
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 9  Naive Bayes

1. Text classification (Bag of words)
2. Navis Bayes
3. Text classification (Event model)



Ø Text Classification.

Example:  Separate emails as Spam=0 and Not Spam=1

Example: Twitter, Messages, Facebook, Google, Amazon, … 



• Spam Email Sample: 

• Not Spam Email Sample



We will represent an email via a feature vector �⃗� ∈ ℤ!", called vocabulary, whose 
length d is equal to the number of words in the dictionary, e.g., d=171,146. 

In practice, we should build a better dictionary with only “medium frequency” words, 
say 𝑑 = 2000.  For example,

B={ability, absolute, abuse, access, accident, ...., young, yourself, zip }

Data vectorization: (Bag of words) 

ℤ!"

The idea is similar to the coordinates in linear algebra:

Let 𝑉 = �⃗� . Here, �⃗� is the set of words of an email. (unordered, unrepeated) 

𝑉

Let dictionary be a basis B for 𝑉.

Consider the coordinate map relative the dictionary basis:



For example, we can transfer an email �⃗� as a vector �⃗� ∈ ℝ".

�⃗� ={ability, …, buy, …, help ,…}

Then the labeled training emails can be represented as our standard  

Training data:   𝒟 = �⃗� 𝑖 , 𝑦 𝑖 𝑖 = 1, … , 𝑛

𝑋 =

�⃗� 1 𝑇

�⃗� 2 𝑇

⋮
�⃗� 𝑛 𝑇

�⃗� =

𝑦 (

𝑦 !

⋮
𝑦 )

Data matrix:

𝑦(𝑖) ∈ 0,1 𝑜𝑟 {1, 2, … , 𝐾}

Here 𝑥, = 𝕝(𝑖-th dictionary word in �⃗�)



Methods for classification we learned:

𝑃 𝑌 = 𝑘 𝑋 = �⃗�): = 𝑠𝑜𝑚𝑒 𝑚𝑜𝑑𝑒𝑙

𝑃 𝑌 = 𝑘 𝑋 = �⃗�) =
𝑃 𝑋 = �⃗� 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

𝑃(𝑋 = �⃗�)

• Discriminative learning

• Generative learning

E.g., LDA/QDA

E.g., logistics/softmax regression

for 𝑘 = 0,1 𝑜𝑟 1,2, … , 𝐾



Ø Naive Bayes method - Generative learning

Maximum Likelihood:

)𝑃(data) = 𝑃(𝑿, 𝒚 =K
,-(

)

𝑃 𝑋 = �⃗�(,), 𝑌 = 𝑦(,)

=K
,-(

)

𝑃 𝑋 = �⃗�(,) | 𝑌 = 𝑦(,) 𝑃(𝑌 = 𝑦(,))

𝑃 𝑋 | 𝑌 = 𝑃 𝑋(, …𝑋" 𝑌)

Recall

= 𝑃 𝑋( 𝑌 𝑃 𝑋! 𝑋(, 𝑌 𝑃 𝑋. 𝑋!, 𝑋( , 𝑌 …𝑃(𝑋"|𝑋"/(, … , 𝑋(, 𝑌)



• Independence

• Conditional Independence

A and B are independent if and only if 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃 𝐵

A and B are conditional independent

if and only if 𝑃 𝐴 ∩ 𝐵 | 𝐶 = 𝑃 𝐴|𝐶 𝑃(𝐵|𝐶)

Remark: there is no direct relation between the above two. 

if and only if 𝑃 𝐴 𝐵 = 𝑃(𝐴)

if and only if 𝑃(𝐵|𝐴) = 𝑃(𝐵)



Conditional Independence Joke: 

P(Accident, Coats | Snow)=P(Accident | Coats, Snow)P(Coats | Snow)

P(Accident | Coats, Snow)=P(Accident | Snow)

Finally, another study pointed out that people wear coats when it snows…

=P(Accident | Snow)P(Coats | Snow)

Accident and coats are not independent, but they are conditional independent. 

A survey has pointed out a positive and significant correlation between the 
number of accidents and wearing heavy coats in Boston. They concluded 
that coats could hinder movements of drivers and be the cause of 
accidents. A new law was prepared to prohibit drivers from wearing coats 
when driving. 



Naive Bayes Assumption: 

Assume that the 𝑿𝒊|𝒀 are conditionally independent given 𝒀.

Naive Bayes method Hypothesis for the model:

• 𝑌 ∽ Bernouli 𝜙

• 𝑋1 𝑌 = 𝑘 ∽ Bernouli 𝜙1,3

for 𝑗 = 1,2, … , 𝑑, and 𝑘 = 0,1 𝑜𝑟 1,2, … , 𝐾

or   𝑌 ∽ Categorical(𝜙(, … , 𝜙4)



𝑃 𝑌 = 𝑦 = 𝑝5 𝑦 = 𝜙(
𝕀(7-()𝜙!

𝕀(7-!)… 𝜙4
𝕀(7-8)
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𝜙3 𝕝(: -3)

𝑃 𝑋1 = 𝑥1 𝑌 = 𝑘 = 𝜙1,3
;! 1 − 𝜙1,3

(/;!

PDF functions:

= 𝜙1,3
𝕝(;!-() 1 − 𝜙1,3

𝕝(;!-<)

For 𝑗 = 1,2, … , 𝑑,
For 𝑘 = 1,2, … , 𝐾,
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Under Naive Bayes assumption, we maximize likelihood
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Equivalently, we maximize log likelihood

𝑙 𝜙1,3 , 𝜙3 : = log 𝐿 𝜙1,3 , 𝜙3

Calculate ∇ 𝑙 𝜙1,3 , 𝜙3 = 0 and find critical points.  

We obtain formulas for the parameters maximizing the likelihood: 

𝜙3 =
1
𝑛f
,-(

)

𝕝(𝑦 , = 𝑘)

𝜙𝑗,𝑘 =
∑𝑖=1𝑛 𝕝(𝑥𝑗

𝑖 = 1, 𝑦 𝑖 = 𝑘)
∑𝑖=1𝑛 𝕝(𝑦 𝑖 = 𝑘)

For 𝑘 = 1,2, … , 𝐾, and 𝑗 = 1,2, … , 𝑑,



Spam Email detection:

Data cleaning, vectorization, 



Ø Laplace Smoothing 

Problem: For Spam/NonSpam example, if some word (e.g., the 1800-th 
dictionary word “XN-Project” is not in the training example. 

Then, 𝑃 𝑋(F<< 𝑌 = 𝑘) = 𝜙(F<<,3= 0 for 𝑘 = 0,1

𝑃 𝑌 = 1 𝑋 = �⃗�) =
𝑃(𝑌 = 1, 𝑋 = �⃗�)

𝑃(𝑋 = �⃗�)

=
∏𝑖=1
G 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = 0)𝑃(𝑌 = 1)

∏𝑖=1
G 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = 1)𝑃(𝑌 = 1) + ∏𝑖=1

G 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = 0)𝑃(𝑌 = 0)
=
0
0

Intuition Reason: Suppose someone did not pass the driving test for the 1st

time, 2ed time, 3rd time, 4th time, 5th time, 6th time,  7th time, 8th time. 
What is the estimate pass rate for this student driver?

𝜙 =
∑,-() 𝕝(𝑦 , = 1)

𝑛
=
0
8

Calculation Reason:



• Under certain conditions, the Laplace smoothing actually gives the 
optimal estimator of 𝜙3.

• In practice, we don’t have to apply Laplace smoothing to 𝜙3. (Reason?)

𝜙3 =
1 + ∑,-() 𝕝(𝑦 , = 𝑘)

𝑛 + 𝐾

𝜙𝑗,𝑘 =
1 + ∑𝑖=1𝑛 𝕝(𝑥𝑗

𝑖 = 1, 𝑦 𝑖 = 𝑘)
2 + ∑𝑖=1𝑛 𝕝(𝑦 𝑖 = 𝑘)

For 𝑘 = 1,2, … , 𝐾, and 𝑗 = 1,2, … , 𝑑,

Laplace Smoothing to the estimates: 



Remarks: 

1. Any assumptions may not be satisfied. This may also happen for Naive 

Bayes assumption.  

2. Naive Bayes algorithm mainly for the case of problems where the 

features 𝑋, are binary-valued. 

3. What is the Naive Bayes Assumption for Gaussian Discriminant 

Analysis?

𝑋 | 𝑌 = 𝑘 ∽ Normal(�⃗�3 , ΣH)



Another way to vectorize the data: (Event model) 

ℤ"#

Let 𝑉 = �⃗� . Here, �⃗� is the set of words of an email. 

𝑉

Let dictionary is a basis B for 𝑉.

Consider the coordinate map relative the dictionary basis:

Here, m is the email length and d is the dictionary size. 

�⃗� ={Dear Good Friend, … … } �⃗� =

231
1086
349
⋮
⋮



Naive Bayes method Hypothesis for the model:

• 𝑋1 𝑌 = 𝑘 ∽ Categorical 𝜙1,3,(, … , 𝜙1,3,"

• 𝑌 ∽ Categorical(𝜙(, … , 𝜙4)

for 𝑗 = 1,2, … , 𝑑, and 𝑘 = 0,1 𝑜𝑟 1,2, … , 𝐾

𝜙1,3,I = 𝜙1&,3,I for all 𝑗 and 𝑗J (denoted by 𝜙3,I)

Furthermore, assume

A word is generated does not depend on its position 𝑗 within the email.
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𝑃 𝑋j = 𝑥j
𝑖 c 𝑌 = 𝑦 𝑖 𝑃 𝑌 = 𝑦 𝑖

Equivalently, we maximize log likelihood

𝑙 𝜙3,I , 𝜙3 : = log 𝐿 𝜙3,I , 𝜙3

Calculate ∇ 𝑙 𝜙3,I , 𝜙3 = 0 and find critical points.  



We obtain formulas for the parameters maximizing the likelihood: 

𝜙3 =
1
𝑛f
,-(

)

𝕝(𝑦 , = 𝑘)

𝜙𝑘,I =
∑𝑖=1𝑛 ∑1

K" 𝕝(𝑥1
, = 𝑙, 𝑦 , = 𝑘)

∑𝑖=1𝑛 𝕝(𝑦 𝑖 = 𝑘)

For 𝑘 = 1,2, … , 𝐾, and 𝑗 = 1,2, … , 𝑑,

We can also apply Laplace smoothing for the above estimates.



Remarks: 

If we count the number of times words appeared, we need to use binomial 
distribution or multinomial distribution.

• Binomial is a generalization of Bernoulli distribution. 

Let X be the number of T appears in the n trials. Then  X ∽ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝)

Given a series of 𝑛 independent trials with two outcomes (T or F) with constant 
probability 𝑝 and 1 − 𝑝.

𝑃 𝑋 = 𝑘 =
𝑛
𝑘 𝑝3 1 − 𝑝 )/3

For example, flip a coin n times. 



Let 𝑋 be the number of 𝑂, appears in the 𝑛 trials. 

Given a series of 𝑛 independent trials with m outcomes (𝑂(, …𝑂K) with constant 
probability (𝜙(, … , 𝜙K).

For example, Toss a K-side die n times. 

• Multinomial is a generalization of Categorical distribution. 

Then 𝑋 ∽ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜙(, … , 𝜙K)

𝑃 𝑋, = 𝑛, =
𝑛!

𝑛(!⋯𝑛K!
𝜙(
)'⋯ 𝜙K

)(

for  each 𝑖 = 1, … ,𝑚, and each 𝑛( +⋯+ 𝑛K = 𝑛



More applications of Naive Bayes algorithm:

Naive Bayes algorithm mainly for the case of problems where the features 
are binary-valued (0,1) or multiclass valued (1,2,…,K).

For continuous value feature, we can discretize it to be multiclass and then
apply Naive Bayes algorithm.  

For example, for the feature house size,  we might discretize the continuous 
values as follows:

House size
(1000 sq feet) <1 1-1.3 1.3-1.6 1.6-1.9 1.9-2.2 >2.2

new feature 1 2 3 4 5 6


