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Associated graded Lie algebra

G : a finitely generated group.

k : a field of characteristic 0.

{ΓkG}k≥1 : the lower central series G , defined inductively by{
Γ1G = G
Γk+1G = [ΓkG ,G ], k ≥ 1.

The associated graded Lie algebra of group G is defined by

gr(G ;k) :=
⊕
k≥1

(ΓkG/Γk+1G )⊗Z k,

Example (Chen-Fox-Lyndon)

If F is the free group of rank n, then gr(F ;k) is the free graded Lie
algebra Lie(kn).
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Holonomy Lie algebra

Definition

The holonomy Lie algebra of a group G is defined to be

h(G ; k) := Lie(H1(G ; k))/〈im(∂G )〉.

Here, ∂G is the composition map:

H2(G ; k)
∪∗−→ H1(G ;k) ∧ H1(G ; k)→ Lie2(H1(G ;k)).

Lemma (Sullivan-Lambe)

There exists an epimorphism of graded k-Lie algebras

ΦG : h(G ;k) � gr(G ;k).
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Malcev Lie algebra

Definition (Malcev)

The tower

· · · // (G/Γ4G )⊗ k // (G/Γ3G )⊗ k // G/(Γ2G )⊗ k

is an inverse limit system. The prounipotent group is defined by

P(G ; k) = lim←−
k

((G/ΓkG )⊗ k).

The corresponding pronilpotent Lie algebra p(G ;k) gives the Malcev Lie
algebra (over k) of G .

Example

The Malcev Lie algebra of the free group F is L̂ie(kn).
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Quillen’s construction

A := QG with a natural Hopf algebra structure.

Â = lim←−r
A/I r be the completion of A.

Definition (Quillen)

The Malcev group M(G ) := { all group-like elements of Â }.
The Malcev Lie algebra m(G ) := { all primitive elements of Â }.

Theorem (Quillen)

1 There is a filtered group isomorphism P(G ;Q)→ M(G ).

2 There is a filtered Lie algebra isomorphism p(G ;Q)→ m(G )

3 There is a graded Lie algebra isomorphism gr(G ;Q)→ gr(m(G )).
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Formality properties

The next definition is from the rational homotopy theory.

Definition (roughly)

A topological space X is called 1-formal if there exists a CDGA
homomorphism from the Sullivan 1-minimal model M(X ) to the
CDGA (H∗(X ;k), d = 0) inducing isomorphism in cohomology of
degree 1 and monomorphism in degree 2.

A group G is 1-formal if the associated Eilenberg-MacLane space
K (G , 1) is 1-formal.

Example

Examples of 1-formal groups include free groups, Artin groups, the pure
braid groups, Kähler groups, etc.
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Formality properties

Definition

A group G is graded-formal (over k), if the canonical projection
ΦG : h(G ; k) � gr(G ; k) is an isomorphism.

A group G is filtered-formal, if there is a filtered Lie algebras

isomorphism m(G ) ∼= ̂gr(m(G )).

Lemma (Sullivan-Papadima-Suciu)

The group G is 1-formal ⇐⇒ the Malcev Lie algebra of G is isomorphic to
the degree completion of a rational quadratic Lie algebra.
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Formality properties

Corollary

G is 1-formal ⇐⇒ G is graded-formal (over Q) and filtered-formal.

m(G )

filtered ''

1−formal // ̂h(G ;Q)

gradedvv
̂gr(m(G )) ∼= ̂gr(G ;Q)
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Torsion-free nilpotent groups
In the lower central series {ΓkG}k≥1, if ΓtG 6= 1 and Γt+1(G ) = 1, then G
is called t-step nilpotent group.

Theorem (Suciu-Wang)

The torsion-free, 2-step nilpotent group G is filtered-formal. That is
m(G ) ∼= gr(G ;Q).

By Igusa and Orr’s lemma, the torsion-free, 2-step nilpotent group G has a
presentation〈
x1, . . . , xn, y1, . . . , ym

∣∣∣[xi , xj ] =
m∏

k=1

y
cijk

k , [yi , yj ] = 1, for i < j ; [xi , yj ] = 1
〉
.

Example

The class of filtered-formal groups includes the unipotent groups Un(Z)
(Lambe-Priddy) and the n-step free nilpotent groups F/ΓnF (Massuyeau).
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Remark

In general, torsion-free nilpotent groups need NOT be filtered-formal.

This phenomenon is illustrated by an example adapted from Lambe and
Priddy.

Example

The Malcev Lie algebra m(G ) of a group G is given by

[−,−] e1 e2 e3 e4 e5 e6 e7

e1 0 e3 e4 e5 e6 e7 0
e2 −e3 0 e6 e7 −e7 0 0
e3 −e4 −e6 0 e7 0 0 0
e4 −e5 −e7 −e7 0 0 0 0
e5 −e6 e7 0 0 0 0 0
e6 −e7 0 0 0 0 0 0
e7 0 0 0 0 0 0 0


The Lie algebra m(G ) is not isomorphic to gr(G ;Q).
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Magnus expansion

F is a free group with generators x1, . . . , xn.

φ : F � G is a canonical epimorphism.

The Magnus expansion is a ring homomorphism M : kF → k〈〈x1, . . . , xn〉〉,
defined by M(xi ) = 1 + xi and M(x−1

i ) = 1− xi + x2
i − x3

i + · · · .

Definition

The quasi-Magnus expansions of the group G , denoted by κ, is the
composite

kF M−−→ k〈〈x1, . . . , xn〉〉
π̂−−→ k〈〈y1, . . . , yb〉〉,

where π̂ can be identified by T̂ (π) : T̂ (H1(F ;k)) � T̂ (H1(G ;k)) which is
induced by π : H1(F ; k)→ H1(G ;k).

In particular, if G is a commutator-relators group, then π̂ is identity.
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Basis for (co)homology groups

G has a presentation 〈x1, . . . , xn | r1, . . . , rm〉.
KG is the 2-complex associated to this presentation of G .

There exists a matrix C = (clk )m×m ∈ GL(m;Z) such that C · (dG
2 )∗

is in row echelon form, where dG
2 : C2(KG ; k)→ C1(KG ;k)

H1(KG ;k) has basis {y1, . . . , yb}. The dual basis is {u1, . . . , ub}.
H2(KG ;k) has basis {γd+1, . . . , γm}. Here, γk :=

∑m
l=1 clk rl ,

d = n − b. Then H2(KG ;k) has dual basis {βd+1, . . . , βm}.

Theorem (Suciu-Wang)

The cup-product map ∪ : H1(KG ;k) ∧ H1(KG ;k)→ H2(KG ;k) is given by
the formula

ui ∪ uj =
m∑

k=d+1

κ(r ′k)i ,jβk ,

where κ is the quasi-Magnus expansion and r ′k = r c1k
1 r c2k

2 · · · r cmk
m for

d + 1 ≤ k ≤ m with clk defined above.
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Cup products

Theorem (Suciu-Wang)

The cup-product map ∪ : H1(KG ; k) ∧ H1(KG ;k)→ H2(KG ;k) is given by
the formula

ui ∪ uj =
m∑

k=d+1

κ(r ′k )i ,jβk ,

where κ is the quasi-Magnus expansion and r ′k = r c1k
1 r c2k

2 · · · r cmk
m for

d + 1 ≤ k ≤ m with clk defined above.

The idea of the proof:

Define a new group G̃ by the same generators of G with relations r ′k ,
1 ≤ k ≤ m.

Finding a chain transformation T : C∗(K̃G̃ ;Z)→ B∗(G̃ ).

Find the cup product formula for G̃ .

Transfer the formula to group G .
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A presentation for the holonomy Lie algebra

Corollary (Suciu-Wang)

There exists an isomorphism of graded Lie algebras

h(G ; k)
∼=−−→ Liek[y1, . . . , yb]/ideal(I) .

Here Liek[y1, . . . , yb] is the free Lie algebra over k generated by elements
y1, . . . , yb in degree 1, and I is the set

I :=

 ∑
1≤i<j≤b

m∑
l=1

clkκ(rl )i ,j [yi , yj ], d + 1 ≤ k ≤ m


where b is the first Betti number of G, d = n − b.

If G is a commutator-relators group, the result can be simplified.
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The pure flat braid groups (The triangular groups Trn)
Trn has a presentation〈

xij , (1 ≤ i < j ≤ n)

∣∣∣∣∣∣
xijxikxjk = xjkxikxij for i < j < k ;
xijxkl = xklxij for i 6= j 6= k 6= l ,

i < j and k < l

〉
.

Proposition (Bartholdi-Enriquez-Etingof-Rains (06)-Lee(13))

The Lie algebra gr(Trn;Q) is generated by ai ,j (1 ≤ i < j ≤ n) with
defining relations given by the Yang-Baxter equation,
[aij , aik ] + [aij , ajk ] + [aik , ajk ] = 0 for i < j < k and
[aij , akl ] = 0 for i 6= j 6= k 6= l , i < j and k < l .

The triangular group Trn is graded-formal, that is gr(Trn;Q) ∼= h(Trn;Q).

Proposition (Suciu-Wang)

The triangular group Trn is not filtered-formal for n ≥ 4.
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The pure braid group on Riemann surfaces

Pg ,n is the pure braid group on n strings of the underlying Riemann
surface of genus g .

Pg ,n = π1(F (Cg , n)), where F (Cg , n) is the configuration of Cg ,
which is a smooth compact complex curve of genus g (g ≥ 1).

Proposition (Bezrukavnikov 94)

The Malcev Lie algebra of Pg ,n is given by the completion of Lie algebra
generated by {al

i , b
l
i , sij} (1 ≤ i ≤ n, 1 ≤ l ≤ g) with relations

[al
i , b

k
j ] = 0(i 6= j , l 6= k);

[al
i , a

k
j ] = [bl

i , b
k
j ] = 0(i 6= j);

[al
i , b

l
j ] = [ak

j , b
k
i ] = sij (i 6= j);∑g

l=1[al
i , b

l
i ] = −

∑
i 6=j sij ;

[al
i , sjk ] = [bl

i , sjk ] = 0(i 6= j 6= k).
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The pure braid groups on Riemann surfaces

Proposition

Pn,g is 1-formal for g ≥ 2. (Bezrukavnikov 94)

Pn,1 is not 1-formal for n ≥ 3. (Dimca-Papadima-Suciu 09)

Pn,1 is filtered formal for n ≥ 3.
(Bezrukavnikov94-Calaque-Enriquez-Etingof 09)

Corollary

Pn,1 is not graded-formal for n ≥ 3.
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Thank You!
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