Resonance varieties, Chen ranks and formality properties of finitely generated groups

He Wang

Northeastern University

Dissertation defense

Boston, MA

April 21, 2016

Overview

Techniques

- 1. Formality properties
- 2. Chen ranks
- 3. Resonance varieties

2 Applications

- Pure braid groups and their relatives
- Fundamental groups of Seifert manifolds

3 Future work

Background

The basic goal in algebraic topology:

"Find algebraic invariants that classify topological spaces up to homeomorphism, or up to homotopy equivalence."

Let X be a connected CW-complex.

- Fundamental group $\pi_1(X)$.
- Homology groups $H_*(X;\mathbb{Z}) \Longrightarrow$ Betti numbers $b_i(X)$.
- Cohomology ring $H^*(X; \mathbb{Z})$.
- Higher Massey products.
- Cohomology operations.
- Higher homotopy groups $\pi_*(X)$.
- Homotopy Lie algebra $\pi_*(\Omega X)$.

•

- X: a connected CW-complex with finitely many 1-cells.
- $G := \pi_1(X)$, a finitely generated group.
- K(G, 1): the Eilenberg-MacLane space.

$$G \xleftarrow{1-1}{K(G,1)}$$

Recall our goal: "Find algebraic invariants"

- The cohomology algebra of G, $H^*(G; \mathbb{C}) := H^*(K(G, 1); \mathbb{C})$.
- The associated graded Lie algebra of G is defined to be

$$\operatorname{gr}(G;\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G)/\Gamma_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{C}.$$

Here, $\Gamma_k(G)$, $k \ge 1$, are the *lower central series* of G: $\Gamma_1 G = G$ and $\Gamma_{k+1}G = [\Gamma_k G, G], \ k \ge 1$.

Example (The free group F_n with n generators)

- $K(F_n, 1) = \bigvee_n S^1$.
- $A_n := H^*(F_n; \mathbb{C}) = \bigwedge (u_1, \ldots, u_n) / \langle I \rangle$, for $I = \{u_i \land u_j \mid 1 \le i < j \le n\}$.
- $Hilb(A_n, t) = 1 + nt$.
- $\mathfrak{g}_n := \operatorname{gr}(F_n; \mathbb{C})$ is isomorphic to the free Lie algebra with *n* generators.

•
$$(A_n)^! \cong U(\mathfrak{g}_n) \cong \mathbb{C}\langle x_1, \ldots, x_n \rangle.$$

• The lower central series (LCS) ranks $\phi_k(F_n) := \dim \operatorname{gr}_k(F_n; \mathbb{C})$ are given by:

$$\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(k/d) n^d,$$

where μ is the Möbius function.

"Find algebraic invariants"

He Wang

Resonance varieties, Chen ranks and formali

1. Formality properties

Rational homotopy theory

- $A := (A^*, d)$ a commutative differential graded algebra (CDGA) over \mathbb{Q} .
- A CDGA morphism $f: A \to B$ is an *i-quasi-isomorphism* if $f^*: H^j(A) \to H^j(B)$ is an isomorphism for each $j \le i$ and monomorphism for j = i + 1.
- Two CDGAS A and B are *i-weakly equivalent* $(A \simeq_i B)$, if there exist *i*-quasi-isomorphisms: $A \rightarrow C_1 \leftarrow C_2 \rightarrow \cdots \leftarrow C_m \rightarrow B$.
- If B is a 'minimal' CDGA generated by elements of degree ≤ i, and there exists an i-quasi-isomorphism f: B → A, then we say that B is an i-minimal model for A.

$$B_1^* \subset B_2^* \subset \cdots \subset B_j^* \subset \cdots$$
.

Each connected CDGA A has an *i*-minimal model M(A, *i*), (a minimal model M(A)) unique up to isomorphism. (Sullivan 77, Morgan 78)

Formality Properties

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X, i)$$

- $A := (A^*, d)$ is said to be *i-formal* if there exists an *i*-quasi-isomorphism $\mathcal{M}(A, i) \rightarrow (H^*(A), 0)$. Equivalently, $(A^*, d) \simeq_i (H^*(A), 0)$.
- X is said to be (*i*-)formal, if $A_{PL}(X)$ is (*i*-)formal, i.e.,

$$A_{PL}(X) \xleftarrow{i- ext{quasi-iso.}} \mathcal{M}(X,i) \xrightarrow{i- ext{quasi-iso.}} (H^*(X;\mathbb{Q}),0)$$

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal, i.e., M(X, 1) is 1-quasi-isomorphic to (H^{*}(G; Q), 0).

Malcev Lie algebra

- G: a finitely generated group.
- There exists a tower of nilpotent Lie algebras [Malcev 51]

 $\mathfrak{L}((G/\Gamma_2 G)\otimes \mathbb{Q}) \leftrightsquigarrow \mathfrak{L}((G/\Gamma_3 G)\otimes \mathbb{Q}) \lll \mathfrak{L}((G/\Gamma_4 G)\otimes \mathbb{Q}) \lll$

The inverse limit of the tower is called the *Malcev Lie algebra* of *G*, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

• Let $\mathcal{M}(G, 1)$ be the 1-minimal model of K(G, 1). Taking the dual of $\mathcal{M}(G, 1)_1^1 \subset \mathcal{M}(G, 1)_2^1 \subset \cdots \subset \mathcal{M}(G, 1)_i^1 \subset \cdots$,

we also get a tower of nilpotent Lie algebras

$$\mathfrak{L}_1(G) \stackrel{\hspace{0.1em}\mathsf{\scriptstyle\longleftarrow}}{\longrightarrow} \mathfrak{L}_2(G) \stackrel{\hspace{0.1em}\mathsf{\scriptstyle\longleftarrow}}{\longrightarrow} \cdots \stackrel{\hspace{0.1em}\mathsf{\scriptstyle\leftarrow}}{\longrightarrow} \mathfrak{L}_j(G) \stackrel{\hspace{0.1em}\mathsf{\scriptstyle\leftarrow}}{\longrightarrow} \cdots$$

Theorem (Sullivan 77, Cenkl–Porter 81)

These two towers of nilpotent Lie algebras are isomorphic.

The universal enveloping algebra of m(G; Q) is isomorphic to QG.
 [Quillen 69]

Example

Let X be the Heisenberg manifold, and $G = \pi_1(X) \cong F_2/\Gamma_3 F_2$.

- The (1-)minimal model $\mathcal{M}(X)$ is $\bigwedge(a, b, c)$ with d(a) = d(b) = 0 and $d(c) = a \land b$.
- $\mathcal{M}(G)_1^1 \longrightarrow \mathcal{M}(G)_2^1$ $\| \| \|$ $\mathbb{Q}^2\{a,b\} \mathbb{Q}^3\{a,b,c\}$ d(a) = d(b) = 0 $d(c) = a \land b$ • $\mathcal{M}(G)_1^1 \longrightarrow \mathcal{M}(G)_2^1$ $\| \| \|$ $\mathbb{Q}^2\{a^*,b^*\} \mathbb{Q}^3\{a^*,b^*,c^*\}$ $[a^*,c^*] = [b^*,c^*] = 0.$
- The Malcev Lie algebra $\mathfrak{m}(G; \mathbb{Q}) \cong \operatorname{Lie}(x, y)/\Gamma_3 \operatorname{Lie}(x, y)$.
- G is not 1-formal. (Non-vanishing Massey triple products)
 m(G; Q) ≅ gr(G; Q).

Holonomy Lie algebra

• The holonomy Lie algebra of a finitely generated group G is defined to be

 $\mathfrak{h}(G;\mathbb{C}) := \operatorname{Lie}(H_1(G;\mathbb{C}))/\langle \operatorname{im}(\partial_G) \rangle.$

Here, ∂_G is the dual of $H^1(G; \mathbb{C}) \wedge H^1(G; \mathbb{C}) \xrightarrow{\cup} H^2(G; \mathbb{C})$.

Theorem (Suciu-W.)

Let G be a group with a finite presentation $\langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$. There is an explicit method to compute the above cup products and find a finite presentation for $\mathfrak{h}(G; \mathbb{C})$ using Magnus expansions.

If G is a commutator-relators group, the above theorem has been obtained by Fenn–Sjerve 87, Matei–Suciu 98, Papadima–Suciu 04.

Partial formality of groups

- There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \mathfrak{gr}(G; \mathbb{Q})$. [Lambe 86]
- We say that a group G is graded-formal, if Φ_G: h(G; Q) → gr(G; Q) is an isomorphism of graded Lie algebras.
- $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q})).$ [Quillen 68]
- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]
- We say that a group G is *filtered-formal*, if there is a filtered Lie algebra isomorphism m(G; Q) ≃ gr(G; Q).

Remark

C

$$\begin{array}{ll} \mbox{formal} & \mbox{graded-formal} \\ \mbox{formal} \Longrightarrow \mbox{i-formal} \Longrightarrow \mbox{1-formal} & \qquad + \\ & \mbox{filtered-formal}. \end{array}$$

- The filtered formality of finite-dimensional, nilpotent Lie algebras has many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'.
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the "Taylor expansion" of $\mathbb{Q}G$. $\mathbb{Q}G$ has a Taylor expansion $\iff G$ is filtered-formal. $\mathbb{Q}G$ has a quadratic Taylor expansion $\iff G$ is 1-formal.

Propagation of partial formality properties

Proposition (Suciu-W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota: K \to G$. Then:

- If G is graded-formal, then K is also graded-formal.
- **2** If G is filtered-formal, then K is also filtered-formal.
- If G is 1-formal, then K is also 1-formal.

Proposition (Suciu-W.)

Let G_1 and G_2 be two finitely generated groups. The following conditions are equivalent.

- **(** *G*₁ and *G*₂ are graded-formal (respectively, filtered-formal, or 1-formal).
- **2** $G_1 * G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).

③ $G_1 \times G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).

He Wang

Resonance varieties, Chen ranks and formalit

Chen Lie algebra

• The *Chen Lie algebra* of a finitely generated group *G* is defined to be the graded Lie algebra,

 $\operatorname{gr}(G/G'';\mathbb{C}),$

of the maximal metabelian quotient of G.

- The quotient map $G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The Chen ranks of G are defined as θ_k(G) := dim(gr_k(G/G"; C)).
- Recall the LCS ranks $\phi_k(G) = \dim(\operatorname{gr}_k(G; \mathbb{C}))$.
- $\phi_k(G) \ge \theta_k(G)$. Equality holds for $k \le 3$.
- $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}, \ k \ge 2.$ [K.-T. Chen (51)]

$$0 \to \mathsf{gr}^{\widetilde{\mathsf{\Gamma}}}(G'/G'';\mathbb{C}) \to \mathsf{gr}(G/G'';\mathbb{C}) \to \mathsf{gr}(G/G';\mathbb{C}) \to 0.$$

Alexander invariants and Chen ranks

- The Alexander invariant of G is the $\mathbb{Z}[G_{ab}]$ -module B(G) = G'/G''.
- The $\mathbb{Z}[G_{ab}]$ -module structure on B(G) is determined by the extension

$$0 \rightarrow G'/G'' \rightarrow G/G'' \rightarrow G/G' \rightarrow 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.

- $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}.$
- The module B(G) has an *I*-adic filtration $\{I^k B(G)\}_{k\geq 0}$.
- $\operatorname{gr}(B(G)) := \bigoplus_{k>0} I^k B(G) / I^{k+1} B(G)$ is a graded $\operatorname{gr}(\mathbb{Z}[G_{\operatorname{ab}}])$ -module.
- $\operatorname{gr}_k(G/G'') \cong \operatorname{gr}_{k-2}(B(G))$. [W. Massey (80)]
- This isomorphism gives $Hilb(gr(B(G)) \otimes \mathbb{C}, t) = \sum_{k \ge 0} \theta_{k+2}(G)t^k$.
- $\operatorname{gr}^{\widetilde{\Gamma}}(G'/G''; \mathbb{C}) \cong \operatorname{gr}(B(G) \otimes \mathbb{C})$. [Suciu-W.]

Infinitesimal Alexander invariants

- g: a finitely generated, graded Lie algebra.
- The *infinitesimal Alexander invariant* of \mathfrak{g} is the graded S-module $\mathfrak{B}(\mathfrak{g}) := \mathfrak{g}'/\mathfrak{g}''$. Here, S is the symmetric algebra on \mathfrak{g}_1 .
- The exact sequence of graded Lie algebras

$$0 \longrightarrow \mathfrak{g}'/\mathfrak{g}'' \longrightarrow \mathfrak{g}/\mathfrak{g}'' \longrightarrow \mathfrak{g}/\mathfrak{g}' \longrightarrow 0$$

gives the graded S-module structure on $\mathfrak{B}(\mathfrak{g})$.

Theorem (Suciu-W.)

Let G be a finitely generated group. There exist surjective morphisms of graded S-modules,

$$\mathfrak{B}(\mathfrak{h}(G;\mathbb{C})) \xrightarrow{\psi} \mathfrak{B}(\operatorname{gr}(G;\mathbb{C})) \xrightarrow{\phi} \operatorname{gr}(B(G)\otimes\mathbb{C}) \cong \operatorname{gr}^{\widetilde{\Gamma}}(G'/G'';\mathbb{C}).$$

Moreover, if G is graded-formal, then ψ is an isomorphism, and if G is filtered-formal, then ϕ is an isomorphism.

3. Resonance varieties

Resonance varieties

- Suppose A^{*} := H^{*}(G, ℂ) has finite dimension in each degree.
- For each a ∈ A¹, define a cochain complex of finite-dimensional C-vector spaces,

$$(A, a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

• The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_k(G,\mathbb{C}) = \{a \in A^1 \mid \dim_{\mathbb{C}} H^1(A^*; a) \ge k\}.$$

- $\mathcal{R}_1(\mathbb{Z}^n,\mathbb{C}) = \{0\}; \ \mathcal{R}_1(F_g,\mathbb{C}) = \mathbb{C}^g; \ \mathcal{R}_1(\pi_1(\Sigma_g),\mathbb{C}) = \mathbb{C}^{2g}, \ g \ge 2.$
- $\mathcal{R}_1(G; \mathbb{C}) \cong \text{Supp}(\mathfrak{B}(\mathfrak{h}(G; \mathbb{C})))$, (away from the origin). [Matei-Suciu 98]

Characteristic varieties

- X: a connected CW-complex of finitely many 1-cells, with $G = \pi_1(X)$.
- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- The *characteristic varieties* of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{W}_k(X,\mathbb{C}) = \{ \rho \in \operatorname{Hom}(G,\mathbb{C}^*) \mid \dim_{\mathbb{C}} H_1(X,\mathbb{C}_{\rho}) \geq k \}.$$

•
$$\mathcal{V}_1(T^n, \mathbb{C}) = \{1\}; \ \mathcal{V}_1(F_n, \mathbb{C}) = (\mathbb{C}^*)^g; \ \mathcal{V}_1(\Sigma_g, \mathbb{C}) = (\mathbb{C}^*)^{2g} \text{ for } g \geq 2.$$

• $\mathcal{V}_1(G) \cong \text{Supp}(B(G))$, (away from the origin). [E. Hironaka 97]

Theorem (Tangent Cone Theorem) (Dimca–Papadima–Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}_k(G,\mathbb{C}))$ equals $\mathcal{R}_k(G,\mathbb{C})$. Moreover, $\mathcal{R}_k(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

He Wang

Resonance varieties, Chen ranks and formalit

April 21, 2016 25 / 40

Applications: Pure braid groups and their relatives

- The Artin braid groups B_n are subgroups of $\operatorname{Aut}(F_n)$. $B_n = \{\beta \in \operatorname{Aut}(F_n) \mid \beta(x_i) = wx_{\tau(i)}w^{-1}, \beta(x_1 \cdots x_n) = x_1 \cdots x_n\}.$
- The welded braid groups $wB_n = \{\beta \in Aut(F_n) \mid \beta(x_i) = wx_{\tau(i)}w^{-1}\}.$
- The pure braid groups $P_n = B_n \cap IA_n$ and the pure welded braid groups $wP_n = wB_n \cap IA_n$.
- The pure welded braid group wP_n has presentation [McCool 86]

$$\left\langle \begin{array}{c} x_{ij}, (1 \leq i \neq j \leq n) \\ x_{ij}, x_{kl} = x_{jk} x_{ik} x_{ij}, \\ [x_{ij}, x_{kl}] = 1, \\ [x_{ij}, x_{kj}] = 1, \text{ for } i, j, k, l \text{ distinct } \end{array} \right\rangle$$

- wP_n^+ is the subgroup of wP_n generated by $\{x_{ij} \mid 1 \le i < j \le n\}$. $wP_n(wP_n^+)$ are also called (upper) McCool groups.
- A classifying space for P_n is the configuration space

$$\operatorname{Conf}_n(\mathbb{C}) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \neq z_j \text{ for } i \neq j\}.$$

• wP_n^+ and wP_n are the fundamental groups of the untwisted flying rings spaces given by Brendle and Hatcher (13).

- The pure virtual braid groups vP_n come from the virtual knot theory introduced by Kauffman (99).
- The following presentation of vP_n was given by Bardakov (04):

$$\left\langle x_{ij}, (1 \le i \ne j \le n) \right| \quad \begin{array}{c} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}, \\ [x_{ij}, x_{kl}] = 1, \text{ for } i, j, k, l \text{ distinct } \end{array} \right\rangle.$$

- vP_n^+ is the subgroup of vP_n generated by $\{x_{ij} \mid 1 \le i < j \le n\}$.
- Bartholdi et al. (06) constructed classifying spaces for vP_n and vP_n^+ by taking quotients of permutahedra by suitable actions of the symmetric groups.

Gn	Pn	wPn	wP_n^+	vP_n, vP_n^+
H*(G _n)	Arnol'd (69)	Jensen, McCammond, and Meier (06) Conjectured by	F. Cohen, Pakhianathan, Vershinin, and	Bartholdi, Enriquez, Etingof, and
$gr(G_n)$	Kohno(85) Falk–Randell (85)	Brownstein and R. Lee (93).	Wu (07)	Rains (06) P. Lee(13)
Koszul	Arnol'd (69), Kohno(85)	D. Cohen–Pruidze (08)	$(No \text{ for } n \ge 4)$ Conner–Goetz (08)	
1-formal	Kohno(83)	Berceanu–Papadima (09)		?
Resonance $\mathcal{R}_1(\mathcal{G}_n)$	D. Cohen-Suciu (99)	D. Cohen (09)	?	?
Chen Ranks $ heta_k(G_n)$	D. Cohen-Suciu (93)	D. Cohen– Schenck (15) for $k \gg 1$?	?

• F. Cohen, et al. (07) asked a question: Are wP_n^+ and P_n isomorphic for $n \ge 4$?

• $vP_n^+ \hookrightarrow vP_n$ is split [Bartholdi et al.] Bellingeri asked: Is $wP_n^+ \hookrightarrow wP_n$ split ?

Upper pure welded braid groups (Upper McCool groups)

Theorem (Suciu–W.)

The Chen ranks θ_k of w P_n^+ are given by $\theta_1 = \binom{n}{2}, \theta_2 = \binom{n}{3}, \theta_3 = 2\binom{n+1}{4}$,

$$\theta_k = \binom{n+k-2}{k+1} + \theta_{k-1} = \sum_{i=3}^k \binom{n+i-2}{i+1} + \binom{n+1}{4}, \ k \ge 4.$$

Theorem (Suciu–W.)

The first resonance variety of the upper McCool group wP_n^+ has irreducible decomposition:

$$\mathcal{R}_1(wP_n^+,\mathbb{C}) = \bigcup_{n\geq i>j\geq 2} L_{i,j},$$

where $L_{i,j} = \mathbb{C}^{j}$ is the linear subspace defined by the equations $\begin{cases}
x_{i,l} + x_{j,l} = 0 & \text{for } 1 \leq l \leq j - 1, \\
x_{i,l} = 0 & \text{for } j + 1 \leq l \leq i - 1, \\
x_{s,t} = 0 & \text{for } s \neq i, s \neq j, \text{ and } 1 \leq t < s.
\end{cases}$

Outline of the proofs:

- **2** Find a Gröbner basis for the above presentation of $\mathfrak{B}(wP_n^+)$.

For Chen ranks theorem:

- Sompute the Hilbert series of $\mathfrak{B}(wP_n^+)$ using the Gröbner basis.
- **Output** Using formula Hilb($\mathfrak{B}(G) \otimes \mathbb{C}, t$) = $\sum_{k>0} \theta_{k+2}(G)t^k$, find the Chen ranks.

For Resonance varieties theorem:

- Solution Using the presentation of $\mathfrak{B}(wP_n^+)$, show that the right side is a lower bound for the first resonance variety.
- **o** Using the Gröbner basis, show that the right side is a **upper** bound.

Corollary

The pure braid group P_n , the upper McCool groups wP_n^+ , and the product group $\prod_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \ge 4$.

Proof:
$$\theta_4(P\Sigma_n^+) = 2\binom{n+1}{4} + \binom{n+2}{5}, \theta_4(P_n) = 3\binom{n+1}{4}, \theta_4(\Pi_n) = 3\binom{n+2}{5}.$$

Corollary

There is no epimorphism from wP_n to wP_n^+ for $n \ge 4$. In particular, the inclusion $\iota: wP_n^+ \to wP_n$ admits no splitting for $n \ge 4$.

The proof is based on the first resonance varieties of wP_n and wP_n^+ together with the following lemma.

Lemma [Papadima–Suciu 06] If $\alpha: G_1 \to G_2$ is an epimorphism, then the induced monomorphism, $\alpha^*: H^1(G_2; \mathbb{C}) \to H^1(G_1; \mathbb{C})$, takes $\mathcal{R}_1(G_2, \mathbb{C})$ to $\mathcal{R}_1(G_1, \mathbb{C})$.

Pure virtual braid groups

Theorem (Suciu, W.)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

To show: vP_3 is 1-formal and vP_4^+ is not 1-formal.

Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N * \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Proof: The first resonance variety $\mathcal{R}_1(vP_4^+,\mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

$$\begin{aligned} x_{12}x_{24}(x_{13}+x_{23})+x_{13}x_{34}(x_{12}-x_{23})-x_{24}x_{34}(x_{12}+x_{13})&=0,\\ x_{12}x_{23}(x_{14}+x_{24})+x_{12}x_{34}(x_{23}-x_{14})+x_{14}x_{34}(x_{23}+x_{24})&=0,\\ x_{13}x_{23}(x_{14}+x_{24})+x_{14}x_{24}(x_{13}+x_{23})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0,\\ x_{12}(x_{13}x_{14}-x_{23}x_{24})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0.\end{aligned}$$

The group vP_4^+ is not 1-formal, by the Tangent Cone Theorem.

Application: Seifert fibered manifolds

Let $\eta: M \to \Sigma_g$ be an orientable Seifert fibered manifold with Seifert invariants $(g, b, (\alpha_i, \beta_i), i = 1, ..., s)$. Let $e(\eta)$ be its Euler number.

Theorem (Putinar 98)

If g > 0, the minimal model $\mathcal{M}(M)$ is the Hirsch extension $\mathcal{M}(\Sigma_g) \otimes (\bigwedge(c), d)$, with differential d(c) = 0 if $e(\eta) = 0$, and $d(c) \in \mathcal{M}^2(\Sigma_g)$ represents a generator of $H^2(\Sigma_g; \mathbb{Q})$ if $e(\eta) \neq 0$.

Proposition

The Malcev Lie algebra of $\pi_{\eta} := \pi_1(M)$ is the degree completion of the graded Lie algebra

$$L(\pi_{\eta}) = \begin{cases} \operatorname{Lie}(x_{1}, y_{1}, \dots, x_{g}, y_{g}, z) / \langle \sum_{i=1}^{g} [x_{i}, y_{i}] = 0, z \operatorname{central} \rangle & \text{if } e(\eta) = 0; \\ \operatorname{Lie}(x_{1}, y_{1}, \dots, x_{g}, y_{g}, w) / \langle \sum_{i=1}^{g} [x_{i}, y_{i}] = w, w \operatorname{central} \rangle & \text{if } e(\eta) \neq 0, \end{cases}$$

where deg(w) = 2 and the other generators have degree 1.
Moreover, gr($\pi_{\eta}; \mathbb{Q}$) $\cong L(\pi_{\eta}).$

Proposition (Suciu-W. 15)

Let $\eta: M \to \Sigma_g$ be a Seifert fibration. The holonomy Lie algebra of the group $\pi_\eta = \pi_1(M)$ is given by $\mathfrak{h}(\pi_\eta; \mathbb{Q}) = \begin{cases} \operatorname{Lie}(x_1, y_1, \dots, x_g, y_g, h) / \langle \sum_{i=1}^s [x_i, y_i] = 0, h \text{ central} \rangle & \text{if } e(\eta) = 0; \\ \operatorname{Lie}(2g) & \text{if } e(\eta) \neq 0. \end{cases}$

Corollary

Fundamental groups of orientable Seifert manifolds are filtered-formal.

Corollary

If g = 0, the group π_{η} is always 1-formal. If g > 0, the group π_{η} is graded-formal if and only if $e(\eta) = 0$.

Future work: Techniques

1. Generalized Tangent Cone theorem

- Tangent Cone Theorem [Dimca−Papadima−Suciu 09]
 If G is 1-formal, then the tangent cone TC₁(V_k(G, C)) equals R_k(G, C).
 Moreover, R_k(G, C) is a union of Q-defined linear subspaces of H¹(G, C).
- The resonance varieties of a CDGA (A, d) with finite dimension A^1 , recently studied by Dimca, Papadima, Suciu, et al., are defined to be

$$\mathcal{R}_k^i(A,d) := \{ a \in A^1 \mid \dim(H^i(A; \delta_a)) \ge k \},$$

where $\delta_a(u) = d(u) + a \cdot u$ for $u \in A^i$.

• Generalized Tangent Cone theorem (conjecture):

If G is filtered-formal, then the tangent cone $TC_1(\mathcal{V}_k(G,\mathbb{C}))$ equals $\mathcal{R}_k(A(G))$, for a finite type CDGA model of G.

Future work: Techniques

- 2. Generalized Chen ranks conjecture
 - Chen ranks conjecture [Suciu (01)] Let G be an arrangement group.
 Let h_n be the number of n-dimensional irreducible components of R₁(G).

$$heta_k(G) = \sum_{n \geq 2} h_n \cdot heta_k(F_n), \ \ ext{for} \ \ k \gg 1.$$

• D. Cohen and Schenck (15) proved this conjecture in a wider range: The above formula holds if G is a 1-formal, commutator-relators group, such that the resonance variety $\mathcal{R}_1(G)$ is 0-isotropic, projectively disjoint, and reduced as a scheme.

They also show that the McCool group wP_n satisfies these conditions.

- However, Chen ranks formula does not hold for wP_n^+ .
- Generalized Chen ranks conjecture

 $\text{1-formal} \longrightarrow \text{filtered-formal}$

resonance varieties \longrightarrow resonance varieties of a finite type CDGA model.

Future work: Applications

1. Picture groups

- For every quiver of finite type there is a finitely presented group called a picture group (Igusa, Orr, Todorov and Weyman (14)).
- They computed the cohomology ring of $G(A_n)$, the picture group of type A_n with straight orientation.
- Classifying spaces of $G(A_n)$ were given by Igusa (14).
- Future work: finite type CDGA models, resonance varieties, resonance varieties of the models, Malcev Lie algebras, Chen ranks, formality properties?

Future work: Applications

2. Pure braid group on Riemann surfaces

Let $P_{g,n}$ be the pure braid group on compact Riemann surface Σ_g of genus $g \ge 1$.

- The configuration space $M_{g,n} := F(\Sigma_g, n)$ gives a classifying space of $P_{g,n}$.
- Bezrukavnikov (94) computed the Malcev Lie algebra of $P_{g,n}$ using the CDGA model given by Kříž and Totaro.
- $P_{g,n}$ is 1-formal for $g \ge 2$.
- $P_{1,n}$ is filtered-formal for $n \ge 3$. (Bezrukavnikov 94, Calaque-Enriquez-Etingof 09)
- $P_{1,n}$ is not 1-formal for $n \ge 3$ by computing $\mathcal{R}_1(P_{1,n})$. (Dimca-Papadima-Suciu 09)
- Future work: resonance varieties, resonance varieties of the model, Chen ranks?

Continued?

Holonomy Lie algebra (continued)

- Suppose G has a finite presentation $\langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$.
- The Magnus expansion $M: \mathbb{Q}F \to \mathbb{Q}\langle\!\langle x_1, \ldots, x_n \rangle\!\rangle$, is a ring homomorphism defined by $M(x_i) = 1 + x_i$ and $M(x_i^{-1}) = 1 x_i + x_i^2 x_i^3 + \cdots$.

Theorem (Fenn-Sjerve 87, Matei-Suciu 98)

Suppose G is a commutator-relators group, such that $H_2(G)$ is free abelian. The cup-product \cup : $H^1(G) \wedge H^1(G) \rightarrow H^2(G)$ is given by

$$u_i \cup u_j = \sum_{k=1}^m M(r_k)_{i,j} \beta_k.$$

Proposition (Papadima-Suciu 04)

If G is a commutator-relators group, then

$$\mathfrak{h}(G;\mathbb{Q}) = \mathsf{Lie}(x_1,\ldots,x_n)/\langle M_2(r_1),\ldots,M_2(r_m)\rangle.$$

Holonomy Lie algebra (continued)

• The *Magnus expansion* of a group *G* is the composition

$$\kappa: \quad \mathbb{Q}F \xrightarrow{M} \mathbb{Q}\langle\!\langle x_1, \ldots, x_n \rangle\!\rangle \xrightarrow{\widehat{\pi}} \mathbb{Q}\langle\!\langle y_1, \ldots, y_b \rangle\!\rangle,$$

where $b = \dim H_1(G; \mathbb{Q})$ and $\widehat{\pi}$ is induced by $\pi \colon H_1(F; \mathbb{Q}) \to H_1(G; \mathbb{Q})$.

- In particular, if G is a commutator-relators group, then $\widehat{\pi}$ is identity.
- A group G has an echelon presentation ⟨x₁,..., x_n | w₁,..., w_m⟩, if the augmented Jocobian matrix of Fox derivative (M(w_k)_i) is in row-echelon form.
- $\kappa_2(r)$: the degree 2 homogeneous part of $\kappa(r)$.
- $\kappa(r)_{i,j}$: the coefficient of $y_i y_j$ in $\kappa(r)$.

Holonomy Lie algebra (continued)

Theorem (Suciu-W. 15)

Let G be a group with a presentation $\langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$. Let K_G be the 2-complex associated to the presentation.

1 There exists a group \widetilde{G} with echelon presentation $\langle x_1,\ldots,x_n\mid w_1,\ldots,w_m\rangle$ such that

$$\mathfrak{h}(G;\mathbb{Q})\cong\mathfrak{h}(\widetilde{G};\mathbb{Q})$$
 and $H^{\leq 2}(K_G;\mathbb{Q})\cong H^{\leq 2}(K_{\widetilde{G}};\mathbb{Q})$

2 The cup-product map \cup : $H^1(K_G; \mathbb{Q}) \land H^1(K_G; \mathbb{Q}) \to H^2(K_G; \mathbb{Q})$ is given by

$$u_i \cup u_j = \sum_{k=n-b+1}^m \kappa(w_k)_{i,j} \beta_k.$$

There exists an isomorphism of graded Lie algebras

$$\mathfrak{h}(G;\mathbb{Q}) \xrightarrow{\cong} \operatorname{Lie}(y_1,\ldots,y_b)/\operatorname{ideal}(\kappa_2(w_{n-b+1}),\ldots,\kappa_2(w_m)).$$