Lie algebras of finitely generated groups and their formality properties

He Wang (joint with Alex Suciu)

Northeastern University

Auslander Distinguished Lectures and International Conference Woods Hole, MA

May 1, 2014

References

Alexander I. Suciu and He Wang,

Cup products, Magnus expansions, and central series of finitely generated groups and Lie algebras, preprint, 2014.

Overview

Lie algebras of finitely generated groups

- Associated graded Lie algebra
- Holonomy Lie algebra
- Malcev Lie algebra
- 2 Formality properties
- 3 Magnus expansion and cup products
- 4 Presentation for the holonomy Lie algebra

Examples

- The pure flat braid groups
- The pure braid groups on Riemann surfaces

- G : a finitely generated group.
- k : a field of characteristic 0.

- G : a finitely generated group.
- k : a field of characteristic 0.
- $\{\Gamma_k G\}_{k \ge 1}$: the *lower central series* G, defined inductively by

$$\begin{cases} \Gamma_1 G = G \\ \Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1. \end{cases}$$

- G : a finitely generated group.
- k : a field of characteristic 0.
- $\{\Gamma_k G\}_{k \ge 1}$: the *lower central series* G, defined inductively by

$$\begin{cases} \Gamma_1 G = G \\ \Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1. \end{cases}$$

The associated graded Lie algebra of group G is defined by

$$\operatorname{gr}(G; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k G / \Gamma_{k+1} G) \otimes_{\mathbb{Z}} \Bbbk,$$

- G : a finitely generated group.
- k : a field of characteristic 0.
- $\{\Gamma_k G\}_{k \ge 1}$: the *lower central series* G, defined inductively by

$$\left\{ \begin{array}{l} \Gamma_1 G = G \\ \Gamma_{k+1} G = [\Gamma_k G, G], \ k \geq 1. \end{array} \right.$$

The associated graded Lie algebra of group G is defined by

$$\operatorname{gr}(G; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k G / \Gamma_{k+1} G) \otimes_{\mathbb{Z}} \Bbbk,$$

Example (Chen-Fox-Lyndon)

If F is the free group of rank n, then $gr(F; \Bbbk)$ is the free graded Lie algebra $Lie(\Bbbk^n)$.

Holonomy Lie algebra

Definition

The *holonomy Lie algebra* of a group G is defined to be

 $\mathfrak{h}(G; \mathbb{k}) := \operatorname{Lie}(H_1(G; \mathbb{k})) / \langle \operatorname{im}(\partial_G) \rangle.$

Here, ∂_G is the composition map:

 $H_2(G; \Bbbk) \xrightarrow{\cup^*} H_1(G; \Bbbk) \wedge H_1(G; \Bbbk) \rightarrow \operatorname{Lie}^2(H_1(G; \Bbbk)).$

Holonomy Lie algebra

Definition

The *holonomy Lie algebra* of a group G is defined to be

$$\mathfrak{h}(G; \mathbb{k}) := \mathrm{Lie}(H_1(G; \mathbb{k})) / \langle \mathrm{im}(\partial_G) \rangle.$$

Here, ∂_G is the composition map:

$$H_2(G; \Bbbk) \xrightarrow{\cup^*} H_1(G; \Bbbk) \wedge H_1(G; \Bbbk) \to \operatorname{Lie}^2(H_1(G; \Bbbk)).$$

Lemma (Sullivan-Lambe)

There exists an epimorphism of graded k-Lie algebras

$$\Phi_G: \mathfrak{h}(G; \mathbb{k}) \twoheadrightarrow \mathsf{gr}(G; \mathbb{k}).$$

Malcev Lie algebra

Definition (Malcev)

The tower

$$\cdots \longrightarrow (G/\Gamma_4 G) \otimes \Bbbk \longrightarrow (G/\Gamma_3 G) \otimes \Bbbk \longrightarrow G/(\Gamma_2 G) \otimes \Bbbk$$

is an inverse limit system. The prounipotent group is defined by

$$\mathcal{P}(G;\mathbb{k})=\varprojlim_k((G/\Gamma_kG)\otimes\mathbb{k}).$$

The corresponding pronilpotent Lie algebra $p(G; \Bbbk)$ gives the *Malcev Lie* algebra (over \Bbbk) of G.

Malcev Lie algebra

Definition (Malcev)

The tower

$$\cdots \longrightarrow (G/\Gamma_4 G) \otimes \Bbbk \longrightarrow (G/\Gamma_3 G) \otimes \Bbbk \longrightarrow G/(\Gamma_2 G) \otimes \Bbbk$$

is an inverse limit system. The prounipotent group is defined by

$$\mathcal{P}(G;\mathbb{k})=\varprojlim_k((G/\Gamma_kG)\otimes\mathbb{k}).$$

The corresponding pronilpotent Lie algebra $\mathfrak{p}(G; \mathbb{k})$ gives the *Malcev Lie algebra* (over \mathbb{k}) of *G*.

Example

The Malcev Lie algebra of the free group F is $Lie(\mathbb{k}^n)$.

Quillen's construction

- $A := \mathbb{Q}G$ with a natural Hopf algebra structure.
- $\hat{A} = \varprojlim_r A/I^r$ be the completion of A.

Quillen's construction

- $A := \mathbb{Q}G$ with a natural Hopf algebra structure.
- $\hat{A} = \varprojlim_r A/I^r$ be the completion of A.

Definition (Quillen)

- The *Malcev group* $M(G) := \{ all group-like elements of \hat{A} \}.$
- The *Malcev Lie algebra* $\mathfrak{m}(G) := \{ \text{ all primitive elements of } \hat{A} \}.$

Quillen's construction

- $A := \mathbb{Q}G$ with a natural Hopf algebra structure.
- $\hat{A} = \varprojlim_r A/I^r$ be the completion of A.

Definition (Quillen)

- The *Malcev group* $M(G) := \{ all group-like elements of \hat{A} \}.$
- The *Malcev Lie algebra* $\mathfrak{m}(G) := \{ \text{ all primitive elements of } \hat{A} \}.$

Theorem (Quillen)

- There is a filtered group isomorphism $\mathcal{P}(G; \mathbb{Q}) \to M(G)$.
- **2** There is a filtered Lie algebra isomorphism $\mathfrak{p}(G; \mathbb{Q}) \to \mathfrak{m}(G)$
- 3 There is a graded Lie algebra isomorphism $gr(G; \mathbb{Q}) \to gr(\mathfrak{m}(G))$.

The next definition is from the rational homotopy theory.

Definition (roughly)

- A topological space X is called 1-formal if there exists a CDGA homomorphism from the Sullivan 1-minimal model M(X) to the CDGA (H*(X; k), d = 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group *G* is 1-formal if the associated Eilenberg-MacLane space K(G, 1) is 1-formal.

The next definition is from the rational homotopy theory.

Definition (roughly)

- A topological space X is called 1-formal if there exists a CDGA homomorphism from the Sullivan 1-minimal model M(X) to the CDGA (H*(X; k), d = 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group *G* is 1-formal if the associated Eilenberg-MacLane space *K*(*G*, 1) is 1-formal.

Example

Examples of 1-formal groups include free groups, Artin groups, the pure braid groups, Kähler groups, etc.

Definition

- A group G is graded-formal (over \Bbbk), if the canonical projection $\Phi_G : \mathfrak{h}(G; \Bbbk) \twoheadrightarrow \mathfrak{gr}(G; \Bbbk)$ is an isomorphism.
- A group G is *filtered-formal*, if there is a filtered Lie algebras isomorphism m(G) ≅ gr(m(G)).

Definition

- A group G is graded-formal (over \Bbbk), if the canonical projection $\Phi_G : \mathfrak{h}(G; \Bbbk) \twoheadrightarrow \mathfrak{gr}(G; \Bbbk)$ is an isomorphism.
- A group G is *filtered-formal*, if there is a filtered Lie algebras isomorphism m(G) ≅ gr(m(G)).

Lemma (Sullivan-Papadima-Suciu)

The group G is 1-formal \iff the Malcev Lie algebra of G is isomorphic to the degree completion of a rational quadratic Lie algebra.

Corollary

G is 1-formal \iff *G* is graded-formal (over \mathbb{Q}) and filtered-formal.

Corollary

G is 1-formal \iff *G* is graded-formal (over \mathbb{Q}) and filtered-formal.

Torsion-free nilpotent groups

In the lower central series $\{\Gamma_k G\}_{k\geq 1}$, if $\Gamma_t G \neq 1$ and $\Gamma_{t+1}(G) = 1$, then G is called *t-step nilpotent group*.

Theorem (Suciu-Wang)

The torsion-free, 2-step nilpotent group G is filtered-formal. That is $\mathfrak{m}(G) \cong \mathfrak{gr}(G; \mathbb{Q}).$

Torsion-free nilpotent groups

In the lower central series $\{\Gamma_k G\}_{k\geq 1}$, if $\Gamma_t G \neq 1$ and $\Gamma_{t+1}(G) = 1$, then G is called *t-step nilpotent group*.

Theorem (Suciu-Wang)

The torsion-free, 2-step nilpotent group G is filtered-formal. That is $\mathfrak{m}(G) \cong gr(G; \mathbb{Q}).$

By Igusa and Orr's lemma, the torsion-free, 2-step nilpotent group G has a presentation

$$\langle x_1, \ldots, x_n, y_1, \ldots, y_m | [x_i, x_j] = \prod_{k=1}^m y_k^{c_{ijk}}, [y_i, y_j] = 1, \text{ for } i < j; [x_i, y_j] = 1 \rangle.$$

Torsion-free nilpotent groups

In the lower central series $\{\Gamma_k G\}_{k\geq 1}$, if $\Gamma_t G \neq 1$ and $\Gamma_{t+1}(G) = 1$, then G is called *t-step nilpotent group*.

Theorem (Suciu-Wang)

The torsion-free, 2-step nilpotent group G is filtered-formal. That is $\mathfrak{m}(G) \cong gr(G; \mathbb{Q}).$

By Igusa and Orr's lemma, the torsion-free, 2-step nilpotent group G has a presentation

$$\langle x_1, \ldots, x_n, y_1, \ldots, y_m | [x_i, x_j] = \prod_{k=1}^m y_k^{c_{ijk}}, [y_i, y_j] = 1, \text{ for } i < j; [x_i, y_j] = 1 \rangle.$$

Example

The class of filtered-formal groups includes the unipotent groups $U_n(\mathbb{Z})$ (Lambe-Priddy) and the *n*-step free nilpotent groups $F/\Gamma_n F$ (Massuyeau).

He Wang (joint with Alex Suciu) Lie algebras of finitely generated grou

Remark

In general, torsion-free nilpotent groups need NOT be filtered-formal.

Remark

In general, torsion-free nilpotent groups need NOT be filtered-formal.

This phenomenon is illustrated by an example adapted from Lambe and Priddy.

Example

The Malcev Lie algebra $\mathfrak{m}(G)$ of a group G is given by

[-, -]	e_1	e_2	e ₃	e_4	e_5	e_6	e ₇
<i>e</i> ₁	0	e ₃	e ₄	<i>e</i> 5	e ₆	e ₇	0
e ₂	$-e_3$	0	e_6	<i>e</i> 7	$-e_{7}$	0	0
e ₃	$-e_4$	$-e_6$	0	<i>e</i> ₇	0	0	0
e ₄	$-e_5$	$-e_{7}$	$-e_{7}$	0	0	0	0
<i>e</i> ₅	$-e_6$	e ₇	0	0	0	0	0
e ₆	$-e_{7}$	0	0	0	0	0	0
e ₇	0	0	0	0	0	0	0

The Lie algebra $\mathfrak{m}(G)$ is not isomorphic to $gr(G; \mathbb{Q})$.

- F is a free group with generators x_1, \ldots, x_n .
- $\phi: F \twoheadrightarrow G$ is a canonical epimorphism.

- F is a free group with generators x_1, \ldots, x_n .
- $\phi: F \twoheadrightarrow G$ is a canonical epimorphism.

The *Magnus expansion* is a ring homomorphism $M \colon \mathbb{k}F \to \mathbb{k}\langle\langle x_1, \ldots, x_n \rangle\rangle$, defined by $M(x_i) = 1 + x_i$ and $M(x_i^{-1}) = 1 - x_i + x_i^2 - x_i^3 + \cdots$.

- F is a free group with generators x_1, \ldots, x_n .
- $\phi: F \twoheadrightarrow G$ is a canonical epimorphism.

The *Magnus expansion* is a ring homomorphism $M : \mathbb{k}F \to \mathbb{k}\langle\langle x_1, \ldots, x_n \rangle\rangle$, defined by $M(x_i) = 1 + x_i$ and $M(x_i^{-1}) = 1 - x_i + x_i^2 - x_i^3 + \cdots$.

Definition

The *quasi-Magnus expansions* of the group *G*, denoted by κ , is the composite

$$\Bbbk F \xrightarrow{M} \Bbbk \langle\!\langle x_1, \ldots, x_n \rangle\!\rangle \xrightarrow{\widehat{\pi}} \Bbbk \langle\!\langle y_1, \ldots, y_b \rangle\!\rangle,$$

where $\widehat{\pi}$ can be identified by $\widehat{T}(\pi)$: $\widehat{T}(H_1(F; \Bbbk)) \twoheadrightarrow \widehat{T}(H_1(G; \Bbbk))$ which is induced by $\pi: H_1(F; \Bbbk) \to H_1(G; \Bbbk)$.

- F is a free group with generators x_1, \ldots, x_n .
- $\phi: F \twoheadrightarrow G$ is a canonical epimorphism.

The *Magnus expansion* is a ring homomorphism $M : \mathbb{k}F \to \mathbb{k}\langle\langle x_1, \ldots, x_n \rangle\rangle$, defined by $M(x_i) = 1 + x_i$ and $M(x_i^{-1}) = 1 - x_i + x_i^2 - x_i^3 + \cdots$.

Definition

The *quasi-Magnus expansions* of the group *G*, denoted by κ , is the composite

$$\mathbb{k} F \xrightarrow{M} \mathbb{k} \langle\!\langle x_1, \ldots, x_n \rangle\!\rangle \xrightarrow{\widehat{\pi}} \mathbb{k} \langle\!\langle y_1, \ldots, y_b \rangle\!\rangle,$$

where $\widehat{\pi}$ can be identified by $\widehat{T}(\pi)$: $\widehat{T}(H_1(F; \Bbbk)) \twoheadrightarrow \widehat{T}(H_1(G; \Bbbk))$ which is induced by $\pi: H_1(F; \Bbbk) \to H_1(G; \Bbbk)$.

In particular, if G is a commutator-relators group, then $\widehat{\pi}$ is identity.

- G has a presentation $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$.
- K_G is the 2-complex associated to this presentation of G.

- G has a presentation $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$.
- K_G is the 2-complex associated to this presentation of G.
- There exists a matrix C = (c_{lk})_{m×m} ∈ GL(m; Z) such that C · (d₂^G)* is in row echelon form, where d₂^G: C₂(K_G; k) → C₁(K_G; k)

- G has a presentation $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$.
- K_G is the 2-complex associated to this presentation of G.
- There exists a matrix C = (c_{lk})_{m×m} ∈ GL(m; Z) such that C · (d₂^G)* is in row echelon form, where d₂^G: C₂(K_G; k) → C₁(K_G; k)
- $H_1(K_G; \mathbb{k})$ has basis $\{y_1, \ldots, y_b\}$. The dual basis is $\{u_1, \ldots, u_b\}$.
- $H_2(K_G; \mathbb{k})$ has basis $\{\gamma_{d+1}, \ldots, \gamma_m\}$. Here, $\gamma_k := \sum_{l=1}^m c_{lk} r_l$, d = n b. Then $H^2(K_G; \mathbb{k})$ has dual basis $\{\beta_{d+1}, \ldots, \beta_m\}$.

- G has a presentation $\langle x_1, \ldots, x_n \mid r_1, \ldots, r_m \rangle$.
- K_G is the 2-complex associated to this presentation of G.
- There exists a matrix C = (c_{lk})_{m×m} ∈ GL(m; Z) such that C · (d₂^G)* is in row echelon form, where d₂^G: C₂(K_G; k) → C₁(K_G; k)
- $H_1(K_G; \mathbb{k})$ has basis $\{y_1, \ldots, y_b\}$. The dual basis is $\{u_1, \ldots, u_b\}$.
- $H_2(K_G; \mathbb{k})$ has basis $\{\gamma_{d+1}, \ldots, \gamma_m\}$. Here, $\gamma_k := \sum_{l=1}^m c_{lk} r_l$, d = n b. Then $H^2(K_G; \mathbb{k})$ has dual basis $\{\beta_{d+1}, \ldots, \beta_m\}$.

Theorem (Suciu-Wang)

The cup-product map \cup : $H^1(K_G; \Bbbk) \wedge H^1(K_G; \Bbbk) \rightarrow H^2(K_G; \Bbbk)$ is given by the formula

$$u_i \cup u_j = \sum_{k=d+1}^m \kappa(r'_k)_{i,j}\beta_k,$$

where κ is the quasi-Magnus expansion and $r'_{k} = r_{1}^{c_{1k}} r_{2}^{c_{2k}} \cdots r_{m}^{c_{mk}}$ for $d+1 \leq k \leq m$ with c_{lk} defined above.

Cup products

Theorem (Suciu-Wang)

The cup-product map \cup : $H^1(K_G; \Bbbk) \wedge H^1(K_G; \Bbbk) \rightarrow H^2(K_G; \Bbbk)$ is given by the formula

$$u_i \cup u_j = \sum_{k=d+1}^m \kappa(r'_k)_{i,j} \beta_k,$$

where κ is the quasi-Magnus expansion and $r'_k = r_1^{c_{1k}} r_2^{c_{2k}} \cdots r_m^{c_{mk}}$ for $d+1 \le k \le m$ with c_{lk} defined above.

The idea of the proof:

- Define a new group \tilde{G} by the same generators of G with relations r'_k , $1 \le k \le m$.
- Finding a chain transformation $T \colon C_*(\widetilde{K_{\tilde{G}}}; \mathbb{Z}) \to B_*(\tilde{G}).$
- Find the cup product formula for \tilde{G} .
- Transfer the formula to group G.

A presentation for the holonomy Lie algebra

Corollary (Suciu-Wang)

There exists an isomorphism of graded Lie algebras

$$\mathfrak{h}(G; \mathbb{k}) \xrightarrow{\cong} \operatorname{Lie}_{\mathbb{k}}[y_1, \ldots, y_b]/\operatorname{ideal}(I)$$
.

Here $\text{Lie}_{\Bbbk}[y_1, \dots, y_b]$ is the free Lie algebra over \Bbbk generated by elements y_1, \dots, y_b in degree 1, and I is the set

$$I := \left\{ \sum_{1 \leq i < j \leq b} \sum_{l=1}^{m} c_{lk} \kappa(r_l)_{i,j} [y_i, y_j], \quad d+1 \leq k \leq m \right\}$$

where b is the first Betti number of G, d = n - b.

If G is a commutator-relators group, the result can be simplified.

$$\left\langle x_{ij}, (1 \leq i < j \leq n)
ight
angle$$

$$\begin{array}{c} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij} \text{ for } i < j < k; \\ x_{ij}x_{kl} = x_{kl}x_{ij} \text{ for } i \neq j \neq k \neq l, \\ i < j \text{ and } k < l \end{array} \right\rangle$$

٠

$$\left| \begin{array}{c} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij} \text{ for } i < j < k; \\ x_{ij}x_{kl} = x_{kl}x_{ij} \text{ for } i \neq j \neq k \neq l, \\ i < j \text{ and } k < l \end{array} \right|$$

Proposition (Bartholdi-Enriquez-Etingof-Rains (06)-Lee(13))

The Lie algebra $gr(Tr_n; \mathbb{Q})$ is generated by $a_{i,j}$ $(1 \le i < j \le n)$ with defining relations given by the Yang-Baxter equation, $[a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}] = 0$ for i < j < k and $[a_{ij}, a_{kl}] = 0$ for $i \ne j \ne k \ne l$, i < j and k < l.

$$\begin{pmatrix} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij} \text{ for } i < j < k; \\ x_{ij}x_{kl} = x_{kl}x_{ij} \text{ for } i \neq j \neq k \neq l, \\ i < j \text{ and } k < l \end{pmatrix}$$

Proposition (Bartholdi-Enriquez-Etingof-Rains (06)-Lee(13))

The Lie algebra gr(Tr_n ; \mathbb{Q}) is generated by $a_{i,j}$ ($1 \le i < j \le n$) with defining relations given by the Yang-Baxter equation, $[a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}] = 0$ for i < j < k and $[a_{ij}, a_{kl}] = 0$ for $i \ne j \ne k \ne l$, i < j and k < l.

The triangular group Tr_n is graded-formal, that is $gr(Tr_n; \mathbb{Q}) \cong \mathfrak{h}(Tr_n; \mathbb{Q})$.

$$\left| \begin{array}{c} x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij} \text{ for } i < j < k; \\ x_{ij}, (1 \le i < j \le n) \end{array} \right| \quad \begin{array}{c} x_{ij} x_{ik} x_{jk} = x_{kl} x_{ij} \text{ for } i \neq j \neq k \neq l, \\ x_{ij} x_{kl} = x_{kl} x_{ij} \text{ for } i \neq j \neq k \neq l, \\ i < j \text{ and } k < l \end{array} \right\rangle$$

Proposition (Bartholdi-Enriquez-Etingof-Rains (06)-Lee(13))

The Lie algebra gr(Tr_n ; \mathbb{Q}) is generated by $a_{i,j}$ ($1 \le i < j \le n$) with defining relations given by the Yang-Baxter equation, $[a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}] = 0$ for i < j < k and $[a_{ij}, a_{kl}] = 0$ for $i \ne j \ne k \ne l$, i < j and k < l.

The triangular group Tr_n is graded-formal, that is $gr(Tr_n; \mathbb{Q}) \cong \mathfrak{h}(Tr_n; \mathbb{Q})$.

Proposition (Suciu-Wang)

The triangular group Tr_n is not filtered-formal for $n \ge 4$.

He Wang (joint with Alex Suciu)

The pure braid group on Riemann surfaces

- $P_{g,n}$ is the pure braid group on *n* strings of the underlying Riemann surface of genus *g*.
- $P_{g,n} = \pi_1(F(C_g, n))$, where $F(C_g, n)$ is the configuration of C_g , which is a smooth compact complex curve of genus $g \ (g \ge 1)$.

The pure braid group on Riemann surfaces

- $P_{g,n}$ is the pure braid group on *n* strings of the underlying Riemann surface of genus *g*.
- $P_{g,n} = \pi_1(F(C_g, n))$, where $F(C_g, n)$ is the configuration of C_g , which is a smooth compact complex curve of genus $g \ (g \ge 1)$.

Proposition (Bezrukavnikov 94)

The Malcev Lie algebra of $P_{g,n}$ is given by the completion of Lie algebra generated by $\{a_i^l, b_i^l, s_{ij}\}$ $(1 \le i \le n, 1 \le l \le g)$ with relations

$$\begin{aligned} & [a_i^l, b_j^k] = 0(i \neq j, l \neq k); \\ & [a_i^l, a_j^k] = [b_i^l, b_j^k] = 0(i \neq j); \\ & [a_i^l, b_j^l] = [a_j^k, b_i^k] = s_{ij}(i \neq j); \\ & \sum_{l=1}^{g} [a_i^l, b_l^l] = -\sum_{i \neq j} s_{ij}; \\ & [a_i^l, s_{jk}] = [b_i^l, s_{jk}] = 0(i \neq j \neq k) \end{aligned}$$

The pure braid groups on Riemann surfaces

Proposition

- $P_{n,g}$ is 1-formal for $g \ge 2$. (Bezrukavnikov 94)
- $P_{n,1}$ is not 1-formal for $n \ge 3$. (Dimca-Papadima-Suciu 09)
- *P_{n,1}* is filtered formal for n ≥ 3. (Bezrukavnikov94-Calaque-Enriquez-Etingof 09)

Corollary

 $P_{n,1}$ is not graded-formal for $n \geq 3$.

Thank You!