when i = 2, which is the case originally studied by K.-T.

Chen in [27]. The Chen ranks of G are defined as

θk(G) := dimQ(grk(G/G
′′;Q)). (6.4)

The projection π : G � G/G′′ induces an epimorphism, gr(π) : gr(G) � gr(G/G′′). It is

readily seen that grk(π) is an isomorphism for k ≤ 3. For a free group Fn of rank n, Chen

showed that

θk(Fn) = (k − 1)

(
n+ k − 2

k

)
, (6.5)

for all k ≥ 2. Let us also define the holonomy Chen ranks of G as θ̄k(G) = dimQ(h/h′′)k,

where h = h(G;Q). It is readily seen that θ̄k(G) ≥ θk(G), with equality for k ≤ 2.

Lemma 6.1.4. The Chen Lie algebra of the product of two groups G1 and G2 is isomorphic

to the direct sum gr(G1/G
′′
1)⊕ gr(G2/G

′′
2), as graded Lie algebras.

Proof. The canonical projections G1 × G2 → Gi for i = 1, 2 restrict to homomorphisms on

the second derived subgroups, (G1 × G2)′′ → G′′i . Hence, there is an epimorphism φ : G1 ×
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G2/(G1 ×G2)′′ → G1/G
′′
1 ×G2/G

′′
2, inducing an epimorphism

gr(φ) : gr((G1 ×G2)/(G1 ×G2)′′) // // gr(G1/G
′′
1)⊕ gr(G2/G

′′
2) . (6.6)

By [32, Corollary 1.10], we have that

θk(G1 ×G2) = θk(G1) + θk(G2). (6.7)

Hence, the homomorphism gr(φ) is an isomorphism of graded Lie algebras.

6.1.3 Chen Lie algebras and formality

We are now ready to state and prove the main result of this section, which (together with

the first corollary following it) proves Theorem 1.2.5 from the Introduction.

Theorem 6.1.5. Let G be a finitely generated group. For each i ≥ 2, the quotient map

qi : G� G/G(i) induces a natural epimorphism of graded Q-Lie algebras,

Ψ
(i)
G : gr(G;Q)/ gr(G;Q)(i) // // gr(G/G(i);Q) .

Moreover, if G is a filtered-formal group, then Ψ
(i)
G is an isomorphism and the solvable

quotient G/G(i) is filtered-formal.

Proof. The map qi : G � G/G(i) induces a natural epimorphism of graded Q-Lie algebras,

gr(qi) : gr(G;Q) � gr(G/G(i);Q). By Proposition 3.1.1, this epimorphism factors through

an isomorphism, gr(G;Q)/g̃r(G(i);Q) '−→ gr(G/G(i);Q), where g̃r denotes the graded Lie

algebra associated with the filtration Γ̃kG
(i) = ΓkG ∩G(i).

On the other hand, as shown by Labute in [86, Proposition 10], the Lie ideal gr(G;Q)(i) is

contained in g̃r(G(i);Q). Therefore, the map gr(qi) factors through the claimed epimorphism
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Ψ
(i)
G , as indicated in the following commuting diagram,

gr(G;Q)

����

gr(qi)

** **
gr(G;Q)/ gr(G;Q)(i)

����

Ψ
(i)
G // // gr(G/G(i);Q) .

gr(G;Q)/g̃r(G(i);Q)

'
44

(6.8)

Suppose now that G is filtered-formal, and set m = m(G;Q) and g = gr(G;Q). We

may identify ĝ ∼= m. Let g ↪→ ĝ be the inclusion into the completion. Passing to solvable

quotients, we obtain a morphism of filtered Lie algebras,

ϕ(i) : g/g(i) // m/m(i) . (6.9)

Passing to the associated graded Lie algebras, we obtain the following diagram:

g/g(i)

gr(ϕ(i))
��

Ψ
(i)
G // gr(G/G(i);Q)

∼=
��

gr(m/m(i))
∼= // gr(m(G/G(i);Q)).

(6.10)

All the graded Lie algebras in this diagram are generated in degree 1, and all the mor-

phisms induce the identity in this degree. Therefore, the diagram is commutative. Moreover,

the right vertical arrow from (6.9) is an isomorphism by Quillen’s isomorphism (3.21), while

the lower horizontal arrow is an isomorphism by Theorem 6.1.2.

Recall that, by assumption, m = ĝ; therefore, the inclusion of filtered Lie algebras g ↪→ ĝ

induces a morphism between the following two exact sequences,

0 // g̃r(m(i)) // gr(m) // gr(m)/g̃r(m(i)) // 0

0 // g(i) //

OO

g //

∼=

OO

g/g(i) //

OO

0 .

(6.11)

Here g̃r means taking the associated graded Lie algebra corresponding to the induced fil-

tration. Using formulas (2.2) and (2.9), it can be shown that g̃r(m(i)) = g(i). Therefore,
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the morphism g/g(i) → gr(m)/g̃r(m(i)) is an isomorphism. We also know that gr(m/m(i)) =

gr(m)/g̃r(m(i)). Hence, the map gr(ϕ(i)) is an isomorphism, and so, by (6.10), the map Ψ
(i)
G

is an isomorphism, too.

By Lemma 2.1.2, the map ϕ(i) induces an isomorphism of complete, filtered Lie algebras

between the degree completion of g/g(i) and m/m(i). As shown above, Ψ
(i)
G is an isomorphism;

hence, its degree completion is also an isomorphism. Composing with the isomorphism from

Theorem 6.1.2, we obtain an isomorphism between the degree completion ĝr(G/G(i);Q)

and the Malcev Lie algebra m(G/G(i);Q). This shows that the solvable quotient G/G(i) is

filtered-formal.

Remark 6.1.6. As shown in [86, §3], the analogue of Theorem 6.1.5 does not hold if the

ground field Q has characteristic p > 0. More precisely, there are pro-p groups G for which

the morphisms Ψ
(i)
G (i ≥ 2) are not isomorphisms.

Returning now to the setup from Lemma 3.1.10, let us compose the canonical projection

gr(qi) : gr(G;Q) � gr(G/G(i);Q) with the epimorphism ΦG : h(G;Q) � gr(G;Q). We

obtain in this fashion an epimorphism h(G;Q)� gr(G/G(i);Q), which fits into the following

commuting diagram:

h(G) gr(G)

h(G/G(i)) gr(G/G(i))

h(G)/h(G)(i) gr(G)/ gr(G)(i) .

ΦG

(6.12)

Putting things together, we obtain the following corollary, which recasts Theorem 4.2

from [117] in a setting which is both functorial, and holds in wider generality. This corollary

provides a way to detect non-1-formality of groups.

Corollary 6.1.7. For each for i ≥ 2, there is a natural epimorphism of graded Q-Lie

algebras,

Φ
(i)
G : h(G;Q)/h(G;Q)(i) // // gr(G/G(i);Q) .
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Moreover, if G is 1-formal, then Φ
(i)
G is an isomorphism.

Corollary 6.1.8. Suppose the group G is 1-formal. Then, for each for i ≥ 2, the solvable

quotient G/G(i) is graded-formal if and only if h(G;Q)(i) vanishes.

Proof. By Proposition 6.1.1, the canonical projection qi : G → G/G(i) induces an isomor-

phism h(qi) : h(G;Q)→ h(G/G(i);Q). Since we assume G is 1-formal, Corollary 6.1.7 guar-

antees that the map Φ
(i)
G : h(G;Q)/h(G;Q)(i) → gr(G/G(i);Q) is an isomorphism. The claim

follows from the left square of diagram (6.12).

6.2 Chen Lie algebras and Alexander invariants

In this section, we discuss the relationship between the Chen Lie algebra and the Alexander

invariant of a finitely generated group.

6.2.1 Alexander invariants

Once again, letG be a finitely generated group. Let us consider the C-vector spaceH1(G′,C) =

G′/G′′⊗C. This vector space can be viewed as a (finitely generated) module over the group

algebra C[H], with the abelianization H = G/G′ acting on G′/G′′ by conjugation. Following

[106], we denote this module by BC(G), or B(G) for short, and call it the Alexander invariant

of G. We refer to [106, 32, 117, 123] for ways to compute presentations for the module B(G)

in various degrees of generality.

The module B = B(G) may be filtered by powers of the augmentation ideal, I =

ker(ε : C[H] → C), where ε is the ring map defined by ε(h) = 1 for all h ∈ H. The

associated graded module,

gr(B) =
⊕
k≥0

IkB/Ik+1B, (6.13)

then, is a module over the graded ring gr(C[H]) =
⊕

k≥0 I
k/Ik+1. We call this module the

associated graded Alexander invariant of G.
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Work of W. Massey [106] implies that the map j : G′/G′′ → G/G′′ restricts to isomor-

phisms

IkB // Γk+2(G/G′′) (6.14)

for all k ≥ 0. Taking successive quotients of the respective filtrations and tensoring with C,

we obtain isomorphisms

grk(j) : grk(B(G)) // grk+2(G/G′′) for k ≥ 0. (6.15)

Consequently, the Chen ranks of G can be expressed in terms of the Hilbert series of the

graded module gr(B(G)), as follows:

∑
k≥2

θk(G) · tk−2 = Hilb(gr(B(G)), t). (6.16)

Remark 6.2.1. If the group G = 〈x1, . . . , xn | r1, . . . , rm〉 is a finitely presented, commu-

tator-relators group, then the Hilbert series of the module gr(B(G)) may be computed using

the algorithm from [31, 33]. To start with, identify C[H] with Λ = C[t±1
1 , . . . , t±1

n ]. The

Alexander invariant of G admits then a finite presentation for the form

Λ(n
3) ⊕ Λm δ3+νG // Λ(n

2) // B(G) // 0 , (6.17)

Here, δi is the i-th differential in the standard Koszul resolution of C over Λ, and νG is a

map satisfying δ2 ◦ νG = DG, where DG is the abelianization of the Jacobian matrix of Fox

derivatives of the relators. Next, one computes a Gröbner basis for the module B(G), in a

suitable monomial ordering. An application of the standard tangent cone algorithm yields

then a presentation for gr(B(G)), from which ones computes the Hilbert series of gr(B(G)).

Finally, the Chen ranks of G are given by formula (6.16).

6.2.2 Another filtration on G′/G′′

Next, we compare the module B(gr(G)) to another, naturally defined S-module associated

to the group G. Let grΓ̃(G′/G′′) be the associated graded Lie algebra of G′/G′′ with respect
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to the induced filtration

Γ̃k(G
′/G′′) := (G′/G′′) ∩ Γk(G/G

′′). (6.18)

The terms of this filtration fit into short exact sequences

0 // Γ̃k(G
′/G′′) // Γk(G/G

′′) // Γk(G/G
′) // 0 . (6.19)

Noting that Γk(G/G
′) = 0 for k ≥ 2, we deduce that

Γ̃k(G
′/G′′) = Γk(G/G

′′), for k ≥ 2. (6.20)

As before, it is readily checked that the adjoint representation of gr1(G/G′′) = H ⊗ C

on gr(G/G′′) induces an S-action on grΓ̃(G′/G′′), preserving the grading. Hence, the Lie

algebra C(G) := grΓ̃(G′/G′′) can also be viewed as a graded module over S, by setting

C(G)k = grΓ̃
k+2(G′/G′′). (6.21)

Proposition 6.2.2. The canonical morphism of graded Lie algebras Ψ: gr(G)/ gr(G)′′ �

gr(G/G′′) from Theorem 6.1.5 induces an epimorphism of S-modules,

ϕ : B(gr(G)) // // C(G) .

Moreover, if G is filtered-formal, then ϕ is an isomorphism.

Proof. The map Φ fits into the following commutative diagram of graded Lie algebras,

0 // gr(G)′/ gr(G)′′

ϕ
����

// gr(G)/ gr(G)′′

Ψ
����

// gr(G)/ gr(G)′

id

��

// 0

0 // grΓ̃(G′/G′′)
gr(j) // gr(G/G′′) // gr(G/G′) // 0.

(6.22)

Thus, Ψ induces a morphism of graded Lie algebras, ϕ : gr(G)′/ gr(G)′′ → grΓ̃(G′/G′′),

as indicated above. By the Five Lemma, ϕ is surjective. Observe that gr(G)/ gr(G)′ ∼=

gr(G/G′) ∼= H⊗C acts on both the source and target of ϕ by adjoint representations. Hence,
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upon regrading according to (5.16) and (6.21), the map ϕ : B(gr(G)) � C(G) becomes a

morphism of S-modules.

If G is filtered-formal, then, according to Theorem 6.1.5, the map Ψ is an isomorphism

of graded Lie algebras. Hence, the induced map ϕ is an isomorphism of S-modules.

6.2.3 Comparison with the associated graded Alexander invariant

Finally, we identify the associated graded Alexander invariant gr(B(G)) with the S-module

C(G) defined above. To do that, we first identify the respective ground rings.

Choose a basis {x1, . . . , xn} for the torsion-free part ofH = Gab. We may then identify the

group algebra gr(C[H]) with the polynomial algebra R = C[s1, . . . , sn], where si corresponds

to xi − 1 ∈ I/I2, see Quillen [132]. On the other hand, we may also identify the symmetric

algebra S = Sym(H ⊗ C) with the polynomial algebra C[x1, . . . , xn]. The desired ring

isomorphism, R ∼= S, is gotten by sending si to xi.

Proposition 6.2.3. Under the above identification R ∼= S, the graded R-module gr(B(G))

is canonically isomorphic to the graded S-module C(G).

Proof. Recall from §6.2.1 that the inclusion map j : G′/G′′ → G/G′′ restricts to an isomor-

phism IkB(G)→ Γk+2(G/G′′) for each k ≥ 0. Using the induced filtration Γ̃ from (6.18) and

the identification (6.20), we obtain C-linear isomorphisms IkB(G) ∼= Γ̃k+2(G′/G′′), for all

k ≥ 0. Taking the successive quotients of the respective filtrations and regrading according

to (6.21), we obtain a C-linear isomorphism gr(B(G)) ∼= C(G).

Under the identification gr(C[H]) ∼= R, the associated graded Alexander invariant of G

may be viewed as a graded R-module, with R-action defined by

si(z) = (xi − 1)z = xizx
−1
i − z = [xi, z]z − z = [xi, z] + z − z = [xi, z], (6.23)

for all z ∈ G′. (In this computation, we follow the convention from [106], and view the

Alexander invariant B(G) = G′/G′′ as an additive group; however, when we consider the
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induced filtration Γ̃ on G′/G′′, we view it as a multiplicative subgroup of G/G′′.)

Finally, recall that C•(G) = grΓ̃
•−2(G′/G′′) is an S-module, with S-action given by xi(z) =

[xi, z]. Hence, the aforementioned isomorphism R ∼= S identifies the R-module gr(B(G)) with

the S-module C(G).

6.2.4 Discussion

In the 1-formal case, we obtain the following corollary, which can also be deduced from [42,

Theorem 5.6].

Corollary 6.2.4. Let G be a 1-formal group. Then gr(B(G)) ∼= B(G), as modules over the

polynomial ring S = gr(C[H]).

Proof. Follows at once from Propositions 5.2.2, 6.2.2, and 6.2.3.

Using those propositions once again, we obtain another corollary.

Corollary 6.2.5. Let G be a finitely generated group. The following then hold.

1. θk(gr(G)) ≤ θk(h(G)), with equality if k ≤ 2, or if G is graded-formal.

2. θk(G) ≤ θk(gr(G)), with equality if k ≤ 3, or if G is filtered-formal.

The graded-formality assumption from part (1) of the above corollary is clearly necessary

for the equality θk(gr(G)) = θk(h(G)) to hold for all k. On the other hand, it is not clear

whether the filtered-formality hypothesis from part (2) is necessary for the equality θk(G) =

θk(gr(G)) to hold in general. In view of several computations (some of which are summarized

in the next section), we are led to formulate the following question. Suppose G is a graded-

formal group. Does the equality θk(G) = θk(gr(G)) hold for all k?
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6.3 Resonance varieties and Chen ranks

In this section, we detect the relationship among the Chen ranks, the Alexander invariants

and the resonance varieties.

6.3.1 Chen ranks and Alexander invariants

Let G be a finitely generated group. The terms of the lower central series of G are defined

inductively by Γ1G = G and ΓiG = [G,Γi−1G] for i ≥ 2. The associated graded Lie algebra

of G is the locally finite graded vector space

gr(G) =
⊕
i≥1

(ΓiG/Γi+1G)⊗ C, (6.24)

with Lie bracket [ , ] : gri(G)× grj(G)→ gri+j(G) induced by the group commutator.

Following [27, 28], let us define the Chen ranks of G as the LCS ranks of G/G′′, the

quotient of G by its second derived subgroup:

θk(G) := dimC(grk(G/G
′′)). (6.25)

For the free group of rank n, Chen showed that

θk(Fn) = (k − 1)

(
n+ k − 2

k

)
for all k ≥ 2. (6.26)

The (complex) Alexander invariant of G is defined as B(G) := (G′/G′′)⊗C, with G/G′

acting on the cosets of G′′ via conjugation, that is, gG′ · hG′′ = ghg−1G′′, for g ∈ G, h ∈ G′.

Hence, B = B(G) can be viewed as a module over the ring R = C[G/G′], and may be filtered

by the powers of the augmentation ideal I := ker(ε : R→ C), where ε(
∑
ngg) =

∑
ng.

Let grI(B) :=
⊕

r≥0 I
rB/Ir+1B be the associated graded object, viewed as a graded

module over the ring S := grI(R) ∼= Sym(G/G′ ⊗ C). In [106], W. Massey expressed the

Chen ranks of G in terms of the Hilbert series of the Alexander invariant of G, as follows:

∑
k≥0

θk+2(G) · tk = Hilb(grI(B(G)), t), (6.27)
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6.3.2 Chen ranks and resonance varieties

Let G be a finitely generated group, and suppose the cohomology algebra A = H∗(G;C) is

locally finite. The resonance varieties of the group G are defined to be Ri
t(G) := Ri

t(A). The

first resonance variety of G can be described as,

Rd(G) = {a ∈ H1(G,C) | H1(A,C); δa) ≥ d}. (6.28)

Suppose G is a finitely presented, commutator-relators group. As shown in [110], for each d ≥

1, the resonance variety R1
d(G) coincides, at least away from the origin 0 ∈ H1(G;C), with

the support variety of the annihilator of d-th exterior power of the infinitesimal Alexander

invariant; that is,

R1
d(G) = V

(
Ann

( d∧
B(h(G))

))
. (6.29)

The first author conjectured in [140] that for k � 0, the Chen ranks of an arrangement

group G are given by the Chen ranks formula

θk(G) =
∑
m≥2

hm(G) · θk(Fm), (6.30)

where hm(G) is the number of m-dimensional irreducible components of R1
1(G). A positive

answer to this conjecture was given in [34] for a class of 1-formal groups which includes

arrangement groups.

Using Hilbert series of the Alexander invariants, the Chen ranks formula (6.30) translates

into the equivalent statement that

Hilb(gr(B(G)), t)−
∑
m≥2

hm(G) · Hilb(gr(B(Fm)), t) (6.31)

is a polynomial (in the variable t).

Recently, D. Cohen and Schenck proved the Chen ranks conjecture. To state this result,

recall that a subspace U ⊂ H1(G;C) is called isotropic if the cup product U ∧U → H2(G;C)

is the zero map.

118



Theorem 6.3.1 ([34]). Let G be a finitely presented, commutator-relators 1-formal group.

Assume that the components of R1(G) are isotropic, projectively disjoint, and reduced as a

scheme. Then, for k � 0, the Chen ranks of G are given by formula 6.30.

Proposition 6.3.2. Theorem 6.3.1 is still true without the “commutator-relators” assump-

tion.

Proof. Let G = F/R be a group satisfying all assumptions of Theorem 6.3.1 except for the

requirement that R ⊂ [F, F ]. By Corollary 4.3.4, there exists a commutator-relators group

Gc, such that h(G) ∼= h(Gc). It follows that B(G) ∼= B(Gc); thus, R1(G) ∼= R1(Gc), and so

hm(G) = hm(Gc) for all m > 0. The group Gc may not be 1-formal. However, from [34], we

have that

θ̄k(Gc) =
∑
m≥2

hm(Gc) · θk(Fm),

where θ̄k(Gc) := dimk(h(Gc)/h(Gc)
′′) are the holonomy Chen ranks of G. By Corollary 6.2.4,

we have that gr(B(G)) ∼= B(G), for any finitely generated 1-formal group. Hence

θk(G) = θ̄k(G) = θ̄k(Gc) =
∑
m≥2

hm(Gc) · θk(Fm) =
∑
m≥2

hm(G) · θk(Fm).

This finishes the proof.

Example 6.3.3. The pure braid group Pn is an arrangement group, and thus satisfies the

hypothesis of Theorem 6.3.1. In fact, we know from Proposition 7.3.1 that the resonance

variety R1
1(Pn) has

(
n
3

)
+
(
n
4

)
=
(
n+1

4

)
irreducible components, all of dimension 2. Thus, the

computation from (7.18) agrees with the one predicted by formula (6.30), for all k ≥ 3.

As noted in [34], it is easy to find examples of non-1-formal groups for which the Chen

ranks formula does not hold. For instance, if G = F2/Γ3(F2) is the Heisenberg group,

then R1
1(G) = H1(G,C) = C2, and thus formula (6.30) would predict in this case that

θk(G) = θk(F2) for k large enough, where in reality θk(G) = 0 for k ≥ 3. On the other

hand, here is an example of a finitely presented, commutator-relators group which satisfies

the Chen ranks formula, yet which is not 1-formal.
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Example 6.3.4. Using the notation from [110], let A = A(31425) be the ‘horizontal’ ar-

rangement of 2-planes in R4 determined by the specified permutation, and let G be the

fundamental group of its complement. From [110, Example 6.5], we know that R1
1(G) is an

irreducible cubic hypersurface in H1(G,C) = C5. Hence, by Theorem 5.1.2, the group G is

not 1-formal (for an alternative argument, see [42, Example 8.2]). On the other hand, the

singularity link determined by A has all linking numbers ±1, and thus satisfies the Murasugi

Conjecture, that is, θk(G) = θk(F4), for all k ≥ 2, see [108, 117]. Therefore, the Chen ranks

formula holds for the group G.

6.3.3 Products and coproducts

We now analyze the way the Chen ranks formula (6.30) behaves under (finite) products and

coproducts of groups.

Lemma 6.3.5. Let G1 and G2 be two finitely generated groups. The number of m-dimen-

sional irreducible components of the corresponding first resonance varieties satisfies the fol-

lowing additivity formula,

hm(G1 ×G2) = hm(G1) + hm(G2). (6.32)

Proof. We start by identifying the affine space H1(G1×G2;C) with H1(G1;C)×H1(G2;C).

Next, by Proposition 5.1.3, we have that

R1
1(G1 ×G2) = R1

1(G1)× {0} ∪ {0} ×R1
1(G2). (6.33)

Suppose R1
1(G1) =

⋃s
i=1Ai and R1

1(G2) =
⋃t
j=1Bj are the decompositions into irre-

ducible components for the respective varieties. Then Ai×{0} and {0}×Bj are irreducible

subvarieties of R1
1(G1 × G2). Observe now that R1

1(G1) × {0} and {0} × R1
1(G2) intersect

only at 0. It follows that

R1
1(G1 ×G2) =

s⋃
i=1

Ai × {0} ∪
t⋃

j=1

{0} ×Bj (6.34)
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is the irreducible decomposition for the first resonance variety of G1 × G2. The claimed

additivity formula follows.

Corollary 6.3.6. If both G1 and G2 satisfy the Chen ranks formula, then G1 × G2 also

satisfies the Chen ranks formula.

Proof. Follows at once from formulas (6.7) and (6.32).

However, even if both G1 and G2 satisfy the Chen ranks formula, the free product G1∗G2

may not satisfy this formula. We illustrate this phenomenon with an infinite family of

examples.

Example 6.3.7. Let Gn = Z ∗ Zn−1. Clearly, both factors of this free product satisfy the

Chen ranks formula; in fact, both factors satisfy the hypothesis of Theorem 6.3.1. Moreover,

Gn is 1-formal and R1(Gn) is projectively disjoint and reduced as a scheme. Using Theorem

4.1(3) and Lemma 6.2 from [118], a short computation reveals that

∑
k≥2

θk(Gn)tk = t
1− (1− t)n−1

(1− t)n
. (6.35)

On the other hand, if n ≥ 2, then R1
1(Gn) = H1(Gn,C), by Proposition 5.1.4. Thus,

formula (6.30) would say that θk(Gn) = θk(Fn) for k � 0. However, comparing formulas

(7.16) and (6.35), we find that

θk(Fn)− θk(Gn) =
k∑
i=2

θi(Fn−1). (6.36)

Hence, if n ≥ 3, the group Gn does not satisfy the Chen ranks formula. Note that Gn

also does not satisfy the isotropicity hypothesis of Theorem 6.3.1, since the restriction of the

cup product to the factor Zn−1 is nonzero, again provided that n ≥ 3.
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Chapter 7

Pure virtual braid groups

The virtual braid groups were first introduced by Kauffman in 1999 in the context of the

study of virtual knot theory. As in the theory of the classical braid groups, the kernel of

the canonical epimorphism from virtual braid group to the corresponding symmetric group

is called a pure virtual braid group. Bardakov gave presentations for the pure virtual braid

groups and defined a class of subgroups known as the upper pure virtual braid groups.

Bartholdi, Enriquez, Etingof, and Rains independently defined and studied these groups,

which they called the quasitriangular groups and triangular groups respectively, as a group-

theoretic version of the set of solutions to the Yang–Baxter equations. In this chapter, we

investigate the resonance varieties, lower central series ranks, and Chen ranks of the pure

virtual braid groups and their upper-triangular subgroups. As an application, we give a

complete answer to the 1-formality question for this class of groups. This chapter is based

on the work in my papers [143, 145] with Alex Suciu.

7.1 Pure braid groups and pure virtual braid groups

In this section, we look at the pure virtual braid groups and their upper-triangular subgroups

from the point view of combinatorial group theory.
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7.1.1 Backgrounds of virtual braids

Virtual knot theory, as introduced by Kauffman in [78], is an extension of classical knot

theory. This new theory studies embeddings of knots in thickened surfaces of arbitrary genus,

while the classical theory studies the embeddings of circles in thickened spheres. Another

motivation comes from the representation of knots by Gauss diagrams. In [62], Goussarov,

Polyak, and Viro showed that the usual knot theory embeds into virtual knot theory, by

realizing any Gauss diagram by a virtual knot. Many knot invariants, such as knot groups,

the bracket polynomial, and finite-type Vassiliev invariants can be extended to invariants of

virtual knots, see [78, 62].

The virtual braid groups vBn were introduced in [78] and further studied in [6, 9, 79, 7, 76].

As shown by Kamada in [76], any virtual link can be constructed as the closure of a virtual

braid, which is unique up to certain Reidemeister-type moves. In this paper, we will be

mostly interested in the kernel of the canonical epimorphism vBn → Sn, called the pure

virtual braid group, vPn, and a certain subgroup of this group, vP+
n , which we call the upper

pure virtual braid group.

In [11], Bartholdi, Enriquez, Etingof, and Rains independently defined and studied the

group vPn, which they called the n-th quasitriangular groups QTrn, as a group-theoretic

version of the set of solutions to the Yang–Baxter equations. Their work was developed in

a deep way by P. Lee in [91]. The authors of [11, 91] construct a classifying space for vPn

with finitely many cells, and find a presentation for the cohomology algebra of vPn, which

they show is a Koszul algebra. They also obtain parallel results for a quotient group of vPn,

called the the n-th triangular group, which has the same generators as vPn, and one more

set of relations. It is readily seen that the triangular group Trn is isomorphic to vP+
n .

123



7.1.2 Presentations and classifying spaces of Pn

We first review the results of the pure braid groups Pn. Let Aut(Fn) be the group of (right)

automorphisms of the free group Fn on generators x1, . . . , xn. Magnus [101] showed that

the map Aut(Fn) → GLn(Z) which sends an automorphism to the induced map on the

abelianization (Fn)ab = Zn is surjective, with kernel denoted by IAn. Furthermore, the

kernel of this homomorphism, denoted by IAn, is generated by automorphisms αij and αijk

(1 ≤ i 6= j 6= k ≤ n) which send xi to xjxix
−1
j and xixjxkx

−1
j x−1

k , respectively, and leave

invariant the remaining generators of Fn.

An automorphism of the free group Fn is called a symmetric automorphism if it sends

each generator xi to a conjugate of xσ(i), for some permutation σ ∈ Σn. Recall that the

Artin braid group Bn consists of those permutation-conjugacy automorphisms which fix the

word x1 · · ·xn ∈ Fn. For each 1 ≤ i < n, let σi be the braid automorphism which sends xi

to xixi+1x
−1
i and xi+1 to xi, while leaving the other generators of Fn fixed. As shown for

instance in [18], the braid group Bn is generated by σ1, . . . , σn−1, subject to the well-known

relations 
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2,

σiσj = σjσi, |i− j| ≥ 2.

(R1)

On the other hand, the symmetric group Sn has a presentation with generators si for

1 ≤ i ≤ n− 1 and relations
sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2,

sisj = sjsi, |i− j| ≥ 2.

s2
i = 1, 1 ≤ i ≤ n− 1;

(R2)

The canonical projection from the braid group to the symmetric group, which sends the

elementary braid σi to the transposition si, has kernel the pure braid group on n strings,

Pn = ker(Bn � Sn) = Bn ∩ IAn. A generating set for Pn are the n-braids

Aij = σj−1σj−2 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ−1

j−2σ
−1
j−1

124



1 i−1 i i+1 j−1 j j+1 n

· · · · · ·· · ·

Aij

Figure 7.1: The pure braids Aij for i < j.

for 1 ≤ i < j ≤ n, (see Figure 7.1,) subject to the relations (see, e.g., [69])

AArs
ij =



Aij if i < r < s < j or r < s < i < j

A
A−1

rj

ij if r < i = s < j

A
A−1

sj A
−1
rj

ij if i = r < s < j

A
AsjArjA

−1
sj A

−1
rj

ij if r < i < s < j.

(7.1)

where xy := y−1xy is the conjugation in a group.

As is well-known, the center of Pn (n ≥ 2) is infinite cyclic, and so we have a direct

product decomposition of the form Pn ∼= P n×Z. The first few groups in this series are easy

to describe: P1 = {1}, P2 = Z, and P3
∼= F2 × Z, where Fn denotes the free group on n

generators.

The configuration space of n ordered points in a connected manifold M is defined to be

Confn(M) := {(x1, · · · , xn) ∈Mn | xi 6= xj for i 6= j}. (7.2)

There is a natural free right action of Sn on the configuration space Confn(M),

µ : Confn(M)× Sn → Confn(M),

defined by permutation of coordinates, µ((x1, · · · , xn), α) = (x1, · · · , xn)·α = (xα(1), · · · , xα(n)).

Denote the orbit space for the free action µ by Cn(M) = Confn(M)/Sn. The configuration

space Confn(C) is a classifying space for the Artin pure braid group Pn, while the space

Cn(C) is a classifying space for the Artin braid group Bn. See [69, §1.3] for more details.
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7.1.3 Presentations and classifying spaces of vPn

As shown by Bardakov in [7], the virtual braid group vBn has presentation with generators

σi and si for i = 1, . . . , n− 1, and relations (R1), (R2) and
siσj = σjsi, |i− j| ≥ 2,

σisi+1si = si+1siσi+1, 1 ≤ i ≤ n− 2,

(R3)

The pure virtual braid group vPn has presentation with generators xij with 1 ≤ i 6= j ≤ n

(see Figure 7.1 for a description of the corresponding virtual braids), and relations

xijxikxjk = xjkxikxij for distinct i, j, k, (7.3)

xijxkl = xklxij for distinct i, j, k, l.

1 i−1 i i+1 j−1 j j+1 n

· · · · · ·· · ·

xij

1 i−1 i i+1 j−1 j j+1 n

· · · · · ·· · ·

xji

Figure 7.2: The virtual pure braids xij and xji for i < j.

The upper-triangular pure virtual braid group, vP+
n , is the subgroup of vPn generated by

those elements xij with 1 ≤ i < j ≤ n. Its defining relations are

xijxikxjk = xjkxikxij for i < j < k, (7.4)

xijxkl = xklxij for i 6= j 6= k 6= l, i < j, and k < l.

Of course, both vP1 and vP+
1 are the trivial group. It is readily seen that vP+

2 = Z,

while vP+
3
∼= Z ∗ Z2. Likewise, vP2 is isomorphic to F2.

A classifying space for the group vP+
n is identified in [11] as the quotient space of the (n−

1)-dimensional permutahedron Pern by actions of certain symmetric groups. More precisely,

let Pern be the convex hull of the orbit of a generic point in Rn under the permutation
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action of the symmetric group Sn on its coordinates. Then Pern is a polytope whose faces

are indexed by all ordered partitions of the set [n] = {1, . . . , n}; see Figure 7.3. For each

r ∈ [n], there is a natural action of Sr on the disjoint union of all (n− r)-dimensional faces,

C1 t · · · t Cr. Similarly, a classifying space for vPn can be constructed as a quotient space

of Pern × Sn.

7.1.4 Split monomorphisms

In [11], the group vPn is called the quasi-triangular group, and is denoted by QTrn, while

the quotient group of QTrn by the relations of the form xij = xji for i 6= j is called the

triangular group, and is denoted by Trn.

Lemma 7.1.1. The group Trn is isomorphic to vP+
n .

Proof. Let φ : Trn → vP+
n be the homomorphism defined by φ(xij) = xij for i < j and

φ(xij) = xji for i > j, and let ψ : vP+
n → Trn be the homomorphism defined by ψ(xij) = xij

for i < j. It is easy to show that φ and ψ are well-defined homomorphisms, and φ ◦ ψ = id

and ψ ◦ φ = id. Thus, φ is an isomorphism.

Corollary 7.1.2. The inclusion jn : vP+
n ↪→ vPn is a split monomorphism.

Proof. The split surjection is defined by the composition of the quotient surjection vPn � Trn

and the map φ : Trn → vP+
n from Lemma 7.1.1.

There are several other split monomorphisms between the aforementioned groups.

Lemma 7.1.3. For each n ≥ 2, there are split monomorphisms ιn : vPn → vPn+1 and

ι+n : vP+
n → vP+

n+1.

Proof. The maps ιn and ι+n are defined by sending the generators of vPn to the generators

of vPn+1 with the same indices. The split surjection πn : vPn+1 � vPn sends xij to zero for

i = n+1 or j = n+1, and sends xij to xij otherwise. The split surjection π+
n : vP+

n+1 � vP+
n

is defined similarly.
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Per3

(1,3,2)

(1,2,3)

(2,1,3) (2,3,1)

(3,2,1)

(3,1,2)

Per4

Figure 7.3: Permutahedrons.
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As noted by Bardakov in [7, Lemma 6], the pure virtual braid group vPn admits a semi-

direct product decomposition of the form vPn ∼= Fq(n) o vPn−1, where q(1) = 2 and q(n) is

infinite for n ≥ 2. Furthermore, as shown in [11], there exits a monomorphism from Pn to

vPn.

7.1.5 A free product decomposition for vP3

The pure virtual braid group vP3 is generated by x12, x21, x13, x31, x23, x32, subject to the

relations

x12x13x23 = x23x13x12, x21x23x13 = x13x23x21, x13x12x32 = x32x12x13,

x31x32x12 = x12x32x31, x23x21x31 = x31x21x23, x32x31x21 = x21x31x32.

The next lemma gives a free product decomposition for this group, which will play an

important role in the proof that vP3 is 1-formal.

Lemma 7.1.4. There is a free product decomposition vP3
∼= P 4 ∗ Z.

Proof. As shown in [10], if we set a1 = x13x23, b1 = x13x12, b2 = x21x31, a2 = x32x31, c1 =

x13x31, c2 = x13, then there is a free product decomposition, vP3
∼= G3 ∗ Z, where G3 is

generated by {a1, a2, b1, b2, c1}, subject to the relations

[a1, b1] = [a2, b2] = 1, bc11 = ba21 , ac11 = ab21 , bc12 = ba1b22 , ac12 = ab1a22 ,

where yx = x−1yx. Replacing the generators in the presentation of G3 by x1, x2, x3, x4, x−1
5 ,

respectively, and simplifying the relations, we obtain a new presentation for the group G3,

with generators x1, . . . , x5 and relations

x1x3 = x3x1, x2x4 = x4x2, x5x3x2 = x3x2x5 = x2x5x3, x1x4x5 = x4x5x1 = x5x1x4.

On the other hand, as noted for instance in [31], the group P 4 has a presentation with

generators z1, . . . , z5 and relations

z2z3 = z3z2, z
−1
2 z4z2z1 = z1z

−1
2 z4z2, z5z3z1 = z3z1z5 = z1z5z3, z5z4z2 = z4z2z5 = z2z5z4.
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Define a homomorphism φ : G3 → P 4 by sending x1 7→ z2, x2 7→ z1, x3 7→ z3, x4 7→ z−1
2 z4z2

and x5 7→ z5. A routine check shows that φ is a well-defined homomorphism, with inverse

ψ : P 4 → G3 sending z1 7→ x2, z2 7→ x1, z3 7→ x3, z4 7→ x1x4x
−1
1 , and z5 7→ x5. This

completes the proof.

As a quick application of this lemma, we obtain the following corollary, which was first

proved by Bardakov et al. [10] using a different method.

Corollary 7.1.5. The pure virtual braid group vP3 is a residually torsion-free nilpotent

group.

Proof. It is readily seen that two groups G1 and G2 are residually torsion-free nilpotent if

and only their direct product, G1 × G2, is residually torsion-free nilpotent. Now, as shown

by Falk and Randell in [49], the pure braid groups Pn are residually torsion-free nilpotent.

Hence, the subgroup P 4 ⊂ P4 is also residually torsion-free nilpotent.

On the other hand, Malcev [103] showed that if G1 and G2 are residually torsion-free

nilpotent groups, then the free product G1 ∗G2 is also residually torsion-free nilpotent. The

claim follows from the decomposition vP3
∼= P 4 ∗ Z.

A more general question was asked by Bardakov and Bellingeri in [8]: Are the groups

vPn or vP+
n residually torsion-free nilpotent?

7.2 Cohomology rings and Hilbert series of Pn and vPn

In this section we discuss what is known about the cohomology rings of the pure (virtual)

braid groups, and the corresponding Hilbert series.

7.2.1 Hilbert series and generating functions

Recall that the (ordinary) generating function for a sequence of power series P = {pn(t)}n≥1

is defined by F (u, t) :=
∑∞

n=0 pn(t)un. Likewise, the exponential generating function for P
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is defined by E(u, t) :=
∑∞

n=0 pn(t)u
n

n!
.

Now let G = {Gn}n≥1 be a sequence of groups admitting classifying spaces K(Gn, 1) with

finitely many cells in each dimension. We then define the exponential generating function

for the corresponding Poincaré polynomials by

Poin(G, u, t) := 1 +
∞∑
n=1

Poin(Gn, t)
un

n!
. (7.5)

In particular, if we set t = −1, we obtain the exponential generating function for the Euler

characteristics of the groups Gn, denoted by χ(G).

For instance, the Poincaré polynomial of a free group of rank n is Poin(Fn, t) = 1 + nt.

Thus, the exponential generating function for the sequence F = {Fn}n≥1 is Poin(F, u, t) =

(1 + tu)eu.

7.2.2 Pure braid groups

A classifying space for the pure braid group Pn is the configuration space Conf(C, n) of n

distinct points on the complex line. This space has the homotopy type of a finite, (n − 1)-

dimensional CW-complex. The cohomology algebras of the pure braid groups are computed

by Arnold in [3].

Theorem 7.2.1 ([3]). The cohomology ring An = H∗(Pn;Z) is the skew-commutative ring

generated by degree 1 elements eij (1 ≤ i < j ≤ n), subject to the relations

eikejk = eij(ejk − eik) for i < j < k. (7.6)

Clearly, this algebra is quadratic. In fact, An is a Koszul algebra ([137]), that is to

say, ExtiAn
(C,C)j = 0 for i 6= j. Furthermore, the Poincaré polynomial of Conf(C, n), or,

equivalently, the Hilbert series of An, is given by

Poin(Pn, t) =
n−1∏
k=1

(1 + kt) =
n−1∑
i=0

c(n, n− i) ti, (7.7)

131



where c(n,m) are the (unsigned) Stirling numbers of the first kind, counting the number

of permutations of n elements which contain exactly m permutation cycles. The associated

graded Lie algebra of Pn is computed by Kohno [80] and Falk–Randell [48].

Theorem 7.2.2. The graded Lie algebra gr(Pn;Q) is generated by sij for 1 ≤ i 6= j ≤ n,

subjects to the relations sij = sji, [sjk, sik + sij] = 0 and [sij, skl] = 0 for i 6= j 6= l.

In particular, the pure braid group Pn is graded-formal.

Proposition 7.2.3. The exponential generating function for the Poincaré polynomials of

the pure braid groups Pn is given by

Poin(P, u, t) = exp

(
− log(1− tu)

t

)
.

Proof. It is known (see, e.g. [139]) that the exponential generating function for the unsigned

Stirling numbers c(n, k) is given by

exp(−x · log(1− z)) =
∞∑
n=0

n∑
k=0

c(n, k)xk
zn

n!
. (7.8)

Setting x = t−1 and z = tu, we obtain

exp

(
− log(1− tu)

t

)
=
∞∑
n=0

n∑
k=0

c(n, k)t−k
(tu)n

n!
= 1 +

∞∑
n=1

n−1∑
i=0

c(n, n− i)tiu
n

n!
, (7.9)

where we used c(0, 0) = 1 and c(n, 0) = 0 for n ≥ 1. This completes the proof.

7.2.3 Pure virtual braid groups

In [11], Bartholdi et al. describe classifying spaces for the pure virtual braid group vPn and

vP+
n . Let us note here that both these spaces are finite, (n− 1)-dimensional CW-complexes.

The following theorem provides presentations for the cohomology algebras of the pure

virtual braid groups and their upper triangular subgroups.

Theorem 7.2.4 ([11, 91]). For each n ≥ 2, the following hold.

132



1. The cohomology algebra An = H∗(vPn;C) is the skew-commutative algebra generated

by degree 1 elements aij (1 ≤ i 6= j ≤ n) subject to the relations aijaik = aijajk−aikakj,

aikajk = aijajk − ajiaik, and aijaji = 0 for i, j, k all distinct.

2. The cohomology algebra A+
n = H∗(vP+

n ;C) is the skew-commutative algebra generated

by degree 1 elements aij (1 ≤ i 6= j ≤ n), subject to the relations aij = −aji and

aijajk = ajkaki for i 6= j 6= k.

Corollary 7.2.5. The cohomology algebra H∗(vP+
n ;C) has a simplified presentation with

generators eij in degree 1 for 1 ≤ i < j ≤ n, and relations eij(eik− ejk) and (eij − eik)ejk for

i < j < k.

Proof. Let Ã+
n be the algebra given by the above presentation. The morphism φ : A+

n → Ã+
n

defined by φ(aij) = eij for i < j and φ(aij) = −eij for i > j is easily checked to be an

isomorphism.

In [11], Bartholdi et al. also showed that both An and A+
n are Koszul algebras, and

computed the Hilbert series of these graded algebras, as follows:

Poin(vPn, t) =
n−1∑
i=0

L(n, n− i) ti, (7.10)

Poin(vP+
n , t) =

n−1∑
i=0

S(n, n− i) ti.

Here L(n, n − i) are the Lah numbers, i.e., the number of ways of partitioning [n] into

n − i nonempty ordered subsets, while S(n, n − i) are the Stirling numbers of the second

kind, i.e., the number of ways of partitioning [n] into n − i nonempty (unordered) sets.

The polynomial Poin(vP+
n , t) is the rank-generating function for the partition lattice Πn, see

e.g. [139, Exercise 3.10.4]. All roots of these polynomial are negative real numbers.

It is now readily seen that the exponential generating function for the polynomials

Poin(vPn, t) and Poin(vP+
n , t) are exp

(
u

1−tu

)
and exp

(
exp(tu)−1

t

)
, respectively.
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Finally, let us note that Dies and Nicas [40] showed that the Euler characteristic of vPn

is non-zero for all n ≥ 2, while the Euler characteristic of vP+
n is non-zero for all n ≥ 3, with

one possible exception (and no exception if Wilf’s conjecture is true).

7.3 Resonance varieties of Pn and vPn

7.3.1 Pure braid groups

Since Pn admits a classifying space of dimension n − 1, the resonance varieties Ri
d(Pn) are

empty for i ≥ n. In degree i = 1, the resonance varieties Ri
d(Pn) are either trivial, or a union

of 2-dimensional subspaces.

Proposition 7.3.1 ([33]). The first resonance variety of the pure braid group Pn has de-

composition into irreducible components given by

R1
1(Pn) =

⋃
1≤i<j<k≤n

Lijk ∪
⋃

1≤i<j<k<l≤n

Lijkl,

where

Lijk =
{
xij + xik + xjk = 0 and xst = 0 if {s, t} 6⊂ {i, j, k}

}
,

Lijkl =

{ ∑
{p,q}⊂{i,j,k,l} xpq = 0, xij = xkl, xjk = xil, xik = xjl,

xst = 0 if {s, t} 6⊂ {i, j, k, l}

}
.

Furthermore, R1
d(Pn) = {0} for 2 ≤ d ≤

(
n
2

)
, and R1

d(Pn) = ∅ for d >
(
n
2

)
.

Recall that Pn ∼= P n × Z, where P n is the quotient of Pn by its (infinite cyclic) center.

Thus, the resonance varieties of the group P n can be described in a similar manner, using

Proposition 5.1.3.

7.3.2 Resonance varieties of vP3

A partial computation of the resonance varieties Ri
d(vP3) was done in [10] for i = 1 and

d = 1, 5, 6, as well as i = 2 and d = 2, 6. We use the preceding discussion to give a complete
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computation of all these varieties.

Proposition 7.3.2. For d ≥ 1, the resonance varieties of the pure virtual braid group vP3

are given by

Ri
d(vP3) ∼=



R1
d−1(P 4)× C, for i = 1, d ≤ 5

{0} for i = 1, d = 6,

R1
d−2(P 4)× C for i = 2, d ≤ 6

∅ otherwise.

Consequently, R1
1(vP3) = C6, while R1

2(vP3) is a union of five 3-dimensional subspaces,

pairwise intersecting in the 1-dimensional subspace R1
3(vP3) = R1

4(vP3) = R1
5(vP3).

Proof. By Lemma 7.1.4, we have an isomorphism vP3
∼= P 4 ∗ Z, which yields an isomor-

phism H1(vP3;C) ∼= H1(P 4;C)⊕C. Under this identification, Proposition 5.1.4 shows that

R1
d(vP3) ∼= R1

d−1(P 4)× C for d ≤ 5, and R1
6(vP3) = {0}.

The same proposition also shows that R2
d(vP3) ∼= R2

d(P 4) × C. On the other hand, by

Lemma 5.1.1, we have that R2
d(P 4) = R1

d−2(P 4) for d ≤ 6, since P 4 admits a 2-dimensional

classifying space, and χ(P 4) = 2. Finally, the description of the resonance varieties R1
d(vP3)

for d ≤ 6 follows from Proposition 7.3.1.

Let a12, a13, a23, a21, a31, a32 be the basis of H1(vP3,C) specified in Theorem 7.2.4, and

let xij the corresponding coordinate functions on this affine space. Tracing through the

isomorphisms H1(vP3,C) ∼= H1(P 4,C) × C ∼= H1(P4,C), we see that the components of

R1
2(vP3) have equations

{x12 − x23 = x12 + x32 = x12 + x21 = 0},

{x13 + x23 = x12 + x32 = x21 + x31 = 0},

{x13 + x23 = x13 − x32 = x13 + x31 = 0},

{x12 + x13 = x12 + x21 = x12 − x31 = 0},
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{x12 + x13 = x23 + x21 = x31 + x32 = 0},

while their common intersection is the line {x12 = −x21 = −x13 = x31 = x23 = −x32}.

7.3.3 Resonance varieties of vP+
4

We now switch to the upper-triangular group vP+
4 , and compute its degree 1 resonance

varieties. Let e12, e13, e23, e14, e24, e34 be the basis of H1(vP+
4 ,C) specified in Corollary 7.2.5,

and let xij be the corresponding coordinate functions on this affine space.

Lemma 7.3.3. The depth 1 resonance variety R1
1(vP+

4 ) is the irreducible, 3-dimensional

subvariety of degree 6 inside H1(vP+
4 ,C) = C6 defined by the equations

x12x24(x13 + x23) + x13x34(x12 − x23)− x24x34(x12 + x13) = 0,

x12x23(x14 + x24) + x12x34(x23 − x14) + x14x34(x23 + x24) = 0,

x13x23(x14 + x24) + x14x24(x13 + x23) + x34(x13x23 − x14x24) = 0,

x12(x13x14 − x23x24) + x34(x13x23 − x14x24) = 0.

The depth 2 resonance variety R1
2(vP+

4 ) consists of 13 lines in C6, spanned by the vectors

e12, e13, e23, e14, e24, e34, e12 − e13 + e23,

e12 − e14 + e24, e13 − e14 + e34, e23 − e24 + e34,

e13 − e23 − e14 + e24, e12 + e23 − e14 + e34, e12 − e13 + e24 − e34.

Finally, R1
d(vP

+
4 ) = {0} if 3 ≤ d ≤ 6, and R1

d(vP
+
4 ) = ∅ if d ≥ 7.

Proof. Let A = H∗(vP+
4 ,C) be the cohomology algebra of vP+

4 , as described in Corollary

7.2.5. The differential δ1 : A1 ⊗ S → A2 ⊗ S in the cochain complex (5.6) is then given by

δ1 =



−x34 0 0 0 0 x12

−x13 − x23 x12 − x23 x12 + x13 0 0 0

0 −x24 0 0 x13 0

0 0 −x14 x23 0 0

−x14 − x24 0 0 x12 − x24 x12 + x14 0

0 −x14 − x34 0 x13 − x34 0 x13 + x14

0 0 −x24 − x34 0 x23 − x34 x23 + x24


.

Computing with the aid of Macaulay2 [98] the elementary ideals of this matrix and finding

their primary decomposition leads to the stated conclusions.
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7.3.4 Resonance varieties of vP+
5

We now switch to the upper-triangular group vP+
5 , and compute its degree 1 resonance

varieties. Let e12, e13, . . . , e45 be the basis of H1(vP+
5 ,C) specified in Corollary 7.2.5, and let

xij be the corresponding coordinate functions on this affine space. Computing with the aid

of Macaulay2 [98], we get the first resonance variety of vP+
5 .

Lemma 7.3.4. The depth 1 resonance variety R1
1(vP+

5 ) ∼=
⋃15
i=1Ci is the 4-dimensional

subvariety inside H1(vP+
5 ,C) = C10 with 15 irreducible components.

C1 : {x24 − x45 = x23 − x35 = x13 = x14 = x34 = x12 + x15 = 0}
C2 : {x45 = x25 + x35 = x14 = x24 + x34 = x12 + x13 = x15 = 0}
C3 : {x24 = x23 + x25 = x14 = x34 − x45 = x12 = x13 + x15 = 0}
C4 : {x45 = x24 = x25 = x14 + x34 = x12 − x23 = x15 + x35 = 0}
C5 : {x35 + x45 = x25 = x23 + x24 = x13 + x14 = x12 = x15 = 0}
C6 : {x45 = x35 = x13 + x23 = x14 + x24 = x34 = x15 + x25 = 0}
C7 : {x35 = x25 + x45 = x13 = −x23 + x34 = x12 + x14 = x15 = 0}
C8 : {x24 + x25 = x23 = x13 = x34 + x35 = x12 = x14 + x15 = 0}
C9 : {x24 = x23 = x13 − x35 = x14 − x45 = x34 = x12 − x25 = 0}
C10 : {x35 = x25 = x23 = −x13 + x34 = x12 − x24 = x15 + x45 = 0}

C11 is defined by the equations

x24 = x25 = x23 = x12 = 0

−x13x14x35 − x13x34x35 − x13x14x45 + x14x34x45 + x13x35x45 + x14x35x45 = 0

x13x14x15 + x13x14x35 + x13x14x45 − x13x35x45 − x14x35x45 − x15x35x45 = 0

x13x34x15 + x13x34x35 + x13x34x45 − x13x15x45 + x34x15x45 + x15x35x45 = 0

x14x34x15 + x13x14x35 + x13x34x35 + x14x34x35 + x14x15x35 + x34x15x35

+x13x14x45 − x13x35x45 − x14x35x45 − x15x35x45 = 0

C12 is defined by the equations

x35 = x23 = x13 = x34 = 0

x12x14x25 + x12x24x25 + x12x14x45 − x14x24x45 − x12x25x45 − x14x25x45 = 0

x14x24x15 + x14x24x25 + x14x15x25 + x24x15x25 + x14x24x45 − x15x25x45 = 0

x12x24x15 + x12x24x25 + x12x24x45 − x12x15x45 + x24x15x45 + x15x25x45 = 0

x12x14x15 − x12x24x25 + x14x24x45 − x15x25x45 = 0

137



C13 is defined by the equations

x45 = x35 = x25 = x15 = 0

−x13x23x14 − x13x23x24 − x13x14x24 − x23x14x24 − x13x23x34 + x14x24x34 = 0

x12x13x14 − x13x23x14 − x12x23x24 − x13x23x24 − x13x14x24 − x23x14x24 = 0

x12x13x24 + x12x23x24 + x12x13x34 − x13x23x34 − x12x24x34 − x13x24x34 = 0

−x12x23x14 − x13x23x14 − x12x23x24 − x13x23x24 − x13x14x24 − x23x14x24

−x12x23x34 − x13x23x34 + x12x14x34 − x23x14x34 = 0

C14 is defined by the equations

x45 = x24 = x14 = x34 = 0

x12x13x25 + x12x23x25 + x12x13x35 − x13x23x35 − x12x25x35 − x13x25x35 = 0

x13x23x15 + x13x23x25 + x13x15x25 + x23x15x25 + x13x23x35 − x15x25x35 = 0

x12x23x15 + x12x23x25 + x12x23x35 − x12x15x35 + x23x15x35 + x15x25x35 = 0

x12x13x15 − x12x23x25 + x13x23x35 − x15x25x35 = 0

C15 is defined by the equations

x13 = x14 = x12 = x15 = 0

x23x24x25 + x23x24x35 + x23x24x45 − x23x35x45 − x24x35x45 − x25x35x45 = 0

x24x34x25 + x24x34x35 + x24x25x35 + x34x25x35 + x24x34x45 − x25x35x45 = 0

x23x24x35 + x23x34x35 + x23x24x45 − x24x34x45 − x23x35x45 − x24x35x45 = 0

x23x34x25 − x23x24x35 − x23x24x45 + x23x34x45 + x24x34x45 − x23x25x45

+x34x25x45 + x23x35x45 + x24x35x45 + x25x35x45 = 0

Here, the degree of Ci equals 1 for 1 ≤ i ≤ 10, equals 3 for 11 ≤ i ≤ 15.

The degree 1, depth 1 resonance varieties of the virtual pure braid groups vP+
n and vPn

can be computed in a similar fashion, at least for small values of n. We record in the following

table the dimensions and the degrees of these varieties, in the range we were able to carry

out those computations.

n 2 3 4 5 6 7 8

dim(R1
1(vP+

n )) 0 3 3 4 5 6 7

deg(R1
1(vP+

n )) 1 1 6 40 15 21 28

dim(R1
1(vPn)) 2 6 6

deg(R1
1(vPn)) 0 1 4

(7.11)
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7.4 Formality properties

7.4.1 Graded algebras associated to Pn, vPn and vP+
n

We start with the pure braid groups Pn. As shown by Kohno [80] and Falk–Randell [48], the

graded Lie algebra gr(Pn) is generated by degree 1 elements sij for 1 ≤ i 6= j ≤ n, subjects

to the relations

sij = sji, [sjk, sik + sij] = 0, [sij, skl] = 0 for i 6= j 6= l. (7.12)

In particular, the pure braid group Pn is graded-formal. The universal enveloping algebra

U(gr(Pn)) is Koszul with Hilbert series
∏n−1

k=1(1− kt)−1. Furthermore, the ranks φk(Pn) can

be computed from formulas (2.12) and (7.7), as follows:

φk(Pn) =
n−1∑
s=1

φk(Fs) =
1

k

n−1∑
s=1

∑
d|k

µ(k/d)sd. (7.13)

Next, we give a presentation for the holonomy Lie algebras of the pure virtual braid

groups, using a method described in Corollary 4.3.3. The Lie algebra h(vPn) is generated

by rij, 1 ≤ i 6= j ≤ n, with relations

[rij, rik] + [rij, rjk] + [rik, rjk] = 0 for distinct i, j, k, (7.14)

and [rij, rkl] = 0 for distinct i, j, k, l. The Lie algebra h(vP+
n ) is the quotient Lie algebra of

h(vPn) by the ideal generated by rij + rji for distinct i 6= j. Similarly as Corollary 7.2.5,

the Lie algebra h(vP+
n ) has a simplified presentation with generators rij for i < j and the

corresponding relations of h(vPn).

Theorem 7.4.1 ([11, 91]). The Lie algebra h(vPn) is isomorphic to the Lie algebra gr(vPn).

Likewise, the Lie algebra h(vP+
n ) is isomorphic to the Lie algebra gr(vP+

n ).

As shown in [11], there exist isomorphisms of graded algebras, H∗(vP+
n ;C) ∼= U(gr(vP+

n ))!

and H∗(vPn;C) ∼= U(gr(vPn))!. Hence, the LCS ranks φk(vP
+
n ) and φk(vPn) can be com-

puted by means of Lemma 3.1.3, and formulas (2.12) and (7.10).
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7.4.2 Formality properties of vPn and vP+
n

Recall that the pure virtual braid groups vPn and vP+
n are graded-formal for all n ≥ 1.

Furthermore, vP+
2 = Z and vP2 = F2, and so both are 1-formal groups.

Lemma 7.4.2. The groups vP+
3 and vP3 are both 1-formal.

Proof. From Propositions 3.1.21 and 3.3.12, the free product of two 1-formal groups is 1-

formal. Hence vP+
3
∼= Z2 ∗ Z is also 1-formal.

Since the pure braid group P4
∼= P 4 × Z is 1-formal, Theorem 3.3.10 ensures that the

subgroup P 4 is also 1-formal. On the other hand, we know from Lemma 7.1.4 that vP3
∼=

P 4 ∗ Z. Thus, by, Theorem 3.3.10, the group vP3 is 1-formal.

Lemma 7.4.3. The group vP+
4 is not 1-formal.

Proof. As shown in Lemma 7.3.3, the resonance variety R1
1(vP+

4 ) is an irreducible subvariety

of H1(vP+
4 ,C). Thus, this variety doesn’t decompose into a finite union of linear subspaces,

and so, by Theorem 5.1.2, the group vP+
4 is not 1-formal.

Theorem 7.4.4. The groups vP+
n and vPn are not 1-formal for n ≥ 4.

Proof. As shown in Lemma 7.1.3, there is a split injection from vP+
n to vP+

n+1. Since vP+
4 is

not 1-formal, Theorem 3.3.10, then, insures that the groups vP+
n are not 1-formal for n ≥ 4.

By Corollary 7.1.2, there is a split monomorphism vP+
n → vPn. From Theorem 7.4.4,

we know that the group vP+
n is not 1-formal for n ≥ 4. Therefore, by Theorem 3.3.10, the

group vPn is not 1-formal for n ≥ 4.

Corollary 7.4.5. The groups vP+
n and vPn are not filtered formal for n ≥ 4.

To summarize, the groups vPn and vP+
n are always graded-formal. Furthermore, they

are 1-formal (equivalently, filtered-formal) if and only if n ≤ 3. This completes the proof of

Theorem 1.2.7 from the Introduction.
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7.5 Chen ranks of Pn and vPn

7.5.1 Chen ranks of the free groups

As shown in [27], the Chen ranks of the free group Fn are given by θ1(Fn) = n and

θk(Fn) =

(
n+ k − 2

k

)
(k − 1) for k ≥ 2. (7.15)

Equivalently, by Massey’s formula (6.16), the Hilbert series for the associated graded Alexan-

der invariant of Fn is given by

Hilb(gr(B(Fn)), t) =
1

t2
·
(

1− 1− nt
(1− t)n

)
, (7.16)

an identity which can also be verified directly, by using the fact that B(Fn) is the cokernel

of the third boundary map of the Koszul resolution
∧

(Zn)⊗ C[Zn].

From formula (7.16), we see that the generating and exponential generating functions

for the Hilbert series of the associated graded Alexander invariants of the sequence of free

groups F = {Fn}n≥1 are given by

∞∑
n=1

Hilb(gr(B(Fn)), t) · un =
u2

(1− u)(1− t− u)2
, (7.17)

∞∑
n=1

Hilb(gr(B(Fn)), t) · u
n

n!
=
eu

t2
+
eu/(1−t)

t2

(
tu

1− t
− 1

)
.

7.5.2 Chen ranks of the pure braid groups

A comprehensive algorithm for computing the Chen ranks of finitely presented groups was

developed in [31, 33], leading to the following expressions for the Chen ranks of the pure

braid groups:

θ1(Pn) =

(
n

2

)
, θ2(Pn) =

(
n

3

)
, and θk(Pn) = (k − 1)

(
n+ 1

4

)
for k ≥ 3, (7.18)

or, equivalently,

Hilb(gr(B(Pn)), t) =

(
n+ 1

4

)
1

(1− t)2
−
(
n

4

)
. (7.19)
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It follows that the two generating functions for the Hilbert series of the associated graded

Alexander invariants of the sequence of pure braid groups P = {Pn}n≥1 are given by

∞∑
n=1

Hilb(gr(B(Pn)), t) · un =
u3

(1− u)5

(
1

(1− t)2
− u
)
, (7.20)

∞∑
n=1

Hilb(gr(B(Pn)), t) · u
n

n!
=
euu3

24

(
u+ 4

(1− t)2
− u
)
.

7.5.3 Chen ranks of vP3 and vP+
3

We now return to the pure virtual braid groups, and study their Chen ranks. Recall that

vP+
2 = Z and vP2 = F2, so we may as well assume n ≥ 3. We start with the case n = 3.

Proposition 7.5.1. The groups vP+
3 and vP3 do not satisfy the Chen ranks formula, despite

the fact that they are both 1-formal, and their first resonance varieties are projectively disjoint

and reduced as schemes.

Proof. Recall that vP+
3
∼= Z2 ∗Z. Thus, the claim for vP+

3 is handled by the argument from

Example 6.3.7.

Next, recall that vP3
∼= P 4 ∗ Z. We know from Lemma 7.4.2 that vP3 is 1-formal.

Furthermore, we know from Proposition 7.3.2 that R1
1(vP3) = H1(vP3,C). Clearly, this

variety is projectively disjoint and reduced as a scheme. Using the algorithm described in

Remark 6.2.1, we find that the Hilbert series of the associated graded Alexander invariants

of vP3 is given by

Hilb(gr(B(vP3)), t) = (9− 20t+ 15t2 − 4t4 + t5)/(1− t)6. (7.21)

On the other hand, as noted above, R1
1(vP3) = C6. Using (7.16) and (7.21), we compute

Hilb(gr(B(vP3)), t)− Hilb(gr(B(F6)), t) = (−6 + 6t3 − 5t4 + t5)/(1− t)6. (7.22)

Since this expression is not a polynomial in t, we conclude that formula (6.30) does not hold

for vP3, and this ends the proof.
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Remark 7.5.2. The resonance varieties of vP+
3 and vP3 are not isotropic, since both groups

have non-vanishing cup products stemming from the subgroups Z2 and P 4, respectively.

Thus, once again, the groups vP+
3 and vP3 illustrate the necessity of the isotropicity hypoth-

esis from Theorem 6.3.1.

7.5.4 Holonomy Chen ranks of vPn and vP+
n

We conclude with a summary of what else we know about the Chen ranks of the pure

virtual braid groups, as well as the Chen ranks of the respective holonomy Lie algebras and

associated graded Lie algebras.

Proposition 7.5.3. The following equalities of Chen ranks hold.

1. θk(h(vP+
n )) = θk(gr(vP+

n )) and θk(h(vPn)) = θk(gr(vPn)), for all n and k.

2. θk(h(vP+
n )) = θk(vP

+
n ) for n ≤ 6 and all k.

3. θk(h(vPn)) = θk(vPn) for n ≤ 3 and all k.

Proof. (1) Recall from Theorem 7.4.1 that the pure virtual braid groups vPn and vP+
n are

graded-formal. Therefore, by Corollary 6.2.5, claim (2) holds.

For n ≤ 3, claims (2) and (3) follow from the 1-formality of the groups vP+
n and vPn in

that range, and Corollary 6.2.5.

Using now the algorithms described in Remarks 6.2.1 and 5.2.3, a Macaulay2 [98] com-

putation reveals that

∑
k≥2

θk(vP
+
4 )tk−2 =

∑
k≥2

θk(h(vP+
4 ))tk−2 = (8− 3t+ t2)/(1− t)4, (7.23)

∑
k≥2

θk(vP
+
5 )tk−2 =

∑
k≥2

θk(h(vP+
5 ))tk−2 = (20 + 15t+ 5t2)/(1− t)4,

∑
k≥2

θk(vP
+
6 )tk−2 =

∑
k≥2

θk(h(vP+
6 ))tk−2 = (40 + 35t− 40t2 − 20t3)/(1− t)5.

This establishes claim (2) for 4 ≤ n ≤ 6, thereby completing the proof.
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It would be interesting to decide whether the equalities in parts (2) and (3) of the above

proposition hold for all n and all k.

Finally, let us address the validity of the Chen ranks formula (6.30) for the pure virtual

braid groups on n ≥ 4 strings. We know from Lemma 7.3.3 that R1
1(vP+

4 ) has a single

irreducible component of dimension 3. Lemma 7.3.3 shows that R1
1(vP+

5 ) has 15 irreducible

components, all of dimension 4. Using now (7.23), it is readily seen that the Chen ranks

formula does not hold for either vP+
4 or vP+

5 . Based on this evidence, and some further

computations, we expect that the Chen ranks formula does not hold for any of the groups

vPn and vP+
n with n ≥ 4. At last, we list some more computation results for the Hilbert

series of the infinitesimal Alexander invariants using Macaulay2 [98].

Hilb(B(vP+
7 ), t) =

70 + 70t− 210t2 + 35t3 + 56t4

(1− t)6

= 70 + 490t+ 1680t2 + 4165t3 + 8596t4 + 15771t5 + 26656t6 + · · ·

Hilb(B(vP+
8 ), t) =

112 + 126t− 644t2 + 476t3 + 84t4 − 126t5

(1− t)7

= 112 + 910t+ 3374t2 + 8904t3 + 19488t4 + 37898t5 + 67914t6 + · · ·

Hilb(B(vP+
9 ), t) =

168 + 210t− 1554t2 + 2016t3 − 588t4 − 462t5 + 246t6

(1− t)8

= 168 + 1554t+ 6174t2 + 17304t3 + 40236t4 + 83286t5 + 159090t6 + · · ·

Hilb(B(vP+
10), t) =

240 + 330t− 3240t2 + 6000t3 − 4080t4 − 90t5 + 1320t6 − 435t7

(1− t)9

= 240 + 2490t+ 10530t2 + 31290t3 + 77370t4 + 170820t5 + 348540t6 + · · ·

Let hi = Hilb(B(vPi), t), then we have
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h4 =
30− 16t− 39t2 − 59t3 + 276t4 − 290t5 + 61t6 + 100t7 − 75t8 + 16t9

(1− t)6

= 30 + 164t+ 495t2 + 1051t3 + 1987t4 + 3487t5 + 5727t6 + · · ·

h5 =
70 + 80t− 265t2 − 355t3 + 1430t4 − 1460t5 + 305t6 + 500t7 − 375t8 + 80t9

(1− t)6

= 70 + 500t+ 1685t2 + 3655t3 + 7035t4 + 12545t5 + 20805t6 + · · ·

h6 =
135 + 380t− 795t2 − 1155t3 + 4345t4 − 4390t5 + 915t6 + 1500t7 − 1125t8 + 240t9

(1− t)6

= 135 + 1190t+ 4320t2 + 9615t3 + 19010t4 + 34805t5 + 59100t6 + · · ·

The Hilbert series h7 = Hilb(B(vP7), t) is given by

231 + 805t− 2800t2 − 1015t3 + 13027t4 − 20461t5 + 12390t6 + 1365t7 − 6125t8 + 3185t9 − 560t10

(1− t)7

= 231 + 2422t+ 9303t2 + 21329t3 + 43652t4 + 82880t5 + 146013t6 + · · ·
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Chapter 8

Pure welded braid groups

The group of basis-conjugating automorphisms of the free group of rank n is called the pure

welded braid group wPn. McCool gave a presentation for the pure welded braid group (also

known as the McCool group), with a subgroup called the upper McCool group wP+
n . Using

a Gröbner basis computation, we find a simple presentation for the infinitesimal Alexander

invariant of this group. As an application, we compute the resonance varieties and the Chen

ranks of the upper McCool groups. This computation reveals that, unlike for the pure braid

group Pn and the full McCool group wPn, the Chen ranks conjecture does not hold for wP+
n ,

for any n ≥ 4. As an application, we show that wP+
n is not isomorphic to Pn in that range,

thereby answering a question of Cohen et al [29]. This chapter is based on the work in papers

[143, 146].

8.1 The McCool groups

8.1.1 McCool groups

An automorphism of the free group Fn is called a symmetric automorphism if it sends each

generator xi to a conjugate of xσ(i), for some permutation σ ∈ Σn. The set of all such auto-

morphisms forms a subgroup wBn of Aut(Fn) is also known as the braid-permutation group,
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[29, 54, 30] or the welded braid group, [6]. The welded braid group wBn has presentation

with generators σi and si for i = 1, . . . , n− 1, and relations (R1), (R2), (R3) and

siσi+1σi = σi+1σisi+1, 1 ≤ i ≤ n− 2. (R4)

The group of basis-conjugating automorphisms, wPn = ker(wBn � Sn) is also known as the

pure welded braid group, or the McCool group, and can be realized as the pure motion group

of n unknotted, unlinked circles in S3. This group is generated by the automorphisms αij, for

all 1 ≤ i 6= j ≤ n. It is generated by the automorphisms αij (i 6= j) which send xi to xjxix
−1
j

and leave invariant the other generators of Fn, together with the automorphisms τij (i < j)

which interchange xi and xj. McCool [112] gave a presentation of the basis-conjugating group

(McCool group) wPn.

Theorem 8.1.1 ([112]). The McCool group wPn are generated by αij for i 6= j corresponding

to relations αijαkjαik = αikαijαkj for i, j, k distinct; [αkj, αst] = 1 if {j, k} ∩ {s, t} = ∅;

[αij, αkj] = 1 for i, j, k distinct.

Proposition 8.1.2. There exist monomorphisms and epimorphisms making the following

diagram commute.

Bn vBn wBn

Pn vPn wPn

ϕn πn

Furthermore, the compositions of the horizontal homomorphisms are also injective.

Proof. There are natural inclusions ϕn : Bn ↪→ vBn and ψn : Bn ↪→ wBn that send σi to σi,

as well as a canonical projection πn : vBn � wBn, that matches the generators σi and si of

the respective groups. By construction, we have that πn ◦ ϕn = ψn.

We claim that these homomorphisms restrict to homomorphisms between the respective

pure-braid like groups. Indeed, as shown in [11], the homomorphism ϕn restricts to a map

Pn ↪→ vPn, given by

Aij 7→ αj−1,j . . . αi+1,jαi,jαj,i(αj−1,j . . . αi+1,j)
−1. (8.1)
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Clearly, the projection πn restricts to a map vPn � wPn that sends αij to αij. Using these

observations, together with work of Bardakov [7], we see that the homomorphism ψn restricts

to an injective map Pn ↪→ wPn.

The welded braid group wBn is the fundamental group of the ‘untwisted ring space’,

which consists of all configurations of n parallel rings (i.e., unknotted circles) in R3, see

Figure 1.2. However, as shown in [20], this space is not aspherical. The pure welded braid

group wPn can be viewed as the pure motion group of n unknotted, unlinked circles in

R3, cf. [61]. The group wP+
n is the fundamental group of the subspace consisting of all

configurations of circles of unequal diameters in the ‘untwisted ring space’, see [20, 12].

In [75], Jensen, McCammond, and Meier computed the cohomology ring of wPn, thereby

verifying a long-standing conjecture of Brownstein and Lee.

Theorem 8.1.3 ([75]). For each n ≥ 2, the ring H∗(wPn;Z) is the graded-commutative ring

generated by degree 1 elements eij (1 ≤ i 6= j ≤ n), subject to the relations eijeji = 0 for i 6= j

and ejiekj = eki(ekj − eij) for distinct i, j, k. The Hilbert series of this ring is (1 + nt)n−1.

As shown in [36], the cohomology algebra H∗(wPn;Q) is not Koszul for n ≥ 4. The

graded Lie algebra gr(wPn) is generated by xij for 1 ≤ i 6= j ≤ n with relations [xij, xst] = 0

for {i, j} ∩ {s, t} = ∅, [xik, xij + xkj] = 0 and [xij, xkj] = 0 for i, j, k distinct.

1 i−1 i i+1 j−1 j j+1 n

· · · · · ·· · ·

xij

1 i−1 i i+1 j−1 j j+1 n

· · · · · ·· · ·

xji

Figure 8.1: The pure welded braids xij and xji for i < j.
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8.1.2 Upper McCool groups

The upper-triangular McCool group, wP+
n , is the subgroup of the McCool group generated

by the automorphisms αij with i < j. In [29], Cohen, Pakhianathan, Vershinin, and Wu

computed the cohomology ring of wP+
n and found presentations for the associated graded

Lie algebras of wP+
n as the quotient of the free Lie algebra on x21, . . . , xn,n−1 by the ideal

generated by [xkj, xst] = 0 if {j, k} ∩ {s, t} = ∅, [xkj, xsj] = 0 if {s, k} ∩ {j} = ∅, and

[xik, xij + xkj] = 0 if j < k < i.

Work of Berceanu and Papadima [15] shows that the McCool groups as well as their

upper subgroups are 1-formal.

McCool gave a presentation of the basis-conjugating group (McCool group) wPn with

generators xij for i 6= j ([112]). The subgroup of wPn generated by xij for i > j is called

the upper triangular McCool group, denoted by wP+
n . The integral cohomology of wP+

n was

computed by Cohen, Pakhianathan, Vershinin, and Wu, as follows.

Theorem 8.1.4 ([29]). The cohomology algebra A = H∗(wP+
n ;C) = E/I is a graded, graded-

commutative (associative) algebra, generated by degree 1 elements uij for 1 ≤ j < i ≤ n,

subject to the relations uij(uik − ujk) = 0 for k < j < i.

8.2 The infinitesimal Alexander invariant of wP+
n

In this section, we give a presentation for the infinitesimal Alexander invariant of the upper

McCool groups. We also simplify this presentation to a reduced presentation.

8.2.1 Basis of free modules

We will use Theorem 8.1.4 to compute a presentation for the infinitesimal Alexander invariant

Bn := B(wP+
n ). We first choose an order for the basis of H1(wP+

n ;C) by setting

uij�ukl, if i > k, or if i = k and j > l. (8.2)
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Let x = {xij | 1 ≤ j < i ≤ n} be the dual of the basis {uij} of H1(wP+
n ;C), and let S = Q[x]

be the coordinate ring of H1(wPn;C). The relations

{r∗ijk := (uik − ujk)uij | 1 ≤ k < j < i ≤ n} (8.3)

of the cohomology algebra A = E/I from Theorem 8.1.4 give a basis for I2, as well as for the

free S-module I2⊗S = S(n
3). Choose an order of the basis of the free S-module I2⊗S = S(n

3)

given by

r∗lst�r∗ijk, if i > l, or if i = l and j > s, or if i = l, j = s and k > t. (8.4)

That is,

{rn,n−1,n−2 � · · · � r654 � r653 � r652 � r651 � r643 � · · · � r431 � r421 � r321} (8.5)

The set {ustulkuij | uij�ulk�ust} gives a basis for E3, and a basis for the free S-module

E3 ⊗ S = S(N
3 ) for N =

(
n
2

)
.

8.2.2 A presentation for Bn

We first give a detailed description of the composite Φ: I2 ⊗ S → E3 ⊗ S, using the above

basis.

Lemma 8.2.1. The S-linear map Φ: I2 ⊗ S → E3 ⊗ S is given by

Φ(r∗ijk) = −(xik + xjk) · ujkuikuij +
∑

s>t,{s,t}*{i,j,k}

xst · ust(ujk − uik)uij. (8.6)

Proof. Recall that Φ is the composition of the differential d2 : E2 → E3 from (5.3) with the

inclusion ι : I2 → E2. Hence,

Φ(r∗ijk) = d2(r∗ijk ⊗ 1) =
n∑

1≤t<s≤n

ustrijk ⊗ xst =
n∑

1≤t<s≤n

ustuij(uik − ujk)⊗ xst (8.7)

Simplifying the last formula using graded-commutativity yields (8.6).
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From formula (8.6), we can see that each entry of the matrix of Φ is of the form xik +xjk

or xst for {s, t} * {i, j, k}, t < s and k < j < i. For our purposes here, we are interested in

the transpose of the presentation matrix of Φ.

By Lemmas 5.3.1 and 8.2.1, the dual of Φ: I2⊗ S → E3⊗ S gives a presentation for the

S-module Bn. The infinitesimal Alexander invariant Bn has presentation

(E3)∗ ⊗ S Φ∗ // (I2)∗ ⊗ S //Bn. (8.8)

8.2.3 A reduced presentation of Bn

In this section, we simplify the presentation of the S-module Bn = B(wP+
n ) from (8.8). We

also single out some properties of the simplified presentation. Let {rijk | 1 ≤ k < j < i ≤ n}

be the dual basis of I2 ⊗ S from (8.3).

Lemma 8.2.2. The submodule im Φ∗ of (I2)∗⊗ S = S(n
3) is generated by B =

⋃
Bijk, where

Bijk, 1 ≤ k < j < i ≤ n, contains the following elements: (We give two notations for each

class of elements. If there is no confusion, we use the short notation.)

g1 = g
(1)
ijl2k

= (−xjk − xl2k) · rijl2 + xjl2 · rijk

g2 = g
(2)
ijl2k

= xjk · rijl2 + xil2 · rijk

g3 = g
(1)
il3jk

= −xjk · ril3j + xil3 · rijk

g4 = g
(1)
l4ijk

= xjk · rl4ij + xl4i · rijk

h1 = hijkl1 = (xil1 + xjl1 + xkl1) · rijk

h2 = hijk = (xik + xjk) · rijk

h3 = h
(3)
ijl2k

= xl2k · rijk

h4 = h
(2)
il3jk

= xl3k · rijk

h5 = h
(3)
il3jk

= xl3j · rijk

h6 = h
(2)
l4ijk

= xl4k · rijk

h7 = h
(3)
l4ijk

= xl4j · rijk

hst = hstijk = xst · rijk

(8.9)

where 1 ≤ l1 < k < l2 < j < l3 < i < l4 ≤ n and {s, t} ∩ {i, j, k} = ∅.

Proof. Write Φ∗q for the restriction of Φ∗ to the subspace spanned by the basis vectors of

cardinality q := ]{i, j, k, l, s, t}. The map Φ∗ can then be decomposed as the block-matrix

Φ∗3⊕Φ∗4⊕Φ∗5⊕Φ∗6. We now analyze formula (8.6) case by case, according to the cardinality

q = 3, 4, 5, 6.
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When q = 3, we have l = i, s = j, t = k. Then Φ∗3((ujkuikuij)
∗) = −(xik + xjk) · rijk, and

so Φ∗3 contributes elements of the form h2 to B.

When q = 4, suppose i > j > k > l; there are
(

6
3

)
−
(

4
3

)
= 16 possible combinations:

Φ∗4((uklujluil)
∗) = 0

Φ∗4((uklujluik)
∗) = −xjl · rikl

Φ∗4((uklujluij)
∗) = xkl · rijl

Φ∗4((uklujkuil)
∗) = xil · rjkl

Φ∗4((uklujkuik)
∗) = −xjk · rikl + xik · rjkl

Φ∗4((uklujkuij)
∗) = xkl · rijk + xij · rjkl

Φ∗4((ukluiluij)
∗) = −xkl · rijl

Φ∗4((ukluikuij)
∗) = −xkl · rijk + xij · rikl

Φ∗4((ujlujkuil)
∗) = −xil · rjkl

Φ∗4((ujlujkuik)
∗) = −xik · rjkl

Φ∗4((ujlujkuij)
∗) = xjl · rijk − xjk · rijl − xij · rjkl

Φ∗4((ujluiluik)
∗) = −xjl · rikl

Φ∗4((ujluikuij)
∗) = −xjl · rijk − xik · rijl

Φ∗4((ujkuiluik)
∗) = −xjk · rikl

Φ∗4((ujkuiluij)
∗) = −xil · rijk − xjk · rijl

Φ∗4((uiluikuij)
∗) = −xil · rijk + xik · rijl − xij · rikl

The image of Φ∗4 is generated by (xil + xjl + xkl) · rijk and

xkl · rijl

(−xjl − xkl) · rijk + xjk · rijl

xjl · rijk + xik · rijl

xjl · rikl

xjk · rikl

−xkl · rijk + xij · rikl

xil · rjkl

xik · rjkl

xkl · rijk + xij · rjkl

Hence, the image of Φ∗4 contributes h1 = (xil1 + xjl1 + xkl1) · rijk for l1 ≤ k − 1, contributes

152



g1, g2, h3 for k < l2 < j < i, g3, h4, h5 for k < j < l3 < i, and g4, h6, h7 for k < j < i < l4.

When q = 5, the only possible situation for which Φ∗5 6= 0 is when l = j, or l = i, or

s = k, or s = l. Suppose uij > ulk > ust. Using formula (8.6) again, we then have

Φ∗5((ustulkuij)
∗) =



xst · rijk l = j

−xst · rijk l = i

xij · rlkt s = k

−xij · rlkt s = l

0 otherwise

Hence, the map Φ∗5 will contribute hst = xst · rijk for {s, t} ∩ {i, j, k} = ∅ to B.

When q = 6, we have Φ∗6((ustulkuij)
∗) = 0. This completes the proof.

Lemma 8.2.2 gives a minimal presentation for the infinitesimal Alexander invariant Bn,

of the form

Sm Ψ // S(n
3) //Bn. (8.10)

Corollary 8.2.3. The matrix of Ψ is block lower triangular, with diagonal vector vijk for

1 ≤ k < j < i ≤ n. The vector vijk has mijk =
(
n
2

)
− 2k entries given by xil + xjl + xkl

for 1 ≤ l ≤ k − 1, xik + xjk, and xst for {s, t} 6⊂ {i, j, k, l}, 1 ≤ l ≤ k − 1. Here m =

1
12
n(40− 73n+ 43n2 − 11n3 + n4).

Proof. By Lemma 8.2.2, the matrix of Ψ has the claimed form. We find that mijk =
(
n
2

)
−2k.

The matrix of Ψ is a block triangular matrix, we have that

m =
∑

1≤k<j<i≤n

(mijk)

=
n∑
k=1

(
n− k

2

)
(mijk)

=
n∑
k=1

(
n− k

2

)((
n

2

)
− 2k

)
=

(
n

2

)[(n− 3

3

)
+

(
n− 3

2

)
+

(
n− 3

1

)]
− 2

(
n+ 1

4

)
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=
n

12
(40− 73n+ 43n2 − 11n3 + n4).

This finishes the proof.

Example 8.2.4. The matrix Ψ for n = 4 looks like


v432 0 0 0

∗ v431 0 0

∗ ∗ v421 0

∗ ∗ ∗ v321

 =



x41 + x31 + x21 0 0 0

x42 + x32 0 0 0

0 x21 0 0

−x31 − x21 x32 0 0

0 x41 + x31 0 0

x31 x42 0 0

0 0 x31 0

0 0 x32 0

0 0 x41 + x21 0

−x21 0 x43 0

0 0 0 x31 + x21

0 0 0 x41

0 0 0 x42

x21 0 0 x43



.

Example 8.2.5. The matrix Ψ for n = 5 looks like



v543 0 0 0 0 0 0 0 0 0

∗ v542 0 0 0 0 0 0 0 0

∗ ∗ v541 0 0 0 0 0 0 0

∗ ∗ 0 v532 0 0 0 0 0 0

∗ ∗ 0 ∗ v531 0 0 0 0 0

∗ ∗ 0 ∗ 0 v521 0 0 0 0

∗ ∗ 0 ∗ 0 0 v432 0 0 0

∗ ∗ 0 ∗ 0 0 ∗ v431 0 0

∗ ∗ 0 ∗ 0 0 ∗ 0 v421 0

∗ ∗ 0 ∗ 0 0 ∗ 0 0 v321



where v543 =
(
x51+x41+x31
x52+x42+x32
x53+x43

)
v542 =

( x31
x32
x43

x51+x41+x21
x52+x42
x53

)
v541 =


x21
x31
x32
x42
x43

x51+x41
x52
x53

 v532 =

( x41
x42
x43

x51+x31+x21
x52+x32
x54

)

v531 =


x21
x32
x41
x42
x43

x51+x31
x52
x54

 v521 =


x31
x32
x41
x42
x43

x51+x21
x53
x54

 v432 =

 x41+x31+x21
x42+x32
x51
x52
x53
x54

 v431 =


x21
x32

x41+x31
x42
x51
x52
x53
x54

 v421 =
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
x31
x32

x41+x21
x43
x51
x52
x53
x54

 v321 =


x31+x21
x41
x42
x43
x51
x52
x53
x54


8.3 A Gröbner basis for B(wP+

n )

In this section, we compute a Gröbner basis for the infinitesimal Alexander invariant, which

will be crucial in the computation of the resonance varieties and the Chen ranks of the upper

McCool groups.

8.3.1 Gröbner basis for modules

Before proceeding, we recall some background material on Gröbner basis for modules, fol-

lowing Eisenbud [45]. Let R = C[x1, . . . , xn] be a polynomial ring and F be a free R-module

with basis {e1, . . . , er}. A monomial in F is an element of form m = xαei and a term in F

is an element of the form c · xαei, where c ∈ C is the coefficient.

A monomial order on F is a total order � on the monomials of F such that if m1 and m2

are monomials of F and n 6= 1 is a monomial in R, then m1 > m2 implies nm1 > nm2 > m2.

Example 8.3.1. A graded reverse lexicographic (‘grevlex’) order on R is defined by ordering

xα > xβ if deg(α) > deg(β), or deg(α) = deg(β) and the right-most entry in α−β is negative.

One way to extend a ‘grevlex’ order on R to a monomial order on F is to declare xαei > xβej

if i < j, or if i = j and xα > xβ.

Given a monomial order > on F and f ∈ F , the initial term of f is the largest term of f ,

denoted by in>(f). If I is a submodule of F , then in> I denotes the submodule generated by

{in>(f) | f ∈ I}. If g1, . . . , gs generate I such that {in>(g1), . . . , in>(gs)} generates in>(F ),

then we will call {g1, . . . , gs} a Gröbner basis for module I.

Theorem 8.3.2 ([45], Theorem15.26). Let M = F/I be a finitely generated, graded R-

module given by generators and relations, where F is a free R-module with a homogeneous
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basis and I is a submodule generated by homogeneous elements. Then

Hilb(M, t) = Hilb(F/ in(I), t).

A Gröbner basis g1, . . . , gs such that in(gi) does not divide in(gi) for any i 6= j is called

a minimal Gröbner basis. A Gröbner basis g1, . . . , gs such that in(gi) does not divide any

term of gi for any i 6= j is called a reduced Gröbner basis.

Let {g1, . . . , gt} be a set of nonzero elements in F . Let
⊕

Rεi be the free module on

{ε1, . . . , εt} corresponding to {g1, . . . , gt}. If in>(gi) and in>(gj) involve the same basis ele-

ment of F , then define

S(gi, gj) :=
in>(gj)

gcd(in>(gi), in>(gj))
· gi −

in>(gi)

gcd(in>(gi), in>(gj))
· gj (8.11)

Using the division algorithm, S(gi, gj) has a standard expression

S(gi, gj) =
∑

f ijk · gk + hij, (8.12)

where in>(f ijk gk) < LCM(in>(gi), in>(gj)). We say that the S-polynomial of gi and gj

vanishes, if hij = 0. If in>(gi) and in>(gj) involve distinct basis elements of F , then set

hij = 0.

Theorem 8.3.3 (Buchberger’s criterion). The elements g1, . . . , gt form a Gröbner basis if

and only if hij = 0 for all i and j.

Let M be an S-module with a finite presentation, Sm
ϕ−→ Sn → M → 0, i.e., M = Sn/J

where J = im(ϕ). Choosing basis {r1, . . . , rm} and {e1, . . . , en} for the free modules Sm and

Sn, respectively, we can view the S-linear map ϕ as an m×n matrix Ω, and J as the module

generated by the entries of the matrix Ω · (e1, . . . , en)T. A Gröbner basis for the module J is

also called a Gröbner basis for the matrix Ω.

Lemma 8.3.4. Let Ω be a presentation matrix for the S-module M , and let G be a Gröbner

basis for Ω. Then rank(Ω|a) = rank(G|a). Furthermore, if G is a block triangular matrix
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with diagonal blocks Gii, then

V(E0(G)) ⊆
⋃
i

V(E0(Gii)).

Proof. The S-polynomials arise from elementary row operations, and these operations do

not change the rank of a matrix. The second statement follows from (3) in Lemma 5.3.2.

8.3.2 A Gröbner basis for Bn

Let S = C[x] be the coordinate ring of H1(wPn;C) with variables ordered as

xij > xkl, if i > k, or if i = k and j > l. (8.13)

We use the graded reverse lexicographical monomial order (grevlex) on the polynomial ring

S. We use the basis and orders of basis from §8.2.1. Recall the presentation of Bn in (8.10)

Sm
Ψ−→ S(n

3) → Bn. From Lemma 8.2.2, the module im(Ψ) is generated by B =
⋃
Bijk.

Theorem 8.3.5. A reduced Gröbner basis for im(Ψ) is given by G =
⋃
Gijk, where

Gijk = Bijk ∪ {xklxks · rijk, xjtxks · rijk | 1 ≤ s ≤ l ≤ k − 1, 1 ≤ t ≤ k}.

Proof. We use two steps to prove that G is a Gröbner basis for im(Ψ).

Step 1. We first show that

B1 = {xklxks · rijk, xjtxks · rijk | 1 ≤ s ≤ l ≤ k − 1, 1 ≤ t ≤ k} (8.14)

are elements in the submodule im(Ψ). From Lemma 8.2.2, we know that the following
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elements are in the module im(Ψ) for n ≥ i > j > k > l ≥ 1 and k > v ≥ 1:

f1 = (−xjl − xkl) · rijk + xjk · rijl

f2 = xjl · rijk + xik · rijl

f3 = −xkl · rijk + xij · rikl

f4 = xkl · rijl

f5 = xkv · rijl for v 6= l

f6 = xjk · rikl

f7 = xjl · rikl

f8 = xjv · rikl for v 6= l

Direct computation shows that

x2
kl · rijk = (xjk + xjl)f4 − xkl(f1 + f2)

xklxkv · rijk = (xjk + xjl)f5 − xkv(f1 + f2)

xjkxkl · rijk = xijf6 − xjkf3

xjlxkl · rijk = xijf7 − xjlf3

xjvxkl · rijk = xijf8 − xjvf3

from which we conclude that B1 ⊂ im(Ψ).

Step 2. In view of Lemma 8.2.2, we need to check the vanishing of the S-polynomials

among

B2 = {g1,g2,g3,g4} , (8.15)

and the S-polynomials between G2 and

B3 = B1 ∪ {h1,h2,h3,h4,h5,h6,h7,hst} . (8.16)

We have
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S(g1,g2) = (xil2xjk + xjl2xjk + xil2xl2k)·rijl2

= (xil2 + xjl2)(xjk + xl2k)·rijl2 − xjl2xl2k·rijl2

= (xjk + xl2k)hijl2 − xjl2xl2k·rijl2

(8.17)

and this “vanishes” as in the expression (8.12).

In order to verify the vanishing of all the S-polynomials, we relabel the index for (8.9)

here, by writing l1 = 1, k = 2, l2 = 3, j = 4, l3 = 5, i = 6, l4 = 7.

g1 = (−x42 − x32) · r643 + x43 · r642 h3 = x32 · r642

g2 = x42 · r643 + x63 · r642 h4 = x52 · r642

g3 = −x42 · r654 + x65 · r642 h5 = x54 · r642

g4 = x42 · r764 + x76 · r642 h6 = x72 · r642

h1 = (x61 + x41 + x21) · r642 h7 = x74 · r642

h2 = (x62 + x42) · r642 hst = xst · r642.

Here, hst can be h75, h73, h71, h53, h51, h31. The reason we relabel the index here is that

we can reduce the computation to wP+
7 . Then, we can calculate the S-polynomials with

Macaulay 2 [98].

The S-polynomials S(hi,hj) vanishes, since they are linear after factor out r642. The

vanishing of the other S-polynomials are based on the following classes of reasons:

(i) The monomials in a S-polynomial can factor out h4, h5, h6, h7 or hs,t in (8.9).

(ii) The monomials in a S-polynomial are contained in B1 in (8.14).

(iii) Rewrite the S-polynomial first, then use (i) and (ii).
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Next, we list the S-polynomials S(gi,gj) and S(gi,hj) and the reason for vanishing.

S(g4,h31) = x42x31·r764 · · · · · · (i)

S(g4,h3) = x42x32·r764 · · · · · · (i)

S(g4,h51) = x51x42·r764 · · · · · · (i)

S(g4,h4) = x52x42·r764 · · · · · · (i)

S(g4,h53) = x53x42·r764 · · · · · · (i)

S(g4,h5) = x54x42·r764 · · · · · · (i)

S(g4,h1) = (x61x42 + x42x41 + x42x21)·r764 · · · · · · (iii)

S(g4,h2) = (x62x42 + x2
42)·r764 · · · · · · (ii)

S(g4,h71) = x71x42·r764 · · · · · · (iii)

S(g4,h6) = x72x42·r764 · · · · · · (iii)

S(g4,h73) = x73x42·r764 · · · · · · (iii)

S(g4,h7) = x74x42·r764 · · · · · · (iii)

S(g4,h75) = x75x42·r764 · · · · · · (iii)

S(g3,h31) = x42x31·r654 · · · · · · (i)

S(g3,h3) = x42x32·r654 · · · · · · (i)

S(g3,h51) = x51x42·r654 · · · · · · (ii)

S(g3,h4) = x52x42·r654 · · · · · · (ii)

S(g3,h53) = x53x42·r654 · · · · · · (ii)

S(g3,h5) = x54x42·r654 · · · · · · (ii)

S(g3,h1) = (x61x42 + x42x41 + x42x21)·r654 · · · · · · (iii)

S(g3,h2) = (x62x42 + x2
42)·r654 · · · · · · (iii)

S(g3,h71) = x71x42·r654 · · · · · · (i)
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S(g3,h6) = x72x42·r654 · · · · · · (i)

S(g3,h73) = x73x42·r654 · · · · · · (i)

S(g3,h7) = x74x42·r654 · · · · · · (i)

S(g3,h75) = x75x42·r654 · · · · · · (i)

S(g3,g4) = x65x42·r764 + x76x42·r654 · · · · · · (iii)

S(g2,h31) = x42x31·r643 · · · · · · (ii)

S(g2,h3) = x42x32·r643 · · · · · · (ii)

S(g2,h51) = x51x42·r643 · · · · · · (i)

S(g2,h4) = x52x42·r643 · · · · · · (i)

S(g2,h53) = x53x42·r643 · · · · · · (i)

S(g2,h5) = x54x42·r643 · · · · · · (i)

S(g2,h1) = (x61x42 + x42x41 + x42x21)·r643 · · · · · · (iii)

S(g2,h2) = (x62x42 + x2
42)·r643 · · · · · · (iii)

S(g2,h71) = x71x42·r643 · · · · · · (i)

S(g2,h6) = x72x42·r643 · · · · · · (i)

S(g2,h73) = x73x42·r643 · · · · · · (i)

S(g2,h7) = x74x42·r643 · · · · · · (i)

S(g2,h75) = x75x42·r643 · · · · · · (i)

S(g2,g3) = x63x42·r654 + x65x42·r643 · · · · · · (iii)

S(g2,g4) = x63x42·r764 − x76x42·r643 · · · · · · (iii)

S(g1,h31) = x32x31·r643 · · · · · · (ii)

S(g1,h3) = x2
32·r643 · · · · · · (ii)

S(g1,h51) = x51x32·r643 · · · · · · (i)
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S(g1,h4) = x52x32·r643 · · · · · · (i)

S(g1,h53) = x53x32·r643 · · · · · · (i)

S(g1,h5) = x54x32·r643 · · · · · · (i)

S(g1,h1) = (x61x32 + x41x32 + x32x21)·r643 · · · · · · (iii)

S(g1,h2) = x62x32·r643 · · · · · · (iii)

S(g1,h71) = x71x32·r643 · · · · · · (i)

S(g1,h6) = x72x32·r643 · · · · · · (i)

S(g1,h73) = x73x32·r643 · · · · · · (i)

S(g1,h7) = x74x32·r643 · · · · · · (i)

S(g1,h75) = x75x32·r643 · · · · · · (i)

S(g1,g2) = (x63x42 + x43x42 + x63x32)·r643 · · · · · · (iii)

S(g1,g3) = x43x42·r654 − (x65x42 + x65x32)·r643 · · · · · · (iii)

S(g1,g4) = x43x42·r764 + (x76x42 + x76x32)·r643 · · · · · · (iii)

Next, we list the rest S-polynomials.

S(g1,g
′
1) = x43′(x42 + x32) · r643 − x43(x42 + x3′2) · r643′

S(g2,g
′
2) = x63′x42 · r643 − x63x42 · r643′

S(g3,g
′
3) = −x65′x42 · r654 + x65x42 · r65′4

S(g4,g
′
4) = x7′6x42 · r764 − x76x42 · r7′64

We can reindex (6433′2) by (64321), reindex (655′42) by (65432), and reindex (77′642)

by (76542), and check the vanishing of the S-polynomials using the criterion (iii).

It is now easy to check that this Gröbner basis G of im(Ψ) is reduced.

Recall from Corollary 8.2.3 that Ω(n) is the presentation matrix for the presentation of

Bn in (8.10).
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Corollary 8.3.6. The Gröbner basis of Ω(n) is given by a block lower triangular matrix

G(n) with diagonal vector wijk for 1 ≤ k < j < i ≤ n. Here, the vector wijk is constructed

from vijk by adding elements {xklxks, xjtxks | 1 ≤ s ≤ l ≤ k − 1, 1 ≤ t ≤ k}. Here,

dim(wijk) =
(
n
2

)
+
(
k−1

2

)
+ (k − 3)k.

Proof. The dimension of wijk is determined by counting its quadratic elements and using

the formula dim(vijk) =
(
n
2

)
− 2k from Corollary 8.2.3.

Example 8.3.7. The matrix G(4) is


w432 0 0 0

∗ w431 0 0

∗ ∗ w421 0

∗ ∗ ∗ w321

 =



x41 + x31 + x21 0 0 0

x42 + x32 0 0 0

x21x21 0 0 0

x21x31 0 0 0

x21x32 0 0 0

0 x21 0 0

−x31 − x21 x32 0 0

0 x41 + x31 0 0

x31 x42 0 0

0 0 x31 0

0 0 x32 0

0 0 x41 + x21 0

−x21 0 x43 0

0 0 0 x31 + x21

0 0 0 x41

0 0 0 x42

x21 0 0 x43



Example 8.3.8. The matrix G(5) looks like
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

w543 0 0 0 0 0 0 0 0 0

∗ w542 0 0 0 0 0 0 0 0

∗ ∗ w541 0 0 0 0 0 0 0

∗ ∗ 0 w532 0 0 0 0 0 0

∗ ∗ 0 ∗ w531 0 0 0 0 0

∗ ∗ 0 ∗ 0 w521 0 0 0 0

∗ ∗ 0 ∗ 0 0 w432 0 0 0

∗ ∗ 0 ∗ 0 0 ∗ w431 0 0

∗ ∗ 0 ∗ 0 0 ∗ 0 w421 0

∗ ∗ 0 ∗ 0 0 ∗ 0 0 w321



where w543 =



x51+x41+x31
x52+x42+x32
x53+x43
a231

a32a31
a41a31
a42a31
a43a31
a232

a41a32
a42a32
a43a32

 w542 =


x31
x32
x43

x51+x41+x21
x52+x42
x53
a221

a41a21
a42a21

 w541 =


x21
x31
x32
x42
x43

x51+x41
x52
x53

 w532 =


x41
x42
x43

x51+x31+x21
x52+x32
x54
a221

a31a21
a32a21



w531 =


x21
x32
x41
x42
x43

x51+x31
x52
x54

 w521 =


x31
x32
x41
x42
x43

x51+x21
x53
x54

 w432 =


x41+x31+x21
x42+x32
x51
x52
x53
x54
a221

a31a21
a32a21

 w431 =


x21
x32

x41+x31
x42
x51
x52
x53
x54

 w421 =


x31
x32

x41+x21
x43
x51
x52
x53
x54

 w321 =


x31+x21
x41
x42
x43
x51
x52
x53
x54



8.4 The first resonance variety of wP+
n

After completing the theoretical setup and performing the Gröbner basis computation for

the module Bn, we are now ready to compute the first resonance varieties of the upper

McCool groups.

8.4.1 Resonance varieties of the McCool groups

In [38], D. Cohen computed the first resonance varieties of the McCool groups.
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Theorem 8.4.1 ([38]). The resonance varieties R1(wPn) are given by

R1(wPn) =
⋃

1≤i<j≤n

Cij ∪
⋃

1≤i<j<k≤n

Cijk

where Cij and Cijk are certain linear subspaces of of H1(wPn;C) of dimension 2 and 3,

respectively.

Now we are ready to describe the first resonance varieties of the upper McCool groups

wP+
n .

Theorem 8.4.2. The resonance varieties R1(wP+
n ) are given by

R1(wP+
n ) =

⋃
2≤j<i≤n

Lij,

where Lij = Cj ⊂ C(n
2) is defined by the linear equations

xi,l + xj,l = 0, for 1 ≤ l ≤ j − 1;

xi,l = 0 for j + 1 ≤ l ≤ i− 1;

xs,t = 0 for s 6= i, s 6= j, 1 ≤ t < s.

(8.18)

Proof. Let L =
⋃

2≤j<i≤n
Lij be the subspace of H1(wP+

n ;C) = C(n
2) with defining equations

for each component Lij given by (8.18). We will show that L = R1(wP+
n ), thereby proving

the claim of the theorem.

In order to prove that L ⊆ R1(wP+
n ), we need to check that Lij ⊆ R1(wP+

n ) for all i > j.

If a ∈ Lij is non-zero, then (8.18) implies that a is of the form

a =

j−1∑
l=1

ail(uil − ujl) + aijuij. (8.19)

By Lemma 5.1.5, we only need to check that the evaluation of Φ at a is not injective. By

formula (5.11), we have that

Φ|a(rijk) =

(
j−1∑
l=1

ail(uil − ujl) + aijuij)(uik − ujk)uij

)
(8.20)

=

j−1∑
l=1, l 6=k

ail(uil − ujl)(uik − ujk)uij.
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Suppose I is a non-empty subset of {1, . . . , j − 1} such that ail 6= 0 for l ∈ I. Then

Φ|a
(∑

l∈I

∏
t6=l,t∈I

aitrijl

)
= 0,

and hence Φ|a is not injective. Likewise, if ail = 0 for all 1 ≤ l ≤ j − 1, i.e., if a = aijuij,

then Φ|a(rijk) = 0, and so Φ|a is not injective.

For the reverse inclusion, we use the Gröbner basis of the infinitesimal Alexander invariant

Bn provided by Theorem 8.3.5. The equation wijk = 0 gives a linear space Lijk such that

Lijk ⊂ Li,j,j−1 and Li,j,j−1 = Lij defined by equations (8.18). By Lemma 5.3.2, we have that

R1(wP+
n ) ⊆ L, and the proof is finished.

The next proposition lists some of the basic properties of the (first) resonance varieties

of the upper McCool groups.

Proposition 8.4.3. Let Lij be the components of the resonance variety of wP+
n .

1. Lij has basis {ujl − uil, uij, for 1 ≤ l ≤ j − 1}.

2. Lij ∩ Lk,l = {0} if i 6= k and j 6= l.

3. Lij is isotropic (i.e., the cup product map Lij ∧ Lij → H2(G;C) vanishes) if and only

if dimLij = 2.

4. R1(wP+
n ) = R1(wP+

n+1) ∩H1(wP+
n ;C).

Proof. By Theorem 8.4.2, as a vector space, Lij is the subspace of H1(wP+
n ;C) = C(n

2)

defined by equations (8.18). By formula (8.19), Lij has basis {ujl−uil, uij, for 1 ≤ l ≤ j−1}.

Using this basis, the other claims are readily verified.

Lemma 8.4.4 (Corollary 5.3 [118]). If α : G1 → G2 is an epimorphism, then the induced

monomorphism, α∗ : H1(G2;C)→ H1(G1;C), takes R1(G2,C) to R1(G1,C).

There is a split injection ι : wP+
n → wP+

n+1. However, using the first resonance varieties,

we can show the following property.
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Corollary 8.4.5. For n ≥ 4, there is no split monomorphism from wP+
n to wPn.

Proof. Suppose ι has a splitting epimorphism α : wPn � wP+
n . By Lemma 8.4.4, the epi-

morphism α induces a monomorphism α∗ : H1(wP+
n ;C) → H1(wPn;C) takes R1(wP+

n ,C)

to R1(wPn,C).

From Theorem 8.4.1, the first resonance R1(wPn) is a union of dimension 2 and 3 linear

spaces. On the other side, the first resonance R1(wP+
n ) contains dimension n − 1 linear

spaces. Hence, for n ≥ 5, there is no epimorphism from wPn to wP+
n .

For n = 4, from Proposition 8.4.3, L43 ⊂ R1(wP+
4 ) is not isotropic. However, from [34]

all components in R1(wP4) are isotropic. For any a, b ∈ L43, such that a ∪ b 6= 0, we have

α∗(a) ∪ α∗(b) = α∗(a ∪ b) 6= 0, by the injectivity of α∗. Hence, the monomorphism α∗ must

take non-isotropic component to non-isotropic component. This finish the proof.

8.5 The Chen ranks of wP+
n

We compute the Hilbert series of the infinitesimal Alexander invariant and the Chen ranks

of the upper McCool groups.

8.5.1 Hilbert series of monomial ideals

The following comes from in [45, §15.1.1]. By Theorem 8.3.2, the Hilbert series of any graded

module can be reduced to the computation of the Hilbert series of monomial module, that

is M = F/I such that I is monomials in F . Then M =
⊕

S/Ij. Since the Hilbert function

is additive, we only need to treat the case M = S/I such that I is a monomial ideal.

Let I be the monomial ideal of S generated by {m1, . . . ,mt}. Choose a ‘perfect’ monomial

p ∈ F , with degree d and let J be the monomial ideal generated by {p,m1, . . . ,mt}. Let I ′

be the ideal generated by {m1/ gcd(m1, p), . . . ,mt/ gcd(mt, p)}. We then have a short exact
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sequence of graded modules

0 // S/I ′(−d) // S/I // S/J // 0 . (8.21)

Lemma 8.5.1 ([45]). Under the above notations, we have an equation of Hilbert series

Hilb(S/I, t) = Hilb(S/J, t) + td Hilb(S/I ′).

Remark 8.5.2. In the algorithm, choosing a perfect monomial p ∈ F can make ideals I ′

and J have less generators than I. By choosing perfect p we can make the process very fast.

Example 8.5.3. Let S = C[x43, x42, x41, x32, x31, x21], and order the variables as x43 > x42 >

x41 > x32 > x31 > x21. Using the grevlex order on monomials, let us compute Hilb(S/I),

where I is the ideal generated by x41, x42, x32x21, x31x21, x
2
21. Choose p = x21 as the perfect

monomial. Then J = {x41, x42, x21} and I ′ = {x41, x42, x32, x31, x21}. Hence,

Hilb(S/I, t) = Hilb(S/J, t) + t · Hilb(S/I ′, t) =
1

(1− t)3
+ t · 1

1− t
.

8.5.2 The Hilbert series of Bn

We are ready to compute the Hilbert series of the infinitesimal Alexander invariant of the

upper McCool groups now.

Theorem 8.5.4. The Hilbert series of the infinitesimal Alexander invariant Bn is given by

Hilb(Bn) =
n−1∑
s=2

(
s

2

)
1

(1− t)n−s+1
+

(
n

4

)
t

1− t
. (8.22)

Proof. This computation is an application of the method from [45, §15.1.1]. Since we already

found a Gröbner basis G for im(Ψ), by Theorem 8.3.2, we only need to compute the Hilbert

series of the resulting monomial ideals in>(im(Ψ)) = 〈in>(G)〉.

Recall from Theorem 8.3.5 and Lemma 8.2.2 that

in>(Gijk) =

 xksxkl · rijk, xjtxkl · rijk, 1 ≤ l ≤ s ≤ k − 1, 1 ≤ t ≤ k;

xik · rijk, xil · rijk, xab · rijk, {a, b} 6⊂ {i, j, k, l}, 1 ≤ l ≤ k − 1.


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Denote Iijk = {xksxkl, xjtxkl, 1 ≤ l ≤ s ≤ k − 1, 1 ≤ t ≤ k;xik, xil, xab, {a, b} 6⊂ {i, j, k, l}}

Using Lemma 8.5.1, a straightforward computation shows that the Hilbert series of the

corresponding monomial ideals are given by

Hilb(S/〈Iijk〉) =
1

(1− t)k
+

kt

1− t
.

Hence, the Hilbert series of Bn is given by

Hilb(Bn) =
∑
i>j>k

Hilb(S/〈Iijk〉)

=
n−2∑
k=1

(
n− k

2

)(
1

(1− t)k+1
+

kt

1− t

)
.

Setting s = n− k completes the proof.

8.5.3 The Chen ranks

We may compute the Chen ranks of wP+
n from the Hilbert series of its infinitesimal Alexander

invariant, which is provided by Theorem 8.5.4.

Theorem 8.5.5. The Chen ranks θk of the Chen group of wP+
n are given by θ1 =

(
n
2

)
,

θ2 =
(
n
3

)
, θ3 = 2

(
n+1

4

)
, and

θk =

(
n+ k − 2

k + 1

)
+ θk−1 =

k∑
i=3

(
n+ i− 2

i+ 1

)
+

(
n+ 1

4

)
for k ≥ 4.

Proof. We need to find the coefficient of tk in formula (8.22). Let

f(t) =
n−1∑
s=2

(
s

2

)
(1− t)−n+s−1 +

(
n

4

)
t(1− t)−1.

Computing derivatives, we find that

f (k)(t) =
n−1∑
s=2

(
s

2

) k∏
i=1

(n− s+ i)(1− t)−n+s−k−1 + k!

(
n

4

)
(1− t)−k−1.
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Hence, the Chen ranks are given by

θk+2 =
1

k!
f (k)(0) =

n−1∑
s=2

(
s

2

) k∏
i=1

(n− s+ i) + k!

(
n

4

)
.

Simplifying this expression, we obtain the claimed recurrence formula.

Corollary 8.5.6. The pure braid group Pn, the upper McCool group wP+
n , and the product

group Πn =
∏n−1

i=1 Fi are pairwise non-isomorphic for n ≥ 4, although they all do have the

same LCS ranks and the same Betti numbers.

Proof. By [31], the fourth Chen ranks of Pn and Πn are given by θ4(Pn) = 3
(
n+1

4

)
and

θ4(Πn) = 3
(
n+2

5

)
. On the other hand, from Theorem 8.5.5, we see that

θ4(wP+
n ) = 2

(
n+ 1

4

)
+

(
n+ 2

5

)
. (8.23)

Comparing these ranks completes the proof.

8.5.4 The Chen ranks formula

In [34], Cohen and Schenck showed that the first resonance varieties of the McCool groups

satisfy the hypotheses of Theorem 6.3.1, and that the Chen ranks of these groups are given

by

θk(wPn) = (k − 1)

(
n

2

)
+ (k2 − 1)

(
n

3

)
, for k � 0. (8.24)

.

By Proposition 8.4.3, the components of R1(wP+
n ) are not isotropic. We can also verify

that the Chen ranks formula (6.30) does not hold for the group wP+
n , as soon as n ≥ 4.
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Chapter 9

More Examples

In the previous two chapters, we already applied our techniques to the pure welded braid

groups and the pure virtual braid groups. In this chapter, we study some other interesting

groups, including torsion-free nilpotent groups, 1-relator groups, and the fundamental groups

of orientable Seifert manifolds. In our current and future work, we will investigate these

algebraic and geometric invariants for the pure braid groups on compact Riemann surfaces

and the picture groups from quiver representations. This chapter is based on the work in

paper [143].

9.1 Torsion-free nilpotent groups

In this section we study the graded and filtered formality properties of a well-known class

of groups: that of finitely generated, torsion-free nilpotent groups. In the process, we prove

Theorem 1.2.10 from the Introduction.

9.1.1 Nilpotent groups and Lie algebras

We start by reviewing the construction of the Malcev Lie algebra of a finitely generated,

torsion-free nilpotent group G (see Cenkl and Porter [26], Lambe and Priddy [88], and
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Malcev [104] for more details). There is a refinement of the upper central series of such a

group,

G = G1 > G2 > · · · > Gn > Gn+1 = 1, (9.1)

with each subgroup Gi < G a normal subgroup of Gi+1, and each quotient Gi/Gi+1 an infinite

cyclic group. (The integer n is an invariant of the group, called the length of G.) Using

this fact, we can choose a Malcev basis {u1, . . . , un} for G, which satisfies Gi = 〈Gi+1, ui〉.

Consequently, each element u ∈ G can be written uniquely as ua11 u
a2
2 · · ·uann .

Using this basis, the group G, as a set, can be identified with Zn via the map sending

ua11 · · ·uann to a = (a1, . . . , an). The multiplication in G then takes the form

ua11 · · ·uann · u
b1
1 · · ·ubnn = u

ρ1(a,b)
1 · · ·uρn(a,b)

n , (9.2)

where ρi : Zn × Zn → Z is a rational polynomial function, for each 1 ≤ i ≤ n. This

procedure identifies the group G with the group (Zn, ρ), with multiplication the map ρ =

(ρ1, . . . , ρn) : Zn × Zn → Zn. Thus, we can define a simply-connected nilpotent Lie group

G⊗Q = (Qn, ρ) by extending the domain of ρ, which is called the Malcev completion of G.

The discrete group G is a subgroup of the real Lie group G ⊗ R. The quotient space,

M = (G ⊗ R)/G, is a compact manifold, called a nilmanifold. As shown in [104], the Lie

algebra of M is isomorphic to m(G;R). It is readily apparent that the nilmanifold M is

an Eilenberg–MacLane space of type K(G, 1). As shown by Nomizu, the cohomology ring

H∗(M,R) is isomorphic to the cohomology ring of the Lie algebra m(G;R).

The polynomial functions ρi have the form

ρi(a, b) = ai + bi + τi(a1, . . . , ai−1, b1, . . . , bi−1). (9.3)

Denote by σ = (σ1, . . . , σn) the quadratic part of ρ. Then Qn can be given a Lie alge-

bra structure, with bracket [a, b] = σ(a, b) − σ(b, a). As shown in [88], this Lie algebra is

isomorphic to the Malcev Lie algebra m(G;Q).
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The group (Zn, ρ) has canonical basis {ei}ni=1, where ei is the i-th standard basis vec-

tor. Then the Malcev Lie algebra m(G;Q) = (Qn, [ , ]) has Lie bracket given by [ei, ej] =∑n
k=1 s

k
i,jek, where ski,j = bk(ei, ej)− bk(ej, ei).

The Chevalley–Eilenberg complex
∧∗(m(G;Q)) is a minimal model for M = K(G, 1).

Clearly, this model is generated in degree 1; thus, it is also a 1-minimal model for G. As

shown by Hasegawa in [68], the nilmanifold M is formal if and only if M is a torus.

9.1.2 Nilpotent groups and filtered formality

Let G be a finitely generated, torsion-free nilpotent group, and let m = m(G;Q) be its

Malcev Lie algebra, as described above. Note that gr(m) = Qn has the same basis e1, . . . , en

as m, but, as we shall see, the Lie bracket on gr(m) may be different. The Lie algebra m

(and thus, the group G) is filtered-formal if and only if m ∼= ĝr(m) = gr(m), as filtered Lie

algebras. In general, though, this isomorphism need not preserve the chosen basis.

Example 9.1.1. For any finitely generated free group F , the k-step, free nilpotent group

F/Γk+1F is filtered-formal. Indeed, F is 1-formal, and thus filtered-formal. Hence, by

Theorem 3.3.8, each nilpotent quotient of F is also filtered-formal. In fact, as shown in [109,

Corollary 2.14], m(F/Γk+1F ) ∼= L/(Γk+1L), where L = lie(F ).

Example 9.1.2. Let G be the 3-step, rank 2 free nilpotent group F2/Γ4F2. Identifying G

with Z5 as a set, then G has a presentation with generators x1, . . . , x5 and relations [x1, x2] =

x3, [x1, x3] = x4, [x2, x3] = x5, and x4, x5 central. Let {z1, . . . , z5} be the corresponding basis

for gr(G;Q) = Q2 ⊕ Q ⊕ Q2. The Lie brackets are then given by [z1, z2] = z3, [z1, z3] = z4,

[z2, z3] = z5, and [zi, zj] = 0, otherwise (see [88, 26]). A direct computation by (9.3) shows

that

ρi(a, b) = ai + bi, for i = 1, 2,

ρ3(a, b) = a3 + b3 − a2b1,
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ρ4(a, b) = a4 + b4 − a3b1 + a2

(
b1

2

)
,

ρ5(a, b) = a5 + b5 − a3b2 + a2(1 + b2)b1.

Then the Malcev Lie algebra m(G;Q) = Q5 has Lie brackets given by [e1, e2] = e3−e4/2−e5,

[e1, e3] = e4, [e2, e3] = e5, and [ei, ej] = 0, otherwise. An isomorphism between m(G;Q) and

gr(G;Q) is given by the matrix 
1 0 0 ∗ ∗
0 1 1

2
∗ ∗

0 0 1 0 −1

0 0 0 1 0

0 0 0 0 1

 .

However, it is readily checked that the identity map of Q5 is not a Lie algebra isomorphism

between m = m(G;Q) and gr(m). Moreover, the differential of the 1-minimal modelM(G) =∧∗(m) is not homogeneous on the Hirsch weights, although m (and G) are filtered-formal.

Now consider a finite-dimensional, nilpotent Lie algebra m over a field Q of characteristic

0. The filtered-formality of such a Lie algebra coincides with the notions of ‘Carnot’, ‘natu-

rally graded’, ‘homogeneous’ and ‘quasi-cyclic’ which appear in [37, 77, 92]. In this context,

Cornulier proves in [37, Theorem 3.14] that the Carnot property for m is equivalent to the

Carnot property for m⊗Q K.

9.1.3 Torsion-free nilpotent groups and filtered formality

We now study in more detail the filtered-formality properties of torsion-free nilpotent groups.

We start by singling out a rather large class of groups which enjoy this property.

Theorem 9.1.3. Let G be a finitely generated, torsion-free, 2-step nilpotent group. If Gab

is torsion-free, then G is filtered-formal.

Proof. The lower central series of our group takes the form G = Γ1G > Γ2G > Γ3G = 1. Let

{x1, . . . , xn} be a basis for G/Γ2G = Zn, and let {y1, . . . , ym} be a basis for Γ2G = Zm. Then,
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as shown for instance by Igusa and Orr in [72, Lemma 6.1], the group G has presentation

G =
〈
x1, . . . , xn, y1, . . . , ym

∣∣∣ [xi, xj] =
m∏
k=1

y
cki,j
k , [yi, yj] = 1, for i < j; [xi, yj] = 1

〉
. (9.4)

Let a, b ∈ Zn+m. A routine computation shows that

ρi(a, b) = ai + bi, for 1 ≤ i ≤ n, (9.5)

ρn+k(a, b) = an+k + bn+k −
k∑
j=1

n∑
i=j+1

ckj,iaibj, for 1 ≤ k ≤ m.

Set ckj,i = −cki,j if j > i. It follows that the Malcev Lie algebra m(G;Q) = (Qn+m, [ , ])

has Lie bracket given on generators by [ei, ej] =
∑m

k=1 c
k
i,jen+k for 1 ≤ i 6= j ≤ n, and zero

otherwise.

Turning now to the associated graded Lie algebra of our group, we have an additive

decomposition, gr(G;Q) = gr1(G;Q)⊕gr2(G;Q) = Qn⊕Qm, where the first factor has basis

{e1, . . . , en}, the second factor has basis {en+1, . . . , en+m}, and the Lie bracket is given as

above. Therefore, m(G) ∼= gr(G;Q), as filtered Lie algebras. Hence, G is filtered-formal.

It is known that all nilpotent Lie algebras of dimension 4 or less are filtered-formal, see for

instance [37]. In general, though, finitely generated, torsion-free nilpotent groups need not

be filtered-formal. We illustrate this phenomenon with two examples: the first one extracted

from the work of Cornulier [37], and the second one adapted from the work of Lambe and

Priddy [88]. In both examples, the nilpotent Lie algebra m in question may be realized as

the Malcev Lie algebra of a finitely generated, torsion-free nilpotent group G.

Example 9.1.4. Let m be the 5-dimensional Q-Lie algebra with non-zero Lie brackets given

by [e1, e3] = e4 and [e1, e4] = [e2, e3] = e5. It is readily checked that the center of m is 1-

dimensional, generated by e5, while the center of gr(m) is 2-dimensional, generated by e2 and

e5. Therefore, m 6∼= gr(m), and so m is not filtered-formal. It follows that the nilpotent group

G is not filtered-formal, either. It readily checked that the 1-minimal modelM(G) =
∧∗(m)

does not have positive Hirsch weights, nevertheless, M(G) has positive weights, given by

the index of the chosen basis.
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Example 9.1.5. Let m be the 7-dimensional Q-Lie algebra with non-zero Lie brackets given

on basis elements by [e2, e3] = e6, [e2, e4] = e7, [e2, e5] = −e7, [e3, e4] = e7, and [e1, ei] = ei+1

for 2 ≤ i ≤ 6. Then gr(m) has the same additive basis as m, with non-zero brackets given

by [e1, ei] = ei+1 for 2 ≤ i ≤ 6. Once again, we claim that m 6∼= gr(m), and so both m and G

are not filtered-formal. In this case, though, we cannot use the indexing of the basis to put

positive weights on M(G).

To prove the claim that m 6∼= gr(m), we suppose φ : m→ gr(m) is an isomorphism of the

underlying vector spaces, preserving Lie brackets. Choose a basis {z1, . . . , z7} for gr(m) = Q7.

Then φ is given by a matrix A = (aij) such that aij = 0 for 3 ≤ i ≤ 7 and i > j ≥ 1.

A =



a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

0 0 a33 a34 a35 a36 a37

0 0 0 a44 a45 a46 a47

0 0 0 0 a55 a56 a57

0 0 0 0 0 a66 a67

0 0 0 0 0 0 a77


. (9.6)

Since [φ(e2), φ(e3)] = a21a33z3 + a21a34z4 + a21a35z6 + a21a36z7 and φ(e6) = a66z6 + a67z7,

we must have a21a33 = 0 and a21a35 = a66. Moreover, since det(A) 6= 0, we must also have

aii 6= 0 for i ≥ 3. But this is impossible, and the claim is proved. Another quick proof

is pointed out by Cornulier: Plainly, gr(m) is metabelian, (i.e., its derived subalgebra is

abelian), while m is not metabelian, thus the claim follows.

9.1.4 Graded formality and Koszulness

Carlson and Toledo [24] classified finitely generated, 1-formal, nilpotent groups with first

Betti number 5 or less, while Plantiko [127] gave sufficient conditions for the associated

graded Lie algebras of such groups to be non-quadratic. The following proposition follows

from Theorem 4.1 in [127] and Lemma 2.4 in [24].
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Proposition 9.1.6 ([24, 127]). Let G = F/R be a finitely presented, torsion-free, nilpotent

group. If there exists a non-zero decomposable element u in the kernel of the cup product

H1(G;Q) ∧ H1(G;Q) → H2(G;Q), i.e., u = v ∧ w for v, w ∈ H1(G;Q), then G is not

graded-formal.

Example 9.1.7. Let Un(R) be the nilpotent Lie group of upper triangular matrices with

1’s along the diagonal. The quotient M = Un(R)/Un(Z) is a nilmanifold of dimension

N = n(n − 1)/2. The unipotent group Un(Z) has canonical basis {uij | 1 ≤ i < j ≤ n},

where uij is the matrix obtained from the identity matrix by putting 1 in position (i, j).

Moreover, Un(Z) ∼= (ZN , ρ), where ρij(a, b) = aij+bij+
∑

i<k<j aikbkj, see [88]. The unipotent

group Un(Z) is filtered-formal; nevertheless, Proposition 9.1.6 shows that this group is not

graded-formal for n ≥ 3.

Proposition 9.1.8. Let G be a finitely generated, torsion-free, nilpotent group, and suppose

G is filtered-formal. Then G is abelian if and only if the algebra U(gr(G;Q)) is Koszul.

Proof. We only need to deal with the proof of the non-trivial direction. If the algebra

U = U(gr(G;Q)) is Koszul, then the Lie algebra gr(G;Q) is quadratic, i.e., the group G

is graded-formal. Under the assumption that G is filtered-formal, we then have that G is

1-formal.

Let M be the nilmanifold with fundamental group G. Then M is also 1-formal. By

Nomizu’s theorem, the cohomology ring A = H∗(M ;Q) is isomorphic to the Yoneda algebra

Ext∗U(Q,Q). On the other hand, since U is Koszul, the Yoneda algebra is isomorphic to U !,

which is also Koszul. Hence, A is a Koszul algebra. As shown by Papadima and Yuzvinsky

[126], if M is 1-formal and if A is Koszul, then M is formal. By [68], this happens if and

only if M is a torus. This completes the proof.

Corollary 9.1.9. Let G be a finitely generated, torsion-free, 2-step nilpotent group. If Gab

is torsion-free, then U(gr(G;Q)) is not Koszul.
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Example 9.1.10. Let G = 〈x1, x2, x3, x4 | [x1, x3], [x1, x4], [x2, x3], [x2, x4], [x1, x2][x3, x4]〉.

The group G is a 2-step, commutator-relators nilpotent group. Hence, by the above corollary,

the enveloping algebra U(h(G;Q)) is not Koszul. In fact, U(h(G;Q))! is isomorphic to the

quadratic algebra from Example 2.2.9, which is not Koszul.

9.2 One-relator groups and link groups

We start this section with the notion of mild (or inert) presentation of a group, due to

J. Labute and D. Anick, and its relevance to the associated graded Lie algebra. We then

continue with various applications to two important classes of finitely presented groups:

one-relator groups and fundamental groups of link complements.

9.2.1 Mild presentations

Let F be a finitely generated free group, with generating set x = {x1, . . . , xn}. The weight

of a word r ∈ F is defined as ω(r) = sup{k | r ∈ ΓkF}. Since F is residually nilpotent, ω(r)

is finite. The image of r in grω(r)(F ) is called the initial form of r, and is denoted by in(r).

Let G = F/R be a quotient of F , with presentation G = 〈x | r〉, where r = {r1, . . . , rm}.

Let inQ(r) be the ideal of the free Q-Lie algebra lie(x) generated by {in(r1), . . . , in(rm)}.

Clearly, this is a homogeneous ideal; thus, the quotient

L(G;Q) := lie(x)/ inQ(r) (9.7)

is a graded Lie algebra. As noted by Labute in [84], the ideal inQ(r) is contained in grΓ̃(R;Q),

where Γ̃kR = ΓkF ∩ R is the induced filtration on R. Hence, there exists an epimorphism

L(G;Q)� gr(G;Q).

Proposition 9.2.1. Let G be a commutator-relators group, and let h(G;Q) be its holonomy

Lie algebra. Then the canonical projection ΦG : h(G;Q) � gr(G;Q) factors through an

epimorphism h(G;Q)� L(G;Q).
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Proof. Let G = 〈x | r〉 be a commutator-relators presentation for our group. By Corollary

4.3.3, the holonomy Lie algebra h(G;Q) admits a presentation of the form lie(x)/a, where a

is the ideal generated by the degree 2 part of M(r) − 1, for all r ∈ r. On the other hand,

in(r) is the smallest degree homogeneous part of M(r) − 1. Hence, a ⊆ inQ(r), and this

complete the proof.

Following [2, 84], we say that a group G is a mildly presented group (over Q) if it ad-

mits a presentation G = 〈x | r〉 such that the quotient inQ(r)/[inQ(r), inQ(r)], viewed as a

U(L(G;Q))-module via the adjoint representation of L(G;Q), is a free module on the images

of in(r1), . . . , in(rm). As shown by Anick in [2], a presentation G = 〈x1, . . . , xn | r1, . . . rm〉

is mild if and only if

Hilb(U(L(G;Q)), t) =

(
1− nt+

m∑
i=1

tω(ri)

)−1

. (9.8)

Theorem 9.2.2 (Labute [83, 84]). Let G be a finitely-presented group.

1. If G is mildly presented, then gr(G;Q) = L(G;Q).

2. If G has a single relator r, then G is mildly presented. Moreover, for each k ≥ 1, the

LCS rank φk = dimQ gr(G;Q) is given by

φk =
1

k

∑
d|k

µ(k/d)

 ∑
0≤i≤[d/e]

(−1)i
d

d+ i− ei

(
d+ i− ie

i

)
nd−ei

 , (9.9)

where µ is the Möbius function and e = ω(r).

Labute states this theorem over Z, but his proof works for any commutative PID with

unity. There is an example in [84] showing that the mildness condition is crucial for part (1)

of the theorem to hold. We give now a much simpler example to illustrate this phenomenon.

Example 9.2.3. Let G = 〈x1, x2, x3 | x3, x3[x1, x2]〉. Clearly, G ∼= 〈x1, x2 | [x1, x2]〉, which

is a mild presentation. However, the Lie algebra lie(x1, x2, x3)/ideal(x3) is not isomorphic to

gr(G;Q) = lie(x1, x2)/ideal([x1, x2]). Hence, the first presentation is not a mild.
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Lemma 9.2.4. Let G be a group admitting a mild presentation G = 〈x1, . . . , xn | r1, . . . , rm〉

such that ri ∈ [F, F ] for 1 ≤ i ≤ m. If G is graded-formal, then the LCS ranks of G are

given by

φk(G) =
1

k

∑
d|k

µ(k/d)

(
n+
√
n2 − 4m

)d
+
(
n−
√
n2 − 4m

)d
(2m)d

. (9.10)

Moreover, if the enveloping algebra U = U(gr(G;C)) is Koszul, then

Hilb(ExtU(C;C), t) = 1 + nt+mt2.

Proof. Since G has a mild presentation, gr(G) is isomorphic to the Lie algebra L(G) associ-

ated to this presentation. Furthermore, since G is a graded-formal, and all the relators ri are

commutators, we have that ω(ri) = 2 for 1 ≤ i ≤ m. Using now the Poincaré–Birkhoff–Witt

theorem and formula (9.8), we find that Hilb(U(gr(G)), t) · (1 − nt + mt2) = 1. Hence, the

LCS ranks formula follows from Lemma 3.1.4.

Now suppose U = U(gr(G)) is a Koszul algebra. Then ExtU(C;C) = U !, and the

expression for the Hilbert series of ExtU(C;C) follows from (2.12).

9.2.2 Mildness and graded formality

We now use Labute’s work on the associated graded Lie algebra and our presentation of the

holonomy Lie algebra to give two graded-formality criteria.

Corollary 9.2.5. Let G be a group admitting a mild presentation 〈x | r〉. If ω(r) ≤ 2 for

each r ∈ r, then G is graded-formal.

Proof. By Theorem 9.2.2, the associated graded Lie algebra gr(H;Q) has a presentation of

the form lie(x)/ inQ(r), with inQ(r) a homogeneous ideal generated in degrees 1 and 2. Using

the degree 1 relations to eliminate superfluous generators, we arrive at a presentation with

only quadratic relations. The desired conclusion follows from Lemma 3.1.14.

An important sufficient condition for mildness of a presentation was given by Anick

[2]. Recall that ι denotes the canonical injection from the free Lie algebra lie(x) into
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Q〈x〉. Fix an ordering on the set {x}. The set of monomials in the homogeneous ele-

ments ι(in(r1)), . . . , ι(in(rm)) inherits the lexicographic order. Let wi be the highest term of

ι(in(ri)) for 1 ≤ i ≤ m. Suppose that (i) no wi equals zero; (ii) no wi is a submonomial of

any wj for i 6= j, i.e., wj = uwiv cannot occur; and (iii) no wi overlaps with any wj, i.e.,

wi = uv and wj = vw cannot occur unless v = 1, or u = w = 1. Then, the set {r1, . . . , rn}

is mild (over Q). We use this criterion to provide an example of a finitely-presented group

G which is graded-formal, but not filtered-formal.

Example 9.2.6. Let G be the group with generators x1, . . . , x4 and relators r1 = [x2, x3],

r2 = [x1, x4], and r3 = [x1, x3][x2, x4]. Ordering the generators as x1 � x2 � x3 � x4,

we find that the highest terms for {ι(in(r1)), ι(in(r2)), ι(in(r3))} are {x2x3, x1x4, x1x3}, and

these words satisfy the above conditions of Anick. Thus, by Theorem 9.2.2, the Lie algebra

gr(G;Q) is the quotient of lie(x1, . . . , x4) by the ideal generated by [x2, x3], [x1, x4], and

[x1, x3] + [x2, x4]. Hence, h(G;Q) ∼= gr(G;Q), that is, G is graded-formal. On the other

hand, using the Tangent Cone theorem of Dimca et al. [42], one can show that the group

G is not 1-formal. Therefore, G is not filtered-formal.

9.2.3 Non-mild presentations

Again, let Gn denote any one of the pure braid-like groups Pn, vPn, or vP+
n . Recall that Gn

is graded-formal, and gr(Gn) ∼= L(Gn). However, as we show next, the groups Gn are not

mildly presented, except for small n.

Proposition 9.2.7. The pure braid groups Pn and the pure virtual braid groups vPn and

vP+
n admit mild presentations if and only if n ≤ 3.

Proof. Let Gn denote any of the aforementioned groups. Then Gn is a commutator-relators

group, and the universal enveloping algebra of the associated graded Lie algebra is Koszul.

From formulas (7.7) and (7.10), for n ≤ 3, Anick’s criterion (9.8) is satisfied. Hence, Gn has

a mild presentation for n ≤ 3.
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Now suppose n ≥ 4. Using formulas (7.7) and (7.10) once again, we see that the third

Betti numbers of these groups are given by

b3(Pn) = s(n, n− 3), b3(vPn) = L(n, n− 3), b3(vP+
n ) = S(n, n− 3). (9.11)

Thus, dimH3(Gn,C) > 0 for n ≥ 4. The claim now follows from Proposition 9.2.4 and the

fact that H∗(Gn,C) = U(gr(Gn,C))! = ExtU(C,C).

9.2.4 One-relator groups

If the group G admits a finite presentation with a single relator, much more can be said.

Corollary 9.2.8. Let G = 〈x | r〉 be a 1-relator group.

1. If r is a commutator relator, then h(G;Q) = lie(x)/ideal(M2(r)).

2. If r is not a commutator relator, then h(G;Q) = lie(y1, . . . , yn−1).

Proof. Part (1) follows from Corollary 4.3.3. When r is not a commutator relator, the

Jacobian matrix JG = (ε(∂ir)) has rank 1. Part (2) then follows from Theorem 4.3.1.

Corollary 9.2.9. Let G = 〈x1, . . . xn | r〉 be a 1-relator group, and let h = h(G;Q). Then

Hilb(U(h); t) =



1/(1− (n− 1)t) if ω(r) = 1,

1/(1− nt+ t2) if ω(r) = 2,

1/(1− nt) if ω(r) ≥ 3.

(9.12)

Proof. Let x = {x1, . . . , xn}. By Corollary 9.2.8, the universal enveloping algebra U(h) is

isomorphic to either T (y1, . . . , yn−1) if ω(r) = 1, or to T (x)/ ideal(M2(r)) if ω(r) = 2, or to

T (x) if ω(r) ≥ 3. The claim now follows from Proposition 2.2.7 and Corollary 2.2.8.

Theorem 9.2.10. Let G = 〈x | r〉 be a group defined by a single relation. Then G is

graded-formal if and only if ω(r) ≤ 2.
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Proof. By Theorem 9.2.2, the given presentation of G is mild. The weight ω(r) can also be

computed as ω(r) = inf{|I| | M(r)I 6= 0}. If ω(r) ≤ 2, then, by Corollary 9.2.8, we have

that

h(G;Q) ∼= gr(G;Q) ∼= lie(x)/ideal(in(r)), (9.13)

and so G is graded-formal.

On the other hand, if ω(r) ≥ 3, then h(G;Q) = lie(x). However, gr(G;Q) = lie(x)/ideal(in(r)).

Hence, G is not graded-formal.

Example 9.2.11. Let G = 〈x1, x2 | r〉, where r = [x1, [x1, x2]]. Clearly, ω(r) = 3. Hence, G

is not graded-formal.

However, even if a one-relator group has weight 2 relation, the group need not be filtered-

formal, as we show in the next example.

Example 9.2.12. Let G = 〈x1, . . . , x5 | [x1, x2][x3, [x4, x5]] = 1〉. By Theorem 9.2.2, the Lie

algebra gr(G;Q) has presentation lie(x1, . . . , x5)/ideal([x1, x2]). Thus, by Corollary 9.2.5,

the group G is graded-formal. On the other hand, Remark 4.2.8 shows that G admits a

non-trivial triple Massey product of the form 〈u3, u4, u5〉. Thus, G is not 1-formal, and so G

is not filtered-formal.

We now determine the ranks of the (rational) Chen Lie algebra associated to an arbitrary

finitely presented, 1-relator, 1-formal group, thereby extending a result of Papadima and

Suciu from [117].

Proposition 9.2.13. Let G = F/〈r〉 be a one-relator group, where F = 〈x1, . . . , xn〉, and

suppose G is 1-formal. Then

Hilb(gr(G/G′′;Q), t) =


1 + nt− 1− nt+ t2

(1− t)n
if r ∈ [F, F ],

1 + (n− 1)t− 1− (n− 1)t

(1− t)n−1
otherwise.
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Proof. The first claim is proved in [117, Theorem 7.3]. To prove the second claim, recall that

gr(G/G′′;Q) ∼= h(G;Q)/h(G;Q)′′, for any 1-formal groupG. Now, since we are assuming that

r /∈ [F, F ], Theorem 4.3.1 implies that h(G;Q) ∼= lie(y1, . . . , yn−1). The claim follows from

Chen’s formula (6.5) and the fact that gr(F/F ′′,Q) = lie(x1, . . . , xn)/lie′′(x1, . . . , xn),

9.2.5 Link groups

We conclude this section with a very well-studied class of groups which occurs in low-

dimensional topology. Let L = (L1, . . . , Ln) be an n-component link in S3. The complement

of the link, X = S3 \
⋃n
i=1 Li, has the homotopy type of a connected, finite, 2-dimensional

CW-complex with b1(X) = n and b2(X) = n−1. The link group, G = π1(X), carries crucial

information about the homotopy type of X: if n = 1 (i.e., the link is a knot), or if n > 1

and L is a not a split link, then X is a K(G, 1).

Every link L as above arises as a closed-up braid β̂. That is, there is a braid β in the

Artin braid group Bk such that L is isotopic to the link obtained from β by joining the top

and bottom of each strand. The link group, then, has presentation G = 〈x1, . . . xk | β(xi) =

xi (i = 1, . . . , k)〉, where Bk is now viewed as a subgroup of Aut(Fk) via the Artin embedding.

If β belongs to the pure braid group Pn ⊂ Bn, then L = β̂ is an n-component link, called a

pure braid link.

Associated to an n-component link L there is a linking graph Γ, with vertex set {1, . . . , n},

and an edge (i, j) for each pair of components (Li, Lj) with non-zero linking number. Suppose

the graph Γ is connected. Then, as conjectured by Murasugi [114] and proved by Massey–

Traldi [108] and Labute [85], the link group G has the same LCS ranks φk and the same Chen

ranks θk as the free group Fn−1, for all k > 1. Furthermore, G has the same Chen Lie algebra

as Fn−1 (see [117]). The next theorem is a combination of results of [2], Berceanu–Papadima

[14], and Papadima–Suciu [117].

Theorem 9.2.14. Let L be an n-component link in S3 with connected linking graph Γ, and
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let G be the link group. Then

1. The group G is graded-formal.

2. If L is a pure braid link, then G admits a mild presentation.

3. There exists a graded Lie algebra isomorphism gr(G/G′′;Q) ∼= h(G;Q)/h(G;Q)′′.

Proof. Part (1) follows from Lemma 4.1 and Theorems 3.2 and 4.2 in [14]. Part (2) is

Theorem 3.7 from [2], while Part (2) is proved in Theorem 10.1 from [117].

In general, though, a link group (even a pure braid link group) is not 1-formal. This

phenomenon was first detected by W.S. Massey by means of his higher-order products [107],

but the graded and especially filtered formality can be even harder to detect.

Example 9.2.15. Let L be the Borromean rings. This is the 3-component link obtained

by closing up the pure braid [A1,2, A2,3] ∈ P ′3, where Ai,j denote the standard generators

of the pure braid group. All the linking numbers are 0, and so the graph Γ is discon-

nected. It is readily seen that link group G passes Anick’s mildness test; thus gr(G;Q) =

lie(x, y, z)/ ideal([x, [y, z]], [z, [y, x]]), thereby recovering a computation of Hain [64]. It fol-

lows that G is not graded-formal, and thus not 1-formal. Alternatively, the non-1-formality

of G can be detected by the triple Massey products 〈u, v, w〉 and 〈w, v, u〉.

Example 9.2.16. Let L be the Whitehead link. This is a 2-component link with linking

number 0. Its link group is the 1-relator group G = 〈x, y | r〉, where

r = x−1y−1xyx−1yxy−1xyx−1y−1xy−1x−1y.

By Theorem 9.2.2, this presentation is mild. Direct computation shows that in(r) =

[x, [y, [x, y]]], and so gr(G;Q) = lie(x, y)/ ideal([x, [y, [x, y]]]), again verifying a computa-

tion from [64]. In particular, G is not graded-formal. The non-1-formality of G can also be

detected by suitable fourth-order Massey products.
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We do not know whether the two link groups from above are filtered-formal. Nevertheless,

we give an example of a link group which is graded-formal, yet not filtered-formal.

Example 9.2.17. Let L be the link of great circles in S3 corresponding to the arrangement of

transverse planes through the origin of R4 denoted asA(31425) in Matei–Suciu [111]. Then L

is a pure braid link of 5 components, with linking graph the complete graph K5; moreover, the

link group G is isomorphic to the semidirect product F4 oαF1, where α = A1,3A2,3A2,4 ∈ P4.

By Theorem 9.2.14, the group G is graded-formal. On the other hand, as noted by Dimca et

al. in [42, Example 8.2], the Tangent Cone theorem does not hold for this group, and thus

G is not 1-formal. Consequently, G is not filtered-formal.

9.3 Seifert fibered manifolds

We now use our techniques to study the fundamental groups of orientable Seifert manifolds

from a rational homotopy viewpoint. We start our analysis with the fundamental groups of

Riemann surfaces.

9.3.1 Riemann surfaces

Let Σg be the closed, orientable surface of genus g. The fundamental group Πg = π1(Σg) is a

1-relator group, with generators x1, y1, . . . , xg, yg and a single relation, [x1, y1] · · · [xg, yg] = 1.

Since this group is trivial for g = 0, we will assume for the rest of this subsection that g > 0.

The cohomology algebra A = H∗(Σg;Q) is the quotient of the exterior algebra on gener-

ators a1, b1, . . . , ag, bg, in degree 1 by the ideal I generated by aibi − ajbj, for 1 ≤ i < j ≤ g,

together with aiaj, bibj, aibj, ajbi, for 1 ≤ i < j ≤ g. It is readily seen that the generators

of I form a quadratic Gröbner basis for this ideal; therefore, A is a Koszul algebra.

The Riemann surface Σg is a compact Kähler manifold, and thus, a formal space. It

follows from Theorem 2.3.20 that the minimal model of Σg is generated in degree one,
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i.e., M(Σg) = M(Σg, 1). The formality of Σg also implies the 1-formality of Πg. As a

consequence, the associated graded Lie algebra gr(Πg;Q) is isomorphic to the holonomy Lie

algebra h(Πg;Q). Using the above presentation for A, we find that

h(Πg;Q) = lie(2g)
/〈 g∑

i=1

[xi, yi] = 0
〉
, (9.14)

where lie(2g) := lie(x1, y1, . . . , xg, yg). Using again the fact that A is a Koszul algebra, we

deduce from Corollary 3.1.9 that
∏

k≥1(1− tk)φk(Πg) = 1− 2gt + t2. In fact, it follows from

formula (9.9) that the lcs ranks of the 1-relator group Πg are given by

φk(Πg) =
1

k

∑
d|k

µ(k/d)

[d/2]∑
i=0

(−1)i
d

d− i

(
d− i
i

)
(2g)d−2i

 . (9.15)

Using now Theorem 4.3.5, we see that the Chen Lie algebra of Πg has presentation

gr
(
Πg/Π

′′
g ;Q

)
= lie(2g)

/(〈 g∑
i=1

[xi, yi]
〉

+ lie′′(2g)
)
. (9.16)

Furthermore, Proposition 9.2.13 shows that the Chen ranks of our surface group are given

by θ1(Πg) = 2g, θ2(Πg) = 2g2 − g − 1, and

θk(Πg) = (k − 1)

(
2g + k − 2

k

)
−
(

2g + k − 3

k − 2

)
, for k ≥ 3. (9.17)

9.3.2 Seifert fibered spaces

We will consider here only orientable, closed Seifert manifolds with orientable base. Ev-

ery such manifold M admits an effective circle action, with orbit space an orientable sur-

face of genus g, and finitely many exceptional orbits, encoded in pairs of coprime integers

(α1, β1), . . . , (αs, βs) with αj ≥ 2. The obstruction to trivializing the bundle η : M → Σg

outside tubular neighborhoods of the exceptional orbits is given by an integer b = b(η). A

standard presentation for the fundamental group of M in terms of the Seifert invariants is

given by

πη := π1(M) =
〈
x1, y1, . . . , xg, yg, z1, . . . , zs, h | h central,

[x1, y1] · · · [xg, yg]z1 · · · zs = hb, zαi
i h

βi = 1 (i = 1, . . . , s)
〉
.

(9.18)
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For instance, if s = 0, the corresponding manifold, Mg,b, is the S1-bundle over Σg with

Euler number b. Let πg,b := π1(Mg,b) be the fundamental group of this manifold. If b = 0,

then πg,0 = Πg × Z, whereas if b = 1, then

πg,1 = 〈x1, y1, . . . , xg, yg, h | [x1, y1] · · · [xg, yg] = h, h central〉. (9.19)

In particular, M1,1 is the Heisenberg 3-dimensional nilmanifold and π1,1 is the group from

Example 3.3.6.

9.3.3 Malcev Lie algebra

As shown by Scott in [135], the Euler number e(η) of the Seifert bundle η : M → Σg satisfies

e(η) = −b(η)−
s∑
i=1

βi/αi. (9.20)

If the base of the Seifert bundle has genus 0, the group πη has first Betti number 0 or 1,

according to whether e(η) is non-zero or 0. Thus, πη is 1-formal, and the Malcev Lie algebra

m(πη;Q) is either 0, or the completed free Lie algebra of rank 1. To analyze the case when

g > 0, we will employ the minimal model of M , as constructed by Putinar in [130].

Theorem 9.3.1 ([130]). Let η : M → Σg be an orientable Seifert fibered space with g > 0.

The minimal modelM(M) is the Hirsch extensionM(Σg)⊗ (
∧

(c), d), where the differential

is given by d(c) = 0 if e(η) = 0, and d(c) ∈ M2(Σg) represents a generator of H2(Σg;Q) if

e(η) 6= 0.

More precisely, recall that Σg is formal, and so there is a quasi-isomorphism f : M(Σg)→

(H∗(Σg;Q), d = 0). Thus, there is an element a ∈M2(M) such that d(a) = 0 and f ∗([a]) 6= 0

in H2(Σg;Q) = Q. We then set d(c) = a in the second case.

To each Seifert fibration η : M → Σg as above, let us associate the S1-bundle η̄ : Mg,ε(η) →

Σg, where ε(η) = 0 if e(η) = 0, and ε(η) = 1 if e(η) 6= 0. For instance, M0,0 = S2 × S1 and

M0,1 = S3. The above theorem implies that

M(M) ∼=M(Mg,ε(η)). (9.21)
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Corollary 9.3.2. Let η : M → Σg be an orientable Seifert fibered space. The Malcev Lie

algebra of the fundamental group πη = π1(M) is given by m(πη;Q) ∼= m(πg,ε(η);Q).

Proof. The case g = 0 follows from the above discussion, while the case g > 0 follows from

(9.21).

Corollary 9.3.3. Let η : M → Σg be an orientable Seifert fibered space with g > 0. Then

M admits a minimal model with positive Hirsch weights.

Proof. We know from §9.3.1 that the minimal model M(Σg) is formal, and generated in

degree one (since g > 0). By Theorem 3.2.5,M(Σg) is isomorphic to a minimal model of Σg

with positive Hirsch weights; denote this model by H(Σg).

By Theorem 9.3.1 and Lemma 2.3.3, the Hirsch extension H(Σg) ⊗
∧

(c) is a minimal

model for M , generated in degree one. Moreover, the weight of c equals 1 if e(η) = 0, and

equals 2 if e(η) 6= 0. Clearly, the differential d is homogeneous with respect to these weights,

and this completes the proof.

Using Theorem 9.3.1 and Lemma 2.3.3 again, we obtain a quadratic model for the Seifert

manifold M in the case when the base has positive genus.

Corollary 9.3.4. Suppose g > 0. Then M has a quadratic model of the form
(
H∗(Σg;Q)⊗∧

(c), d
)
, where deg(c) = 1 and the differential d is given by d(ai) = d(bi) = 0 for 1 ≤ i ≤ g,

d(c) = 0 if e(η) = 0, and d(c) = a1 ∧ b1 if e(η) 6= 0.

We give now an explicit presentation for the Malcev Lie algebra m(πη;Q) as the degree

completion of a certain graded Lie algebra.

Theorem 9.3.5. The Malcev Lie algebra of πη is the degree completion of the graded Lie

algebra

L(πη) =


lie(x1, y1, . . . , xg, yg, z)/〈

∑g
i=1[xi, yi] = 0, z central〉 if e(η) = 0;

lie(x1, y1, . . . , xg, yg, w)/〈
∑g

i=1[xi, yi] = w, w central〉 if e(η) 6= 0,

(9.22)
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where deg(w) = 2 and the other generators have degree 1. Moreover, gr(πη;Q) ∼= L(πη).

Proof. The case g = 0 was already dealt with, so let us assume g > 0. There are two cases

to consider.

If e(η) = 0, Corollary 9.3.2 says that m(πη;Q) is isomorphic to the Malcev Lie algebra of

πg,0 = Πg × Z, which is a 1-formal group. Furthermore, we know from (9.14) that gr(Πg;Q)

is the quotient of the free Lie algebra lie(2g) by the ideal generated by
∑g

i=1[xi, yi]. Hence,

m(πη;Q) is isomorphic to the degree completion of gr(Πg×Z) = gr(Πg;Q)×gr(Z;Q), which

is precisely the Lie algebra L(πη) from (9.22).

If e(η) 6= 0, Corollary 9.3.4 provides a quadratic model for our Seifert manifold. Taking

the Lie algebra dual to this quadratic model and using [17, Theorem 4.3.6] or [13, Theorem

3.1], we obtain that the Malcev Lie algebra m(πη) is isomorphic to the degree completion

of the graded Lie algebra L(πη). Furthermore, by formula (3.21), there is an isomorphism

gr(m(πη;Q)) ∼= gr(πη;Q). This completes the proof.

Corollary 9.3.6. Fundamental groups of orientable Seifert manifolds are filtered-formal.

Proof. The claim follows at once from the above theorem and the definition of filtered-

formality. Alternatively, the claim also follows from Theorem 3.2.5 and Corollary 9.3.3.

9.3.4 Holonomy Lie algebra

We now give a presentation for the holonomy Lie algebra of a Seifert manifold group.

Theorem 9.3.7. Let η : M → Σg be a Seifert fibration. The rational holonomy Lie algebra

of the group πη = π1(M) is given by

h(πη;Q) =


lie(x1, y1, . . . , xg, yg, h)/〈

∑s
i=1[xi, yi] = 0, h central〉 if e(η) = 0;

lie(2g) if e(η) 6= 0.
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Proof. First assume e(η) = 0. In this case, the row-echelon approximation of πη has presen-

tation

π̃η = 〈x1, y1, . . . , xg, yg, z1, . . . , zs, h | zαi
i h

βi = 1 (i = 1, . . . , s),

([x1, y1] · · · [xg, yg])α1···αs = 1, h central〉
(9.23)

It is readily seen that the rank of the Jacobian matrix associated to this presentation has

rank s. Furthermore, the map π : FQ → HQ is given by xi 7→ xi, yi 7→ yi, zj 7→ (−βi/αi)h,

h 7→ h. Let κ be the Magnus expansion from Definition 4.1.2. A Fox Calculus computation

shows that κ takes the following values on the commutator-relators of π̃η:

κ(r) = 1 + (α1 · · ·αs)(x1y1 − y1x1 + · · ·+ xgyg − ygxg) + terms of degree ≥ 3,

κ([xi, h]) = 1 + xih− hxi + terms of degree ≥ 3,

κ([yi, h]) = 1 + yih− hyi + terms of degree ≥ 3,

κ([yi, z]) = 1 + terms of degree ≥ 3,

where r = ([x1, y1] · · · [xg, yg])α1···αs . The first claim now follows from Theorem 4.3.1.

Next, assume e(η) 6= 0. Then the row-echelon approximation of πη is given by

π̃η = 〈x1, y1, . . . , xg, yg, z1, . . . , zs, h | zαi
i h

βi = 1 (i = 1, . . . , s),

([x1, y1] · · · [xg, yg])α1···αshe(η)α1···αs = 1, h central〉,
(9.24)

while the homomorphism π : FQ → HQ is given by xi 7→ xi, yi 7→ yi, zj 7→ (−βi/αi)h, h 7→ 0.

As before, the second claim follows from Theorem 4.3.1, and we are done.

9.3.5 LCS ranks

We end this section with a computation of the ranks of the various graded Lie algebras

attached to the fundamental group of a Seifert manifold. Comparing these ranks, we derive

some consequences regarding the non-formality properties of such groups.

We start with the LCS ranks φk(πη) = dim grk(πη;Q) and the holonomy ranks are defined

as φ̄k(πη) = dim(h(πη;Q)k.
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Proposition 9.3.8. The LCS ranks and the holonomy ranks of a Seifert manifold group πη

are computed as follows.

1. If e(η) = 0, then φ1(πη) = φ̄1(πη) = 2g + 1, and φk(πη) = φ̄k(πη) = φk(Πg) for k ≥ 2.

2. If e(η) 6= 0, then φ̄k(πη) = φk(F2g) for k ≥ 1.

3. If e(η) 6= 0, then φ1(πη) = 2g, φ2(πη) = g(2g − 1), and φk(πη) = φk(Πg) for k ≥ 3.

Here the LCS ranks φk(Πg) are given by formula (9.15).

Proof. If e(η) = 0, then πη ∼= Πg × Z, and claim (1) readily follows. So suppose that

e(η) 6= 0. In this case, we know from Theorem 9.3.7 that h(πη;Q) = h(F2g;Q), and thus

claim (2) follows.

By Theorem 9.3.5, the associated graded Lie algebra gr(πη;Q) is isomorphic to the quo-

tient of the free Lie algebra lie(x1, y1, . . . , xg, yg, w) by the ideal generated by the elements∑g
i=1[xi, yi]−w, [w, xi], and [w, yi]. Define a morphism χ : gr(πη;Q)→ gr(Πg;Q) by sending

xi 7→ xi, yi 7→ yi, and w 7→ 0. It is readily seen that the kernel of χ is the Lie ideal of

gr(πη;Q) generated by w, and this ideal is isomorphic to the free Lie algebra on w. Thus,

we get a short exact sequence of graded Lie algebras,

0 // lie(w) // gr(πη;Q)
χ // gr(Πg;Q) // 0 . (9.25)

Comparing Hilbert series in this sequence establishes claim (3) and completes the proof.

Corollary 9.3.9. If g = 0, the group πη is always 1-formal, while if g > 0, the group πη is

graded-formal if and only if e(η) = 0.

Proof. First suppose e(η) = 0. In this case, we know from Theorem 9.3.5 that gr(πη;Q) ∼=

gr(Πg;Q)× gr(Z;Q). It easily follows that gr(πη;Q) ∼= h(πη;Q) by comparing the presenta-

tions of these two Lie algebras. Hence, πη is graded-formal, and thus 1-formal, by Corollary

9.3.6.
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It is enough to assume that g > 0 and e(η) 6= 0, since the other claims are clear. By

Proposition 9.3.8, we have that φ̄3(πη) = (8g3−2g)/3, whereas φ3(πη) = (8g3−8g)/3. Hence,

h(πη;Q) is not isomorphic to gr(πη;Q), proving that πη is not graded-formal.

9.3.6 Chen ranks

Recall that the Chen ranks are defined as θk(πη) = dim grk(πη/π
′′
η ;Q), while the holonomy

Chen ranks are defined as θ̄k(πη) = dim(h/h′′)k, where h = h(πη;Q).

Proposition 9.3.10. The Chen ranks and the holonomy Chen ranks of a Seifert manifold

group πη are computed as follows.

1. If e(η) = 0, then θ1(πη) = θ̄1(πη) = 2g + 1, and θk(πη) = θ̄k(πη) = θk(Πg) for k ≥ 2.

2. If e(η) 6= 0, then θ̄k(πη) = θk(F2g) for k ≥ 1.

3. If e(η) 6= 0, then θ1(πη) = 2g, θ2(πη) = g(2g − 1), and θk(πη) = θk(Πg) for k ≥ 3.

Here the Chen ranks θk(F2g) and θk(Πg) are given by formulas (6.5) and (9.17), respectively.

Proof. Claims (1) and (2) are easily proved, as in Proposition 9.3.8. To prove claim (3), start

by recalling from Corollary 9.3.6 that the group πη is filtered-formal. Hence, by Theorem

6.1.5, the Chen Lie algebra gr(πη/π
′′
η ;Q) is isomorphic to gr(πη;Q)/ gr(πη;Q)′′. As before,

we get a short exact sequence of graded Lie algebras,

0 // lie(w) // gr(πη/π
′′
η ;Q) // gr(Πg/Π

′′
g ;Q) // 0 . (9.26)

Comparing Hilbert series in this sequence completes the proof.

Remark 9.3.11. The above result can be used to give another proof of Corollary 9.3.9.

Indeed, suppose e(η) 6= 0. Then, by Proposition 9.3.10, we have that θ̄3(πη) − θ3(πη) = 2g.

Consequently, by Corollary 6.1.7, the group πη is not 1-formal. Hence, by Corollary 9.3.6,

πη is not graded-formal.
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9.4 Pure braid groups on Riemann surfaces

Recall that the configuration space of n ordered points in a connected manifold M is defined

to be Confn(M) := {(x1, · · · , xn) ∈ Mn | xi 6= xj for i 6= j}. Algebraic models of Confn(M)

were studied by Cohen and Taylor [35] for M = Rl, and by Fulton and MacPherson [59],

Kř́ıž [82], and Totaro [149] for M a smooth projective variety.

The configuration space Confn(Σg) is a classifying space for Pg,n. which is another im-

portant class of braid-like groups are the pure braid groups on compact Riemann surfaces

Σg of genus g.

Much work has been done for this class of groups, see [16, 13, 23, 65], but still there

are several unsolved problems. In our recent and future work, we compute the resonance

varieties of Pg,n, the resonance varieties of the cdga model of Pg,n, and the Chen ranks of

Pg,n and explore their relationship.

9.5 Picture groups from quiver representations

For every quiver of finite type, there is a finitely presented group called a picture group, which

was introduced recently by Igusa, Orr, Todorov, and Weyman [73]. They proved that the

integral cohomology groups of the picture group G(An) of type An with straight orientation

are free abelian with ranks given by the ‘ballot numbers’. As shown by Igusa in [74], the

classifying space of the category of non-crossing partitions is a K(G(An), 1).

We noticed that for each picture group G(An) there is a right-angled Artin group R(An)

such that these two groups have the same resonance varieties. Hence, the resonance varieties

for these groups can be determined from the results of Papadima and Suciu [120].

In our future work, we will construct a finite cdga model for G(An) and compute the

Malcev Lie algebra of G(An). We we also investigate the relationship between the LCS

ranks, the Chen ranks of G(An) and the resonance varieties of the cdga model. Explore
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properties of picture groups from these algebraic invariants. We conjectured a finite cdga

model for G(An). Using this model, we conjectured that G(An) is filtered-formal, but not

1-formal by computing non-trivial Massey products.
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