
Math 7243-Machine Learning and Statistical Learning Theory – He Wang
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4. Degrees of freedom (optional)
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Training Data:  𝒟 = �⃗� ! , 𝑦 ! for 𝑖 = 1… 𝑛.

Suppose the data 𝒟 follows (linear) model 𝑦 = ℎ �⃗� + 𝜖 with unmodeled error 𝜖

𝜖 ~ Normal 0, 𝜎"

An estimate function from 𝒟 is denoted by 8ℎ(�⃗�; 𝒟) or 8ℎ𝒟 �⃗�

The expected predicted error (mean squared error) is calculated by 

Evaluate 8ℎ𝒟 �⃗� by expected loss on a new test sample (�⃗�, 𝑦), we get risk 

𝑅 8ℎ𝒟 = 𝐸%⃗,' 8ℎ𝒟 �⃗� − 𝑦 "

Fisher's view: the measurements are a random selection from the set of all possible 
measurements which form the true distribution!

Ø Bias and Variance Tradeoff.  



= 𝑏𝑖𝑎𝑠" + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝜎"

Bias refers to the error that is introduced by approximating a real-life problem, which 
may be extremely complicated, by a much simpler model.

Variance refers to the amount by which !ℎ �⃗� would change if we estimated it using a 
different training data set. Since the training data are used to fit the statistical learning 
method, different training data sets will result in a different !ℎ �⃗� . But ideally the 
estimate for ℎ �⃗� should not vary too much between training sets. 

Bias and variance trade-off: The optimal predictive capability is the one that leads to 
balance between bias and variance.
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"
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Assume a true model is linear:Example: (Linear Model.) 

Find the bias and variance of 
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Calculation of bias: 
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Ø U-shaped bias–variance trade-off curve (Geman et al., 1992).  

http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html


The training error can be easily calculated by applying the statistical 
learning method to the observations used in its training.

The test error is the average error that results from using a statistical 
learning method to predict the response on a new observation, one that was 
not used in training the method.

But the training error rate often is quite different from the test error rate, and 
in particular the former can dramatically underestimate the latter.

Test error V.S. Training error



1. Reconciling modern machine-learning practice and the classical bias–variance trade-off
Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal
PNAS August 6, 2019 116 (32) 15849-15854; https://doi.org/10.1073/pnas.1903070116

Ø Modern point of view of bias-variance trade-off:

2. Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, Yi Ma
Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. 
https://arxiv.org/pdf/2002.11328.pdf

3. A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Neal, Mittal, Baratin,  et.al.   https://arxiv.org/pdf/1810.08591.pdf

https://doi.org/10.1073/pnas.1903070116
https://arxiv.org/pdf/2002.11328.pdf
https://arxiv.org/pdf/1810.08591.pdf


Some methods (adjusted 𝑅", the 𝐶) statistic, AIC and BIC) make a 
mathematical adjustment to the training error rate in order to estimate 
the test error rate.

Prediction-error estimates

Next, we consider a class of validation methods that estimate the test 
error, by holding out a subset of the training observations from the 
fitting process, and then applying the statistical learning method to 
those held out observations. The resulting validation-set error provides 
an estimate of the test error.



Resampling is an important tool to assess the validity/accuracy of statistical methods 
and models. Pretending the data as population and repeatedly draw sample
from the data. Our ultimate goal is to produce the best model with best prediction 
accuracy. 

1. Cross-validation: estimate the test error of models.

2. Bootstrap: quantify the uncertainty of estimators.

Sampling with replacement 𝑛 times, 𝑛 is the sample size of data. Especially 
useful in statistical inference to quantify the uncertainty of estimates. Used in 
ensemble methods of machine learning, for example, bagging, random forest.

Artificially separate data into "training data" and  “test data" for validation 
purpose is called cross-validation. The “test data" should be more accurately 
called validation data, which can not be used in training.

Ø Overview of Resampling: 



Cross-validation:
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Validation
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Bootstrap



Training error is easily computable with training data. However,  the possibility of 
overfit makes it cannot be used to properly assess test error.

• Training data: used to train various models.
• Validation data: used to assess the models and identify the best.
• Test data: test the results of the best model. (Optional) 

When we have enough data, we can randomly split the data into three parts:

Fit various regression models on the training sample. The validation set error 
rates result from evaluating their performance on the validation sample. MSE as 
a measure of validation set error.

Ø Cross validation

Validation



Right: The validation method was repeated ten times, each 
time using a different random split of the observations into a 
training set and a validation set. This illustrates the variability 
in the estimated test MSE that results from this approach

Left: Validation error estimates for a single 
split into training and validation data sets. 

• The validation set MSE for the quadratic fit is considerably smaller than for the linear fit
• Validation set MSE for the cubic fit is slightly larger than for the quadratic fit. This implies 

that including a cubic term in the regression does NOT lead to better prediction than 
simply using a quadratic term.

• Repeat the process of randomly splitting the sample set into two parts, we will get a 
somewhat different estimate for the test MSE.

• Based on the variability among these curves,  we can conclude that the linear fit is not 
adequate for this data.



Ø The leave-one-out cross-validation (LOOCV)

Obtain an estimate of the test error by combining the  𝑀𝑆𝐸! for 𝑖 = 1,2, …𝑛.

First, pick data point 1 as validation set, the 
rest as training set. Fit the model on the 
training set, evaluate the test error, on the
validation set, denoted as 𝑀𝑆𝐸*.

Second, pick data point 2 as validation 
set, the rest as training set. Fit the model 
on the training set, evaluate the test error 
on the validation set, denoted as say 
𝑀𝑆𝐸".

Repeat the procedure for all data point.
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Ø K-fold cross validation (widely used approach for estimating test error)

Average over the above K estimates of the test errors, and obtain

Divide the data (randomly) into K 
subsets, usually of equal or similar 
sizes  ,

/
.

Treat one subset as validation set, the rest 
together as a training set. Run the model 
fitting on training set. Calculate the test 
error estimate on the validation set, 
denoted as 𝑀𝑆𝐸! .

Repeat the procedures over every subset.
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Left: The LOOCV error curve. Right: 10-fold CV was run nine separate times, each 
with a different random split of the data
into ten parts.  

Advantage over LOOCV(K=n): 
1. Computationally lighter, especially for complex model with large data. 
2. Likely less variance.

Advantage over validation set approach: 
Less variability resulting from the data-split, thanks to the averaging.



The true test MSE is shown in 
blue, the LOOCV estimate is 
shown as a black dashed line, 
and the 10-fold CV estimate is 
shown in orange. The crosses 
indicate the minimum of each 
of the MSE curves.

Data simulated from f, 
shown in black. Three 
estimates of f are shown: 
the linear regression line 
(orange curve), and two 
polynomial fits (blue and 
green curves).

Training MSE (grey curve), 
test MSE (red curve), and 
minimum possible test MSE 
over all methods (dashed 
line). Squares represent the 
training and test MSEs for 
the three fits shown in the
left-hand panel.



Use a different true f that is much closer to linear.  Linear regression provides a very good fit to the data.

Use a different f that is far from linear. Linear regression provides a very poor fit to the data.



Bias variance trade-off

A family of models indexed by a parameter, usually representing flexibility or 
complexity of models, e.g., order of polynomials . 
Such parameter is often called tuning parameter; it could even be a number of 
variables. 

Validation set approach has more bias due to smaller size of training data; 
LOOCV is nearly unbiased; K-fold (e.g, K=5 or 10) has intermediate bias.

K-fold cross validation has smaller variance than that of LOOCV.

The n training sets LOOCV are too similar to each other. As a result, the 
trained models are too positively correlated.

The K training sets of K-fold cross validation are much less similar to each 
other. As a result, the K-fold cross validation generally has less variance
than LOOCV.

Complexity parameter



Ø Cross validation for classification

For classification with qualitative response, a natural choice is: 1 for incorrect classification 
and 0 for correct classification.

A simulated data set consisting of 100 observations in each of two groups, indicated in blue 
and in orange. The purple dashed line represents the Bayes decision boundary. The 
orange background grid indicates the region in which a test observation will be assigned to 
the orange class, and the blue background grid indicates the region in which a test 
observation will be assigned to the blue class.

We divide the data (randomly) into K equal-
sized subsets.
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The Bayes decision boundary is 
represented using a purple dashed 
line. 

Estimated decision boundaries from 
linear, quadratic, cubic and quartic 
(degrees 1 to 4) logistic regressions 
are displayed in black.  

The (true) test error rates
for the four logistic regression fits 
are respectively 0.201, 0.197, 0.160,
and 0.162, while the Bayes error 
rate is 0.133.

In practice the true population 
distribution is unknown. Thus, the 
true test error cannot be computed. 
We use cross validation to solve the 
problem.



Left: Logistic regression using polynomial 
functions of the predictors. The order of the 
polynomials used is displayed on the x-
axis. 

• Training error declines in general when model complexity increases. 
• Sometimes even reaches 0. 
• Test error general declines first and then increases. 
• 10-fold cross validation provides reasonable estimate of the test error, with slight 

under-estimation.

Test error (brown), training error (blue), and 10-fold CV error (black) on the 
two-dimensional classification. 

Right: The KNN classier with different 
values of K, the number of neighbors 
used in the KNN classier.



Right and Wrong ways of applying Cross-validation: 

Consider a simple classifier applied to some two-class data:
Step 1. Starting with 5000 predictors/features and 50 samples, find the 100 
predictors having the largest correlation with the class labels.
Step 2. We then apply a classifier such as logistic regression, using only these 100 
predictors.

How do we estimate the test set performance of this classifier? (A or B)

A. Apply cross-validation in step 2.
B. Apply cross-validation to steps 1 and 2.



Split the Data

The test set must simulate a real test scenario, i.e., you want to simulate the setting 
that you will encounter in real life

• Never split alphabetically, or by feature values!

• If the data has a temporal component, we will split the data by time.

• If the data is iid, we can split the data uniformly at random. 



Ø Bootstrap (History and background)

The use of the term bootstrap derives from the phrase to pull oneself up by 
one's bootstraps, widely thought to be based on one of the eighteenth century 
“The Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

Remark: It is not the same as the term “bootstrap” used in computer science 
meaning to “boot” a computer from a set of core instructions, though the 
derivation is similar.

“The Baron had fallen to the bottom of a deep lake. Just when it looked 
like all was lost, he thought to pick himself up by his own bootstraps.”

The bootstrap (1979 Efron) is a flexible and powerful statistical tool that can be 
used to quantify the uncertainty associated with a given estimator or statistical 
learning method. (e.g., estimate of the confidence interval and standard 
error/deviation of a coefficient.)



Ø Bootstrap

Suppose we have data𝑥(*), … , 𝑥(,)with sample mean �̅�.

Suppose the data are i.i.d. and drawn from a distribution 𝑭 with unknown mean 𝜇 and 
known variance 𝜎".  By Central Limit Theorem, we can justify the estimation error �̅� − 𝜇
by z-confidence interval or test of hypothesis. The 1 − 𝛼 confidence interval for 𝜇 is   

If the variance is unknown, we can use the t-confidence interval or test of hypothesis. 

For example, the 95% confidence interval of 𝜇 is

�̅� −
𝑡,0*, 12 "

𝑠

𝑛
, �̅� +

𝑡,0*, 12 "
𝑠

𝑛



The bootstrap is another general tool for assessing statistical accuracy.

Empirical distribution 𝐹∗ True distribution 𝑭

Bootstrap principle: 𝐹∗ ≈ 𝑭 .



1) Take 𝒏 random sample (with replacement) from 𝑥(*), … , 𝑥(,). Calculate the 

sample mean of the “re-sample", denoted as �̅�*∗.

2) Repeat the above a large number M times. We have �̅�*∗, �̅�"∗, … �̅�4∗ .

3) Use the distribution of �̅�*∗−�̅�, … , �̅�4∗ −�̅� to approximate that of 𝜇 − �̅�.

Procedure of using bootstrap for estimation error �̅� − 𝜇 : 

• The idea is to treat the data distribution (empirical distribution) as a proxy of the 
population distribution. 

• Mimic the data generation from the true population.
• Mimic your statistical procedure. 
• Evaluate your statistical  procedure.



• Invest a fixed sum of money in two financial assets that yield returns of X and Y , 

respectively, where X and Y are random quantities.

• Invest a fraction 𝑝 of our money in X, and will invest the remaining 1 − 𝑝 in Y

• Choose 𝑝 to minimize the total risk, or variance Var(𝑝𝑋 + 1 − 𝑝 𝑌), of  the 

investment.   

• The value 𝑝 that minimizes the risk Var(𝑝𝑋 + 1 − 𝑝 𝑌) is given by

Bootstrap Example: (from page 187 of ISLR) 

𝑝 =

• We can compute estimates for these quantities 𝜎5" = 𝑉𝑎𝑟 𝑋 , 𝜎6"=
𝑉𝑎𝑟(𝑌), and 𝜎56 = 𝐶𝑜𝑣(𝑋, 𝑌) using a data set that contains measurements 
for X and Y. 



• To estimate the standard deviation of 𝑝, we repeated the process of simulating 
100 paired observations of X and Y. 

Each panel displays 100 simulated returns for X and Y. From left to right and top to 
bottom, the resulting estimates for are 0.576, 0.532, 0.657, and 0.651.

Simulations the parameters were set to 𝜎5" = 1, 𝜎6" = 1.25, and 𝜎56 = 0.5, and 
so the true value  of 𝑝 is 0.6. 



1. Repeat the simulation 1000 times and estimates 𝑝 1000 times: 𝑝*, 𝑝", … , 𝑝*777.

Left: A histogram of the estimates 
of 𝑝 obtained by generating 1,000 
simulated data sets from the true 
population. 

Right: The estimates of 
𝑝 displayed in the left and 
center panels are shown as 
boxplots. In each panel, the 
pink line indicates the true
value of 𝑝.

Center: A histogram of the 
estimates of 𝑝 obtained from 
1,000 bootstrap samples from 
a single data set. 

𝑝 𝑝

2. From a single data set, bootstrap 1000 new sample sets.

𝑝



An illustration of the bootstrap approach on a small sample containing 𝑛 = 3 observations. 
Each bootstrap data set contains n observations, sampled with replacement from the 
original data set. 
Each bootstrap data set is used to obtain an estimate of 𝑝.



Parametric bootstrap

We generate the bootstrap sample from a parametrized distribution.

Use the parametric bootstrap to estimate a confidence interval for a parameter.

Data: 𝑥(*), … , 𝑥(,) drawn from a distribution ℎ8(�⃗�) with unknown parameter 𝜃.
A statistic ]𝜽 that estimates 𝜃.

For each bootstrap sample 𝑥 *
∗ , … , 𝑥 ,

∗ , compute ]𝜽∗ .

Repeat the above a large number M times, we get ]𝜽*∗ , … , ]𝜽4∗ .

We can get the 1 − 𝛼 confidence interval for 𝜃 from the results ]𝜽*∗ , … , ]𝜽4∗

Histogram of 𝜃∗]𝜽𝟏∗

]𝜽𝟐∗

]𝜽𝑴∗



In more complex data situations, figuring out the appropriate way to generate 
bootstrap samples can require some thought. 

For example, if the data is a time series, we can't simply sample the observations 
with replacement. We can instead create blocks of consecutive observations, and 
sample those with replacements. Then we paste together sampled blocks to 
obtain a bootstrap dataset.

Remarks: 

Question: Can the bootstrap estimate prediction error, as from cross-validation?

original sample = validation sample
bootstrap dataset = training sample
or the other way around? 



Degrees of freedom represent the number of points of control of a system, model, 
or calculation. (The Effective Number of Parameters)

Ø Degrees of freedom (Optional)

degrees of freedom = number of independent values – number of statistics

Suppose data is generated by 𝑦 = ℎ �⃗� + 𝜖, with E[𝜖] = 0, and Var 𝜖 = 𝜎".

The number of degrees of freedom of 8ℎ is

df 8ℎ =
1
𝜎"L

!.*

,

Cov c𝑦 (!), 𝑦(!) =
1
𝜎" Trace(Cov c𝑦 , �⃗� )

Suppose we fit some c𝑦 = 8ℎ(�⃗�) by an iid training set of size 𝑛.

The variance 𝜎" is estimated by s<" = 𝑅𝑆𝑆/(𝑛 − 𝑑 − 1)



3. For a linear model with 𝑑 inputs, the RSS solutions has df �⃗� = 𝑑 + 1.

1.  df 𝑦 = 1, where 𝑦 = *
,
𝑦 * +⋯+ 𝑦 , is the mean predictor.  

2. The identity predictor has degree of freedom n.

4. The k-nearest neighbors has degree of freedom n/k. 

Examples of degree of freedom: 



Ø Vapnik–Chervonenkis (VC) Dimension (optional)

The Vapnik–Chervonenkis dimension is another way of measuring the 
complexity of a class of functions by assessing how wiggly its members can 
be.

The VC dimension of the class {𝑓(�⃗�, �⃗�)} is defined to be the largest number of 
points (in some configuration) that can be shattered by members of {𝑓(�⃗�, �⃗�)} .

Suppose we have a class of functions {𝑓(�⃗�, �⃗�)} indexed by a parameter
vector �⃗� , with �⃗� ∈ ℝ=.



Assume for now that 𝑓 is an indicator function taking the values 0 or 1.


